Liquid Crystals defects

Mohammad Reza Ejtehadi

Sharif University of Technology, Tehran, Iran With contributions of:

> Dr. Reza Mozaffari Reza Seyednejad Mehrtash Babadi Zahra Zahedi Niloofar Faghihi

IPM Spring Conference May 2012

Liquid Crystal Physics

Observed two melting points when heating up Cholesteryl Benzoate.

Friedrich Reinitzer (1888)

Lehmann (1900)

Established the term *liquid crystal*

Liquid Crystals (rod like)

Liquid crystal materials generally have several common characteristics. Among these are a rod-like molecular structure, rigidness of the long axis, and strong dipoles and/or easily polarizable substituents.

4'-n-pentvl-4-cvano-biphenvl

 $CH_3-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-C=N$

Liquid Crystals (disk like)

- Rigid core and flexible tails.
- The branches are approximately on one plane.
- There is no permanent dipole moment perpendicular to the plane of the molecule

vstals

Liquid Crystal Physics

Orientational Order

The average directions of the molecular axes are along a common direction: namely, the liquid crystal <u>director</u>, \hat{n} .

The orientation of individual molecules, \hat{a} , is specified by the polar angle ϕ and the azimuthal angle θ where the z axis is chosen parallel to \hat{n} .

In general the orientational order of \hat{a} is specified by an orientational distribution function: $g(\theta, \phi)$

 $\begin{array}{ll} g(\theta,\phi)d\Omega & \text{probability that}\,\hat{a} \text{ is oriented along the direction} \\ & \text{specified by } \theta \ \text{ and } \phi \text{ within the solid angle}\,d\Omega \end{array}. \end{array}$

Order Parameter

Definition of the order parameter: $S = \langle P_2(\cos\theta) \rangle = \left\langle \frac{3\cos^2\theta - 1}{2} \right\rangle$

Order parameter tensor is defined as follows: $Q_{ij} = \left\langle \frac{3n_i n_j - \delta_{ij}}{2} \right\rangle$

rystals

The largest eigenvalue of *Q* gives *S* and the corresponding eigenvector determines the director.

Orientational Order

Uniaxial ordering

 e_2

Nematics are uniaxial in the bulk. The wetting layer may exhibit *biaxiality* due to the lower symmetry near the surface.

T. J. Sluckin and A. Poniewierski, *Phys. Rev. Lett.*, **55 2907**(1985).

Biaxial ordering $\begin{array}{c}
e_{2} \\
e_{3} \\
\lambda_{1} = \frac{2}{3}S \quad , \quad \lambda_{2} = -\frac{1}{3}S(1+B) \quad , \quad \lambda_{3} = -\frac{1}{3}S(1-B) \quad , \quad 0 \le B \le 1
\end{array}$

Biaxial nematic phase

R. Berardi, J. S. Linturuori, M. R. Wilson, C. Zannoni, J. Chem. Phys. (2011) M. Kleman, O. Lavrentovich, Soft Matter Physics An Introduction (2003)

Isotropic – Nematic transition

Landau-de Gennes theory

- De Gennes extended Landau's theory to the isotropic-nematic transition because it is a weak first-order transition.
- The free energy density *f* of the material can be expressed in terms of the order parameter *S* as

De Gennes

$$f = \frac{1}{2}a(T - T^*)S^2 - \frac{1}{3}bS^3 + \frac{1}{4}cS^4$$
$$F_{LdG}[Q] = \int_{\Omega} \left\{ \frac{1}{2}a(T - T^*)Tr[Q.Q] - \frac{1}{3}BTr[Q.Q.Q] + \frac{1}{4}C(Tr[Q.Q])^2 \right\} dV$$

Landau- de Gennes theory

S

Straley Stephen, Reviews of Modern Physics, 46, 4, (1974)

Elastic Energy

$$f_{Elastic} = \frac{1}{2} K_{splay} \left(\vec{\nabla} \cdot \hat{n} \right)^2 + \frac{1}{2} K_{twist} \left(\hat{n} \cdot \vec{\nabla} \times \hat{n} \right)^2 + \frac{1}{2} K_{bend} \left(\hat{n} \times \vec{\nabla} \times \hat{n} \right)^2$$

P.G. de Gennes and J. Prost, *The Physics of Liquid Crystals*, 2nd ed. (Oxford University Press, Oxford, 1993).

