Informative Length Scale in Protein Folding

Nima Hamedani Radja IPM, Ordibehesht 85

> Collaborators: M. R. Ejtehadi R. R. Farzami

Outline

Introduction Model Results

- Protein
- Amino Acid
 Nondegenerate contact matrices
- · Weath finded approximation
- BB-like self-avoiding
- tandom walks re coding
- 6.5 angstrom

0 Primary structure Primary structure secondary structure Ö ß pleated sheet alpha helix tertiary structure quaternary structure

Proteins are something in between.

Biology

Chemistry

Amino acids

Amino

Acid

Side chains

Cutoff

This picture works properly because of the short range behavior of interactions due to screening.

Contact

1. Therepistrap ungigueeaod twell-defined in definition beresut offen 6.5 Angstrom.

 The spatial distance of any of the heavy atoms (all but Hydrogens) be less than 4.5 Angstrom.

The general properties is found to be almost the same.

Coarse-Graining

Contact matrix

$S_{ij} = \begin{cases} 1 & \text{if } |\mathbf{r}_i - \mathbf{r}_j| < R_c \\ 0 & \text{otherwise.} \end{cases}$

Protein Folding is a coding problem. Enough information to design a 3D structure for a protein exists in a short code in DNA.

The coding has more information in, when it chooses the target structure from a larger set of structures.

Miyazawa-Jernigan interaction

Table 3. Contact energies in RT units; e_{μ} for upper half and diagonal and e'_{μ} for lower half

		Cys	Met	Phe	Ile	Leu	Val	Тгр	Tyr	Ala	Gly	Thr	Ser	Asn	Gln	Asp	Glu	His	Arg	Lys	Pro	
	Cys	-5.44	-4.99	-5.80	-5.50	-5.83	-4.96	-4.95	-4.16	-3.57	-3.16	-3.11	-2.86	-2.59	-2.85	-2.41	-2.27	-3.60	-2.57	-1.95	-3.07	Cys
	Met	0.46	-5.46	-6.56	-6.02	-6.41	-5.32	-5.55	-4.91	-3.94	-3.39	-3.51	-3.03	-2.95	-3.30	-2.57	-2.89	-3.98	-3.12	-2.48	-3.45	Met
	Phe	0.54	-0.20	-7.26	-6.84	-7.28	-6.29	-6.16	-5.66	-4.81	-4.13	-4.28	-4.02	-3.75	-4.10	-3.48	-3.56	-4.77	-3.98	-3.36	-4.25	Phe
	Ile	0.49	-0.01	0.06	-6.54	-7.04	-6.05	-5.78	-5.25	-4.58	-3.78	-4.03	-3.52	-3.24	-3.67	-3.17	-3.27	-4.14	-3.63	-3.01	-3.76	Ile
	Leu	0.57	0.01	0.03	-0.08	-7.37	-6.48	-6.14	-5.67	-4.91	-4.16	-4.34	-3.92	-3.74	-4.04	-3.40	-3.59	-4.54	-4.03	-3.37	-4.20	Leu
	Val	0.52	0.18	0.10	-0.01	-0.04	-5.52	-5.18	-4.62	-4.04	-3.38	-3.46	-3.05	-2.83	-3.07	-2.48	-2.67	-3.58	-3.07	-2.49	-3.32	Val
	Trp	0.30	-0.29	0.00	0.02	0.08	0.11	-5.06	-4.66	-3.82	-3.42	-3.22	-2.99	-3.07	-3.11	-2.84	-2.99	-3.98	-3.41	-2.69	-3.73	Trp
	Туг	0.64	-0.10	0.05	0.11	0.10	0.23	-0.04	-4.17	-3.36	-3.01	-3.01	-2.78	-2.76	-2.97	-2.76	-2.79	-3.52	-3.16	-2.60	-3.19	Туг
	Ala	0.51	0.15	0.17	0.05	0.13	0.08	0.07	0.09	-2.72	-2.31	-2.32	-2.01	-1.84	-1.89	-1.70	-1.51	-2.41	-1.83	-1.31	-2.03	Ala
	Gly	0.68	0.46	0.62	0.62	0.65	0.51	0.24	0.20	0.18	-2.24	-2.08	-1.82	-1.74	-1.66	-1.59	-1.22	-2.15	-1.72	-1.15	-1.87	Gły
	Thr	0.67	0.28	0.41	0.30	0.40	0.36	0.37	0.13	0.10	0.10	-2.12	-1.96	-1.88	-1.90	-1.80	-1.74	-2.42	-1.90	-1.31	-1.90	Thr
	Ser	0.69	0.53	0.44	0.59	0.60	0.55	0.38	0.14	0.18	0.14	-0.06	-1.67	-1.58	-1.49	-1.63	-1.48	-2.11	-1.62	-1.05	-1.57	Ser
	Asn	0.97	0.62	0.72	0.87	0.79	0.77	0.30	0.17	0.36	0.22	0.02	0.10	-1.68	-1.71	-1.68	-1.51	-2.08	-1.64	-1.21	-1.53	Asn
	Gln	0.64	0.20	0.30	0.37	0.42	0.46	0.19	-0.12	0.24	0.24	-0.08	0.11	-0.10	-1.54	-1.46	-1.42	-1.98	-1.80	-1.29	-1.73	Gln
	Asp	0.91	0.77	0.75	0.71	0.89	0.89	0.30	-0.07	0.26	0.13	-0.14	-0.19	-0.24	-0.09	-1.21	-1.02	-2.32	-2.29	-1.68	-1.33	Asp
	Glu	0.91	0.30	0.52	0.46	0.55	0.55	0.00	-0.25	0.30	0.36	-0.22	-0.19	-0.21	-0.19	0.05	-0.91	-2.15	-2.27	-1.80	-1.26	Glu
	His	0.65	0.28	0.39	0.66	0.67	0.70	0.08	0.09	0.47	0.50	0.16	0.26	0.29	0.31	-0.19	-0.16	-3.05	-2.16	-1.35	-2.25	Hìs
	Arg	0.93	0.38	0.42	0.41	0.43	0.47	-0.11	-0.30	0.30	0.18	-0.07	-0.01	-0.02	-0.26	-0.91	-1.04	0.14	-1.55	-0.59	-1.70	Arg
	Lys	0.83	0.31	0.33	0.32	0.37	0.33	-0.10	-0.46	0.11	0.03	-0.19	-0.15	-0.30	-0.46	-1.01	-1.28	0.23	0.24	-0.12	-0.97	Lys
	Pro	0.53	0.16	0.25	0.39	0.35	0.31	-0.33	-0.23	0.20	0.13	0.04	0.14	0.18	-0.08	0.14	0.07	0.15	-0.05	-0.04	-1.75	Pro
e _{rr} – 2.55	e_{hr}	-3.57	-3.92	-4.76	-4.42	-4.81	-3.89	-3.81	-3.41	-2.57	-2.19	-2.29	-1.98	-1.92	-2.00	-1.84	-1.79	-2.56	-2.11	-1.52	-2.09	
e, - 3.60	eı	-4.29	-4.73	-5.57	-5.29	-5.71	-4.72	-4.41	-3.87	-3.17	-2.53	-2.63	-2.27	-2.14	-2.35	-2.02	-2.07	-2.94	-2.43	-1.82	-2.53	
f. – 3.60	f_i	-5.58	-6.14	-7.39	-7.09	-7.88	-6.15	-5.34	-4.60	-3.24	-2.22	-2.48	-1.92	-1.74	-1.93	-1.54	-1.49	-2.91	-2.07	-1.17	-1.97	
N_{tr}/N_{t}	2.096	2.723	2.722	2.780	2.811	2.893	2.728	2.537	2.493	2.143	1.840	1.973	1.771	1.699	1.720	1.598	1.508	2.075	1.787	1.343	1.629	
$q_i 7.162$	6.281	6.646	6.137	5.870	6.042	6.087	6.155	5.793	6.037	6.334	6.284	6.486	6.582	6.574	6.469	6.487	6.235	6.241	6.318	6.569	5.858	

