19th IPM Spring Physics Conference, 16-17 May 2012

Quantum Polar Liquids

Saeed Abedinpour Harzand

Collaborators: Reza Asgari (Tehran), Marco Polini (Pisa) and Bilal Tanatar (Ankara)

Simulating (1981):

computers

Simulate a (quantum) system using another more controllable one

264

CONTENTS

COMMENTARY

Goals and opportunities in quantum simulation J. Ignacio Cirac and Peter Zoller

REVIEW ARTICLES

Quantum simulations with ultracold quantum gases Immanuel Bloch, Jean Dalibard and Sylvain Nascimbène	267
Quantum simulations with trapped ions R. Blatt and C. F. Roos	277
Photonic quantum simulators Alán Aspuru-Guzik and Philip Walther	285
PROGRESS ARTICLE	

On-chip quantum simulation with	
superconducting circuits	
Andrew A. Houck, Hakan E. Türeci and Jens Koch	292

Outline

- Why ultra-cold gases?
- Why polar molecules?
- How to deal with *homogenous* many-body systems?
- Results for 2D polar liquids
- Summary and future directions

Why ultra-cold gases?

Bose-Einstein Condensation (BEC) in bosonic systems

predicted: 1925

observed: 1995

The Nobel Prize in Physics 2001

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell

Wolfgang Ketterle Carl E. Wieman

In atomic gases interactions are "short-range" and totally "tunable"

Feshbach resonance:

$$a(B) = a_{\rm bg} \left(1 - \frac{\Delta_B}{B - B_{res}}\right)$$

- non-interacting particles at $B=B_{
m res}+\Delta_{
m B}$

- BCS of weakly attractive fermions
- BEC of strongly attractive fermions
- Universal regime at $B_{
 m res}$

Optical lattices:

Artificial crystals with different geometries and dimensionalities

Nature 453, 736 (2008)

Short-range (on-site) interactions: Hubbard model

Synthetic gauge fields in cold atoms

Many interesting phenomena in condensed matter physics occur when electrons are placed in an electric or magnetic field, or possess strong spin-orbit coupling. But neutral atoms, neither possess gauge coupling to electromagnetic fields nor have spin-orbit coupling.

Spielman's group (NIST):

- Uniform gauge field: Phys. Rev. Lett. 102, 130401 (2009)
- Magnetic field: Nature 462, 628 (2009)
- Electric field: Nature Physics, 7, 531, (2011)
- Spin-orbit coupling: *Nature*, 471, 83 (2011)

Bosons with spin-orbit couplings!

Topological cold-atomic insulators!

For a short review see: Hui Zhai, Int. J. Mod. Phys. B (2012)

Why polar molecules?

Even a short-range contact interaction between atoms leads to a very rich physics. A long-range richer interaction would be very interesting to investigate.

Dipole-dipole interaction between particles with permanent electric or magnetic dipole moments leads to a novel degenerate quantum gas already in the weak coupling.

Experimental realization:

Polar molecules: Rb; K, LiCs Magnetic dipoles: ⁵²Cr

Why polar molecules? (cont.)

$$v_{\rm dd}(\mathbf{r}_{12}) = \frac{C_{\rm dd}}{4\pi} \, \frac{(\mathbf{n}_1 \cdot \mathbf{n}_2)r_{12}^2 - 3(\mathbf{n}_1 \cdot \mathbf{r}_{12})(\mathbf{n}_2 \cdot \mathbf{r}_{12})}{r_{12}^5}$$

Now we have to deal with too many interacting particles

$$\left[\sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < j}^{N} V(r_{ij})\right] \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E \Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

$$\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{N}
ight)$$
 :e.g. HF, RPA, QMC, BA

The *homogenous* limit is especially interesting as it can provide input for e.g. DFT calculations of *inhomogenous* systems

Cheat list:

Density:

$$\rho(\mathbf{r}) = \int d\mathbf{r}_2 ... d\mathbf{r}_N \ \Psi^* \left(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_N \right) \Psi \left(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_N \right)$$

One-body density-matrix:

$$\rho(\mathbf{r}, \mathbf{r}') = \int d\mathbf{r}_2 \dots d\mathbf{r}_N \ \Psi^* \left(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_N\right) \Psi \left(\mathbf{r}', \mathbf{r}_2, \dots, \mathbf{r}_N\right)$$
$$\rho(\mathbf{r}, \mathbf{r}) = \rho(\mathbf{r})$$

Pair- distribution function:

$$g(r-r') = \frac{(N-1)}{\rho^2} \int d\mathbf{r}_3 \dots d\mathbf{r}_N \ \Psi^* \left(\mathbf{r}, \mathbf{r}', \mathbf{r}_3, \dots, \mathbf{r}_N\right) \Psi \left(\mathbf{r}, \mathbf{r}', \mathbf{r}_3, \dots, \mathbf{r}_N\right)$$

Static structure factor:

$$S(q) - 1 = \operatorname{FT}[g(r) - 1]$$

HNC (Bosons)

Numerical Results: 2D polar Bose liquid

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V_{\text{eff}}(r)\right]\sqrt{g(r)} = 0$$

$$egin{aligned} V_{ ext{eff}}(r) &= rac{C_{ ext{dd}}}{4\pi}rac{1}{r^3} + W_{ ext{B}}(r) \ & \ & \gamma = nr_0^2 \ & \ & r_0 &= rac{mC_{ ext{dd}}}{4\pi\hbar^2} \end{aligned}$$

Pair distribution function

QMC data: courtesy of Gregory Astrakharchik

Ground-state energy

Structure factor

One-body density matrix and condensation fraction

5

Numerical Results: 2D polar Fermi liquid

(still no exact results in the market)

 $\alpha = 2.5$

HF -----

 $\overline{7}$

8

STLS

6

Ground-state energy

 $\varepsilon_{\rm GS}(\alpha \to 0) = \alpha^2 + \frac{256}{45\pi}\alpha^3 + \alpha^4\ln(\alpha) + \mathcal{O}(\alpha^4)$

Lu & Shlyapnikov, PRA (2012)

Summary

- Ground-state properties of a 2D system of polar bosons studied within HNC approximation.
- An excellent agreement with QMC results obtained wherever the liquid phase is stable.
- Ground-state properties of a 2D system of polar fermions studied within FHNC approximation.
- Results were in agreement with available weak-coupling results in the weak-coupling regime.

Where to go from here?

- Dynamical properties and elementary/collective excitations!
- Polar systems with anisotropic interaction!
- Confined in-homogenous systems!
- Effects of finite temperature!
- Fermi-Bose mixture!
- Higher/Lower dimensions!
- Multilayer polar systems!
- Polar interaction + synthetic gauge fields!

Thanks for your attention!