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Simulating physics with computers 
(1981):

Simulate a (quantum) system 
using another more controllable 
one
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Quantum simulation
Richard Feynman put it in memorable 

words: “Nature isn’t classical, 
dammit, and if you want to make a 

simulation of nature, you’d better make it 
quantum mechanical, and by golly it’s a 
wonderful problem, because it doesn’t look 
so easy.”

Simulating one quantum system using 
another, more controllable one has turned 
out to be not so easy, indeed. But much 
progress has been made since 1981, when 
Feynman delivered his seminal lecture 
‘Simulating Physics with Computers’. 
"e tremendous advances in isolating, 
manipulating and detecting single quantum 
systems — particularly in the past decade or 
so — mean that physical implementations 
of ‘quantum simulators’ are now becoming 
a reality.

"is Nature Physics Insight surveys the 
progress made so far. "e series of articles 
review the state of the art for quantum 
simulators based on atomic quantum 
gases, ensembles of trapped ions, photonic 
systems and superconducting circuits. "e 
list is by no means exhaustive; quantum 
simulations are being implemented in, 
or have been proposed for, a number of 
other systems — among them nuclear 
spins addressed using NMR methodology, 
and electron spins in quantum dots or in 
point defects.

"e competition between the di#erent 
platforms isn’t, however, a ‘winner takes 
all’ situation. Each platform has its own 
advantages and limitations, and di#erent 
approaches o$en tackle complementary 
aspects of quantum simulation. What 
they have in common is their aim to 
solve problems that are computationally 
too demanding to be solved on classical 
computers, at least at the moment. 
Furthermore, the simultaneous development 
of several platforms for practical quantum 
simulation o#ers the intriguing prospect 
of verifying, once uncharted territory is 
reached, one simulator using another. In 
fact, implementing quantum simulations 
that are too complex for the most powerful 
classical computers should be already a 
short-term goal, say Ignacio Cirac and 
Peter Zoller in their Commentary, and the 
criteria they set out for a quantum simulator 
to ful%l might serve as guidelines towards 
reaching that aim.

We hope that these articles will 
provide a solid background and historical 
perspective, together with a broad survey 
of what has already been achieved. Most 
of all, we hope that the Insight conveys 
the excitement of a %eld that is still 
young, and inspires further reading — 
and research.

Andreas Trabesinger, Senior Editor
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• Why ultra-cold gases?

• Why polar molecules?

• How to deal with homogenous many-body 
systems?

• Results for 2D polar liquids

• Summary and future directions

Outline



A new cooling strategy

Simultaneous cooling: evaporate atoms in two spin-states

Science 285,1703 (1999)

The first ’cool’ fermion was 40K.

M.Reza Bakhtiari (Helsinki U of Tech.) An overview on Quantum Gases (II) July 2008, IPM, Tehran. 7 / 14

Why ultra-cold gases?

Bose-Einstein Condensation 
(BEC) in bosonic systems
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predicted: 1925

How to achieve?

so, the idea is clear: take a Bose gas, cool it enough and observe BEC!
sounds simple but it came to reality just in 1995..why so long?

M.Reza Bakhtiari (Helsinki U of Tech.) An overview on Quantum Gases (I) July 2008, IPM, Tehran. 12 / 40

MIT (after few months )

Phys.Rev.Lett, 75, 3969 (1995)

velocity distribution after Time-Of-Flight

M.Reza Bakhtiari (Helsinki U of Tech.) An overview on Quantum Gases (I) July 2008, IPM, Tehran. 20 / 40

observed: 1995



In atomic gases interactions are “short-range” 
and totally “tunable” 

a(B) = abg(1�
�B

B �Bres
)

A useful distinction can be made between resonances
that exist in various systems !see Sec. II.B.2". For narrow
resonances with a width ! typically well below 1 G !see
the Appendix" the universal range persists only for a
very small fraction of the width. In contrast, broad reso-
nances with a width typically much larger than 1 G tend
to have a large universal range extending over a consid-
erable fraction of the width. The first class of resonances
is referred to as closed-channel dominated resonances,
whereas the second class is called entrance-channel
dominated resonances. For the distinction between both
classes, the width ! is not the only relevant parameter.
Also the background scattering length abg and the differ-
ential magnetic moment "# need to be taken into ac-
count. Section II.B.2 discusses this important distinction
in terms of a dimensionless resonance strength.

Figure 3 shows the observation of a Feshbach reso-
nance as reported by Inouye et al. !1998" for an optically
trapped BEC of Na atoms. This early example highlights
the two most striking features of a Feshbach resonance,
the tunability of the scattering length according to Eq.
!1" and the fast loss of atoms in the resonance region.
The latter can be attributed to strongly enhanced three-

body recombination and molecule formation near a Fes-
hbach resonance !see Sec. III.A.2".