Statistical method on real proteins in data bank. They used 6.5 Angstrom because maximum number of contacts occur in this distance.

The question

For cutoff=0 number of matrices = 0. How many nondegerate contact matrices may exist for a specific cutoff distance? For cutoffs larger than the protein size, number of matrices = 0.

Is there any maximum?

Are we looking for these kind of graphs?

Mean field approximation

Assuming a FJC the RMSD between all residues is found.

Number of different possible matrices is assumed to be proportional to the entropy of the matrix.

Analysis of PDB-like self-avoiding walks

The frequency of contact lengths and angles of real proteins is found and the same distribution is applied to the SAWs.
 Number of nondegenerate contact matrices is found for different cutoffs.

Probability of finding to residues at a specific distance

Entropy of the matrix

$$P(m,\Delta) = \int_0^\infty 4\pi r^2 dr \frac{1}{(2\pi m\sigma^2)^{3/2}} e^2 \frac{-r^2}{2m\sigma^2} \theta(r-\Delta)$$

$$F(\Delta) = \sum_{i=1}^{N-3} \sum_{j=i+2}^{n} -P(i-j,\Delta) \ln p(i-j,\Delta) - (1-p) \ln(1-p)$$

Entropy vs Cutoff

Entropy against Delta/Sigma

Optimum cutoff for different lengths

Best Delta/Sigma against Protein Lenght

Number of nondegenerate matrices *VS* cutoff (in 0.1 Angstrom) in a diamond lattice

Contact Length Distribution in PDB

Contact Angle Distribution in PDB

Angle between the contact planes distribution in PDB

Number of nondegenerate matrices *VS* cutoff for PDB-like structures

Entropy vs Cutoff

Entropy against Delta/Sigma

Different lengths

Scaled

Maximum?

Conclusion

The maximum number of nondegenerate contact matrices is found to be a function of protein length in theoretic approach and is at the same order of 6.5 angstrom The number of nondegenerate contact matrices has its maximum value in range which contains 6.5 angstrom for PDB-like structures with 20 monomers.