Light Propagation in Foams

MirFaez Miri

Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
Multiple Scattering
Foams

Durian et. al., PRA 1991, 44, R7902

Physics of Foams, Weaire and Hutzler

wet foam
Gillette shaving cream
dry foam
Metallic Foams
• Drainage
 – gravity
 – pressure gradient

• Coarsening
 – diffusion of gas

Benjamin Dollet,¹,* Miguel Aubouy,² and François Graner¹

PRL 95, 168303 (2005)
• DWS (Diffusing Wave Spectroscopy)

![Diagram of DWS setup](image)

• In soft materials, the speckles fluctuate due to the microscopic motion in the media.
• Local dynamic properties can be studied by intensity autocorrelation function.

For Brownian particles

\[g_{1,8}(\tau) \approx \exp[-2(6\tau/\tau_0)^{1/2}] \]

\[\Gamma = \left(\frac{L}{l^*} \right)^2 \frac{1}{\tau_0} \]

\[g_{1,7}(\tau) \approx \frac{\sqrt{6\Gamma \tau}}{\sinh(\sqrt{6\Gamma \tau})} \]
DWS results for foam

A) Transmitted light exponential in t
B) Backscattered light exponential in \sqrt{t}

• These shapes are identical to those obtained for diffusing Brownian particles, despite the absence of any such motion.
- coarsening
- capillary waves?
- Brownian motion of the bubbles?

\[d \propto t^z \quad z = 0.45 \]

Durian et. al., PRA 1991, 44, R7902
rearrangement

\[l^* \propto d \quad r \propto d \]

\[t_0 \propto \frac{1}{Rr^3} \]

\[R \propto \frac{1}{t_0 l^*^3} \]

\[R \propto t^{-\gamma} \]

\[\gamma = 2 \pm 0.1 \]
\(n = 1.34 \) (water)

\[
\begin{align*}
d/\lambda = 0.06 & \quad \text{(dashed line)} \\
d/\lambda = 0.37 & \quad \text{(dotted line)} \\
d/\lambda = 0.50 & \quad \text{(dashed-dotted line)} \\
d/\lambda = 0.60 & \quad \text{(dashed line)} \\
d/\lambda = 1.00 & \quad \text{(bold line)}
\end{align*}
\]
NEW!

4. MirFaez Miri, Ebrahim Madadi, and Holger Stark,
Fresnel's formula:

\[r(i) = r_p r_p^* + \frac{(E \cdot b)(E^* \cdot b)}{E \cdot E^*} (r_s r_s^* - r_p r_p^*) \]
\[\ell^* = \frac{\ell_s^*}{1 - \langle \cos \theta \rangle} \]

\[\langle \cos \theta \rangle = \overline{r(i) \cos(\pi - 2i)} + \overline{t(i) \cos 0} \]

\[f(i) = \sin 2i \]

\[\ell_s^* = 0.7H \]

TOPOLOGY

OPTICS