A Feshbach resonance in an ultracold atomic gas can
serve as a gateway into the molecular world and is thus
strongly connected to the field of ultracold molecules
!see Sec. V". Various techniques have been developed to
associate molecules near Feshbach resonances. Ultra-
cold molecules produced in this way are commonly re-
ferred to as Feshbach molecules. The meaning of this
term is not precisely defined, as Feshbach molecules can
be transferred to many other states near threshold or to
much more deeply bound states, thus being converted to
more conventional molecules. We use the term Fesh-
bach molecule for any molecule that exists near the
threshold in an energy range set by the quantum of en-
ergy for near-threshold vibrations. The universal halo
state is a special very weakly bound case of a Feshbach
molecule.

C. Historical remarks

Early investigations on phenomena arising from the
coupling of a bound state to the continuum go back to
the 1930s. Rice !1933" considered how a bound state
predissociates into a continuum, Fano !1935" and Fano
et al. !2005" described asymmetric line shapes occurring
in such a situation as a result of quantum interference,
and Beutler !1935" reported on the observation of highly
asymmetric line shapes in rare gas photoionization spec-
tra. Nuclear physicists considered basically the same
situation, having nuclear scattering experiments in mind
instead of atomic physics. Breit and Wigner !1936" con-
sidered the situation in the limit when the bound state
plays a dominant role and the asymmetry disappears.
Later interference and line-shape asymmetry were taken
into account by several authors !Blatt and Weisskopf,
1952".

Feshbach !1917–2000" and Fano !1912–2001" devel-
oped their thorough treatments of the resonance phe-
nomena that arise from the coupling of a discrete state
to the continuum. Their work was carried out indepen-
dently using different theoretical approaches. While Fes-
hbach’s work originated in the context of nuclear physics
!Feshbach, 1958, 1962", Fano approached the problem
on the background of atomic physics !Fano, 1961". refor-
mulating and extending his earlier work !Fano, 1935;
Fano et al., 2005". Nowadays, the term “Feshbach reso-
nance” is most widely used in the literature for the reso-
nance phenomenon itself, but sometimes also the term
“Fano-Feshbach resonance” appears. As a curiosity Fes-
hbach himself considered his name being attached to a
well-known resonance phenomenon as a mere atomic
physics jargon !Kleppner, 2004; Rau, 2005". Fano’s name
is usually associated with the asymmetric line shape of
such a resonance, well known in atomic physics as a
“Fano profile.”

A prominent example for the observation of a Fesh-
bach resonance in atomic physics is the experiment of
Bryant et al. !1977" on photodetachment by the negative
ion of hydrogen. Near a photon energy of 11 eV two
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FIG. 3. Observation of a magnetically tuned Feshbach reso-
nance in an optically trapped BEC of Na atoms. The upper
panel shows a strong loss of atoms near the resonance, which is
due to enhanced three-body recombination. The lower panel
shows the dispersive shape of the scattering length a near the
resonance, as determined from measurements of the mean-
field interaction by expansion of the condensate after release
from the trap; here a is normalized to the background value
abg. From Inouye et al., 1998.
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Feshbach resonance:

Reviews of Modern Physics 82, 1225 (2010)

- non-interacting particles at 
- BCS of weakly attractive fermions
- BEC of strongly attractive fermions
- Universal regime at

B = Bres +�B

Bres

ing referred to as the entrance channel. The other po-
tential Vc!R", representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case !see Sec. VI.A". Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. !1995", for the s-wave scattering length a as a func-
tion of the magnetic field B,

a!B" = abg#1 −
!

B − B0
$ . !1"

Figure 2!a" shows this resonance expression. The back-
ground scattering length abg, which is the scattering
length associated with Vbg!R", represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg!R". The parameter B0
denotes the resonance position, where the scattering

length diverges !a→ ±"", and the parameter ! is the
resonance width. Note that both abg and ! can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B0+!. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2!b" relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by #$, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb = %2/2$a2, !2"

where $ is the reduced mass of the atom pair. In this
limit Eb depends quadratically on the magnetic detuning
B−B0 and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer !see Sec. V.B.2".

2This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 1. !Color online" Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy Ec supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E→0. Resonant coupling is then
conveniently realized by magnetically tuning Ec near 0 if the
magnetic moments of the closed and open channels differ.
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FIG. 2. !Color online" Feshbach resonance properties. !a"
Scattering length a and !b" molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, Eb=−E. The inset shows the universal
regime near the point of resonance where a is very large and
positive.

