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Forces

1. Gravity

2. Electroweak

3. Strong interaction

How to describe?

1. Classical theory

2. Quantum Field theory (weakly or strongly coupled)
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AdS/CFT correspondence

Basically AdS/CFT correspondence is a duality or a relation between two

theories one with a gravity and the other without gravity.

The gravitational theory is usually defined in higher dimension.

Well developed case is the one where the gravity is defined on an AdS

geometry where the dual theory is a CFT living in the conformal boundary

of AdS space.
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Classical gravity on AdSd+1 background is dual to d-dimensional “Large N”

strongly coupled CFT on its boundary.

AdSd+1 metric in Poincare coordinates

ds2 =
r2

R2
(−dt2 + d~x2) +

R2

r2
dr2

AdSd+1 metric in global coordinates

ds2 = −(1 +
r2

R2
)dt2 +

dr2

1 + r2

R2

+ r2dΩ2
d−1

Here boundary is at r →∞
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Consider a 4-dimensional flat space {X1, · · · , X4}. The distance between two

near by points is

ds2 = dX2
1 + dX2

2 + dX2
3 + dX2
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An sphere with radius R is defined

X2
1 +X2

2 +X2
3 +X2

4 = R2

So that

X1 = R cos θ, X2 = R sin θ cosφ, X3 = sin θ sinφ cosψ, X3 = sin θ sinφ sinψ

Distance between two near by points on the sphere

ds2 = R2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2)= R2dΩ2
3
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Consider a 6-dimensional flat space with two time-like coordinates. The

distance between two near by points is

ds2 = −dX2
1 − dX

2
2 + dX2

3 + dX2
4 + dX2

5 + dX2
6

An sphere in this space may be defined

−X2
1 −X

2
2 +X2

3 +X2
4 +X2

5 +X2
6 = −R2

So that

X2
1 +X2

2 = R2 + r2, X2
3 +X2

4 +X2
5 +X2

6 = r2

Distance between two near by points is given by

ds2 = −(1 +
r2

R2
)dτ2 +

dr2

1 + r2

R2

+ r2dΩ2
3
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There is one to one correspondence between objects in CFT and those in

the gravitational theory on AdS space.

{r, t, ~x} ←→ {scale of energy, t, ~x}

Symmetries ←→ Symmetries

Fields Φ(r, t, ~x) ←→ Operators O(t, ~x)

On shell action ←→ Expectation values

UV, IR ←→ near boundary,near horizon
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• Suppose O(t, ~x) on the boundary corresponds to field Φ(r, t, ~x) in the bulk.

• Suppose O(t, ~x) has dimension ∆:

O(λx) = λ∆O(x)

• One can solve equations of motion of Φ(r, t, ~x) in the bulk.

• The asymptotic expansion is

lim
r→0

Φ(r, t, x) ∼ rd−∆ϕ(t, x) + r∆φ(t, x)

∆ is given in terms of mass, dimension,....

• ϕ(t, x) is source and φ(t, x) is response.

8



• ϕ(t, x) is source:

∫
ddx LCFT +

∫
ddx ϕ(x)O(x)

• φ(t, x) is response:

〈O〉 =
1
√g(0)

δS

δϕ
∼ φ[ϕ(x)] + local terms

• Retarded Green’s function

GR(ω, k) =
φ(k, ω)

ϕ(k, ω)
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Applications

• Non-Fermi Liquid.

• High Tc superconductor.

• Quantum Critical points

• QGP and AdS/QCD

10



Fermi Liquid

1. The ground state of an interacting fermionic system is characterized by

a Fermi surface in momentum space at k = kF .

2. Despite (possibly strong) interactions among fundamental fermions, the

low energy excitations near the Fermi surface nevertheless behave like

weakly interacting particles and holes, which are called quasi-particles

and quasi-holes.

ε(k) = vF (k − kF ) + . . . vF =
kF
m∗

.
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The propagator describing the propagation of a particle of energy ε(k):

GR(t,~k) ∼ θ(t)e−iε(k)t

Fourier transforming

GR(ω,~k) =
1

ω − ε(k)

When turning on interactions, a particle (or hole) can now decay into another

particle plus a number of particle-hole pairs. Thus the above equation should

be modified to

GR(t,~k) ∼ e−iε(k)t−Γ
2t

Γ is the decay rate. Near Fermi surface

GR(ω,~k) =
1

ω − vF (k − kF ) + Σ(k, ω)
, Σ =

iΓ

2
∼ iω2
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Within this model, for Fermi liquid one finds

ρ = ρ0 + ρ1T
2, χ ∼ T

The theory has been tremendously successful in explaining almost all metallic

states in nature.