1227Chin et al.: Feshbach resonances in ultracold gases

Rev. Mod. Phys., Vol. 82, No. 2, April–June 2010

B



Optical lattices:
Artificial crystals with different geometries and dimensionalities 
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Nature 453, 736 (2008)

Short-range (on-site) interactions: Hubbard model



Synthetic gauge fields in cold atoms
Many interesting phenomena in condensed matter physics occur when 
electrons are placed in an electric or magnetic field, or possess strong 
spin-orbit coupling. But neutral atoms, neither possess gauge coupling to 
electromagnetic fields nor have spin-orbit coupling.

- Uniform gauge field: Phys. Rev. Lett. 102, 130401 (2009)
- Magnetic field: Nature 462,  628 (2009)
- Electric field: Nature Physics, 7, 531, (2011)
- Spin-orbit coupling: Nature, 471, 83 (2011)

Spielman’s group (NIST):

Bosons with spin-orbit couplings!

Topological cold-atomic insulators!

For a short review see: Hui Zhai, Int. J. Mod. Phys. B (2012)



Why polar molecules?

Even a short-range contact interaction between atoms leads 
to a very rich physics.  A long-range richer interaction would 
be very interesting to investigate.

Dipole-dipole interaction between particles with permanent 
electric or magnetic dipole moments leads to a novel 
degenerate quantum gas already in the weak coupling. 

Polar molecules: Rb; K, LiCs
Magnetic dipoles: 52Cr

Experimental realization:



Why polar molecules? (cont.)

vdd(r12) =
Cdd

4⇡

(n1 · n2)r212 � 3(n1 · r12)(n2 · r12)
r512

Long-range & anisotropic

2D

repulsive

attractive
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Figure 1 Intuitive picture of the trap geometry dependence of the stability of a

dipolar BEC. a,b, In an oblate trap (a), the dipoles mainly repel each other, whereas
in a prolate trap (b), the interaction is predominantly attractive. c, The different
trapping geometries are realized by the crossed optical dipole trap (red) and a
further one-dimensional optical lattice (green). The magnetic field is pointing along
the symmetry axis z of our traps.

obtained20,23, we adiabatically shape the trapping potential to the
desired aspect ratio l. To be able to vary l over a wide range, we
generate the trapping potential by a crossed optical dipole trap
(ODT) and a superimposed one-dimensional optical lattice along
the z direction (see Fig. 1c and Methods section).

We observe two eVects when approaching the zero-crossing of
the scattering length: the BEC shrinks in both directions owing
to the decreasing scattering length and the ellipticity of the cloud
changes as a manifestation of the enhanced dipolar eVects20. Finally,
when we decrease the scattering length below some critical value
acrit, the BEC atom number (determined from a bimodal fit24 of the
time-of-flight absorption images) abruptly decreases (Fig. 2a,b).
The disappearance of the BEC around the instability point is shown
in Fig. 2c. Although slightly above acrit, we still see an almost
pure BEC, for a ' acrit the density shows a bimodal distribution
(an anisotropic, dense central peak surrounded by an isotropic
gaussian cloud). Just below acrit, the BEC collapses and the density
distribution becomes a unimodal, isotropic gaussian. Note that we
do not observe the formation of soliton trains as in refs 15,16. This
can be attributed to the fact that as our trap is much tighter than
in those references, the initial size of our BEC is smaller than any
single soliton observed in refs 15,16.

The critical scattering length acrit where the condensate vanishes
depends strongly on the trap aspect ratio l. For an isotropic trap
(Fig. 2a), the collapse occurs at a ' 15a0, whereas the pancake-
shaped trap (Fig. 2b) can even stabilize a purely dipolar BEC
(a ' 0). We repeated this experiment for six diVerent traps (see
Table 1), thereby covering a range of two orders of magnitude in the
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Figure 2 Decrease of the BEC atom number N around the critical scattering

length a
crit

. a,b, The critical point depends strongly on the aspect ratio l of the trap.
The solid lines are fits to equation (2) used to determine the critical scattering length
acrit (see text). c, Typical images of the atomic cloud around the critical scattering
length for the trap with l = 10.

Table 1 Trap frequencies and aspect ratios of the traps used. The trap frequencies

were measured by either exciting the centre-of-mass motion or parametric

heating and are accurate to about 10%. Traps 1–3 are provided only by the

crossed optical dipole trap, whereas for traps 4–6 the horizontal dipole trap beam

and the optical lattice are used.

Trap !r/ (2⇡ ) (Hz) !
z

/ (2⇡ ) (Hz) !̄/ (2⇡ ) (Hz) l = !
z

/!r

1 1,300 140 620 0.11
2 890 250 580 0.28
3 480⇤ 480 480 1.00
4 530 1,400 730 2.60
5 400 2,400 730 6.00
6 330 3,400 720 10.00
⇤Trap 3 is not cylindrically symmetric (see the Methods section) and has the trap frequencies !

x

= 2⇡⇥610Hz and
!

y

= 2⇡⇥370Hz.

trap aspect ratio l. To exclude three-body loss processes causing the
abrupt decrease in the BEC atom number, we measured the lifetime
of the BEC for the diVerent traps just above acrit and found the same
lifetime (⇠10 ms) for the diVerent scattering lengths.

By fitting to the observed BEC atom numbers (Fig. 2a,b) the
threshold function

N = max
⇥
0,N0(a�acrit)

�
⇤
, (2)
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Figure 2 Decrease of the BEC atom number N around the critical scattering

length a
crit

. a,b, The critical point depends strongly on the aspect ratio l of the trap.
The solid lines are fits to equation (2) used to determine the critical scattering length
acrit (see text). c, Typical images of the atomic cloud around the critical scattering
length for the trap with l = 10.

Table 1 Trap frequencies and aspect ratios of the traps used. The trap frequencies

were measured by either exciting the centre-of-mass motion or parametric

heating and are accurate to about 10%. Traps 1–3 are provided only by the

crossed optical dipole trap, whereas for traps 4–6 the horizontal dipole trap beam

and the optical lattice are used.

Trap !r/ (2⇡ ) (Hz) !
z

/ (2⇡ ) (Hz) !̄/ (2⇡ ) (Hz) l = !
z

/!r

1 1,300 140 620 0.11
2 890 250 580 0.28
3 480⇤ 480 480 1.00
4 530 1,400 730 2.60
5 400 2,400 730 6.00
6 330 3,400 720 10.00
⇤Trap 3 is not cylindrically symmetric (see the Methods section) and has the trap frequencies !

x

= 2⇡⇥610Hz and
!

y

= 2⇡⇥370Hz.

trap aspect ratio l. To exclude three-body loss processes causing the
abrupt decrease in the BEC atom number, we measured the lifetime
of the BEC for the diVerent traps just above acrit and found the same
lifetime (⇠10 ms) for the diVerent scattering lengths.

By fitting to the observed BEC atom numbers (Fig. 2a,b) the
threshold function

N = max
⇥
0,N0(a�acrit)

�
⇤
, (2)
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Isotropic but still long-range

vdd(r12) =
Cdd

4⇡

1

r312



Now we have to deal with too many 
interacting particles 

:e.g. HF, RPA, QMC, BA (r1, r2, ..., rN )

2

4
NX

i=1

p2i
2m

+
NX

i<j

V (rij)

3

5 (r1, r2, ..., rN ) = E  (r1, r2, ..., rN )

The homogenous limit is especially interesting as it can 
provide input for e.g. DFT calculations of inhomogenous 

systems



Cheat list:

⇢(r) =

Z
dr2...drN  ⇤ (r, r2, ..., rN ) (r, r2, ..., rN )

Density:

⇢(r, r0) =

Z
dr2...drN  ⇤ (r, r2, ..., rN ) (r0, r2, ..., rN )

⇢(r, r) = ⇢(r)

g(r � r0) =
(N � 1)

⇢2

Z
dr3...drN  ⇤ (r, r0, r3, ..., rN ) (r, r0, r3, ..., rN )

S(q)� 1 = FT[g(r)� 1]

One-body density-matrix:

Pair- distribution function:

Static structure factor:




�~2
m

r2 + Ve↵(r)

�p
g(r) = 0

HNC (Bosons)

WB(k) = W 0
B(k) + ↵(�)W 3

B(k)

Triplet 
correlations

Scaling 
parameter

Self-
consistent 
solution

Ve↵(r) = v(r) +WB(r)

Formally exact and 
describes a zero-
energy two-body 
scattering problem in 
the many-body fluid

FHNC (Fermions)
Ve↵(r) = v(r) +WB(r) +WF(r)
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interaction in fermionic and bosonic systems is another
possibility within our formalism.
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Numerical Results: 2D polar Fermi liquid

(still no exact results in the market)
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Summary

• Ground-state properties of a 2D system of polar bosons 
studied within HNC approximation.

• An excellent agreement with QMC results obtained 
wherever the liquid phase is stable.

• Ground-state properties of a 2D system of polar fermions 
studied within FHNC approximation.

• Results were in agreement with available weak-coupling 
results in the weak-coupling regime. 



Where to go from here?

• Dynamical properties and elementary/collective 
excitations!

• Polar systems with anisotropic interaction!

• Confined in-homogenous systems!

• Effects of finite temperature!

• Fermi-Bose mixture!

• Higher/Lower dimensions!

• Multilayer polar systems!

• Polar interaction + synthetic gauge fields!

Thanks for your attention!