Since the 1980’s, there has been an accumulation of metallic materials whose

thermodynamic and transport properties differ significantly from those pre-

dicted by Fermi liquid theory .

ρ ∼ T, χ ∼ T lnT

One prominent class of examples of these so-called non-Fermi liquids is the

strange metal phase of the cuprate superconductors, which refers to the

metallic state above the superconducting transition temperature Tc.
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The immediate question is whether one or both of the postulates stated

earlier break down.

For high Tc cuprates in the strange metal region, ARPES experiments indi-

cate that a Fermi surface still exists, but excitations exhibit a much broader

peak than that for a Fermi liquid. The experimental results can be fit well

to the following expression, postulated as “Marginal Fermi liquid” (MFL) in

GR(ω, k) =
h

ω − vF (k − kF ) + Σ(ω, k)

with the self-energy Σ(ω, k) given by

Σ(ω) ≈ cω logω + dω, c real, d complex .
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How to construct gravity dual?

1. Strongly coupled field theory −→ Gravitational theory

2. Finite density −→ Gauge field

3. Cooper pair −→ Scalar field

4. Finite Temperature −→ Black hole

5. Fermionic system −→ Fermion
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The Minimal model

S =
∫
d4x
√
−g
[

1

κ
(R2 − Λ)−

1

g2
YM

F2 −
1

2
|∇φ|2 + V (φ)− ψ̄iΓaDaψ −mψ̄ψ

]

1. In normal state φ = 0

2. Consider fermions as probe −→ Gravity+Maxwell

3. Charged black hole

ds2 = r2(−fdt2 + d~x2) +
dr2

r2f
, At = µ(1−

r0

r
)

f = 1 +
Q

r4
−
M

r3
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Setting ψ = (−ggrr)−1/4e−iωt+ik1x
1
Ψ the equation of motion becomes√

gii
grr

(Γr∂r −m
√
grr)Ψ + iKµΓµΨ = 0

where Kµ = (−u, k1) with

u =

√
gii
−gtt

(ω + qAt)

Let us decompose the fermion Ψ as follows

Ψ =

(
χ1
χ2

)
then near the boundary one finds

χα ∼ aαrmR
(

0
1

)
+ bαr

−mR
(

1
0

)
, for r →∞

So that the Retarded Green’s function reads

GαR(ω, k) =
bα(ω, k)

aα(ω,k)
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At low energy (IR) we have ω � µ . In small ω limit and at zero temperature

one finds

GR(ω, k) =

b
(0)
+ + ωb

(1)
+ +O(ω2) + Gk(ω)

(
b
(0)
− +O(ω)

)

a
(0)
+ + ωa

(1)
+ +O(ω2) + Gk(ω)

(
a

(0)
− +O(ω)

)

where Gk(ω) = c(k)ω2νk with

νk =

√√√√m2 − q2 +
k2

µ2

If a(0)
k |kF = 0 so that a(0)

+ ≈ ∂ka
(0)
+ (kF )(k− kF ), then the above equation at

leading order reads

GR(ω, k) ≈
h

ω − vF (k − kF ) + Σ
, Σ ∼ Gk(ω)

18



The dispersion relation of small excitations near fermi surface is given by

ω − vF (k − kF ) + hc(k)ω2ν = 0

1. ν > 1
2 ω = vF (k − kF ), Γ ∼ ω2ν

2. ν < 1
2 ω = vF (k − kF )1/2ν, Γ ∼ ω

3. ν = 1
2

GR(ω, k) ≈
h

ω − vF (k − kF ) + cω logω + dω
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Conductor/Superconductor phase transition

As we change the temperature, the scalar field could be non-zero leading to

a hairy black hole

In dual theory the coopar pair gets non-zero expectation value leading to a

second order phase transition

The resultant phase is a superconductor phase

20



References

1. N. Iqbal, H. Liu and M. Mezei, arXiv:1110.3814

2. T. Nishioka, S. Ryu, and T. Takayanagi, arXiv: 0905.0932

3. S. A. Hartnoll, arXiv:0903.3246

21



Quantum critical points (at T = 0)

There is no classical order parameter, symmetry bracking....

Is there a good order parameter?

Entanglement entropy!
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