Boundary condition effect

Defects

 $\theta(x, y) = s \tan^{-1}(\frac{y}{x}) + c$

 $s = -\frac{1}{2}$

 $s = \frac{1}{2}$

s = 1, c = 0

 $s = 1, c = \pi/4$

 $s = 1, c = \pi/2$

 $\theta_1(x, y) = s_1 \tan^{-1}(\frac{y}{x}) + c_1$ $\theta_2(x, y) = s_2 \tan^{-1}(\frac{y}{x}) + c_2$ $\theta = \theta_1 + \theta_2$

s = 3/2

s = 2

Defects

The control of the anchoring is achieved experimentally by using various amphiphilic compounds which are adsorbed at the water–liquid-crystal interface. Molecular **surfactants** are used to induce strong normal anchoring, while a **polymer** is used to induce strong planar anchoring.

P. Poulin, and D. A. Weitz, Phys. Rev. E 57, 626 (1998).

Philippe Poulin, Holger Stark, T. C. Lubensky, D. A. Weitz, *Science 75*, 1770 (1997)

Colloidal droplets in nematic medium

The alignment of a nematic liquid crystal by a **bounding interface** is of considerable interest both for fundamental and technological reasons.

• *homeotropic* anchoring, where the preferred, or "easy", average orientation corresponds to *n* normal to the interface.

• **planar** anchoring, where the preferred average orientation corresponds to *n* lying in one particular direction parallel to the interface

• **planar degenerate** anchoring, where all the planar orientations for **n** are equivalent easy directions.

J.-B. Fournier and P. Galatola, *Europhys. Lett.*, **72** (3), pp. 403–409 (2005).

Planar anchoring on sphere

How to observe

Colloids in Nematic

Poulin & Weitz, PRE 1998

Colloids in Nematic

Poulin & Weitz, PRE 1998

Quadrapolar configurations

Nano Letters, Vol.2, No.10 ,1125-1129 (2002)

Aggregations

Poulin & Weitz, PRE 1998

fluorescence confocal polarizing microscopy (FCPM) to characterize the director distortions around the particles and *optical trapping with laser tweezers* to measure the pair interaction force

I. I. Smalyukh, *et al.*, PRL **95**, 157801 (2005)

Two-Dimensional Nematic Colloidal Crystals Self-Assembled by Topological Defects Igor Musevic, *et al. Science* 313, 954 (2006); DOI: 10.1126/science.1129660

Science

PRL 100, 217803 (2008)

PHYSICAL REVIEW LETTERS

week ending 30 MAY 2008

2D Interactions and Binary Crystals of Dipolar and Quadrupolar Nematic Colloids

U. Ognysta, A. Nych, and V. Nazarenko Institute of Physics, 46 Nauky avenue, Kyiv 680028, Ukraine

I. Muševič, ^{1,2} M. Škarabot, ¹ M. Ravnik, ² S. Žumer, ^{1,2} I. Poberaj, ² and D. Babič²

¹J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
²Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia (Received 15 February 2008; published 30 May 2008)

VOLUME 92, NUMBER 18

PHYSICAL REVIEW LETTERS

week ending 7 MAY 2004

Direct Observation of Anisotropic Interparticle Forces in Nematic Colloids with Optical Tweezers

Makoto Yada,^{1,*} Jun Yamamoto,¹ and Hiroshi Yokoyama^{1,2} ¹Yokoyama Nano-structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki, 300-2635, Japan ²Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan (Received 23 November 2003; published 3 May 2004)

PRL 96, 207801 (2006)

I. I. Smalyukh, *et al.*, PRL **95**, 157801 (2005)

Two colloidal droplets in nematic medium (Parallel)

- Mean force exerted to the droplets along their connecting line is $1.9 \pm 0.3 [\epsilon/\sigma]$
- A spontaneous symmetry breaking mechanism positions the mesogens between the droplets in an orthogonal configuration
- Two boojums appear on the northern pole of the upper and southern pole of the lower droplet
- The nematic director tends to tilt

Two colloidal droplets in nematic medium (Parallel)

In the plane between the droplets, two topological defects and two regions of nematic twist is noticed

Two colloidal droplets in nematic medium (Perp.)

- Mean force exerted to the droplets along their connecting line was in the order of measurement error
- A boojum appears on each pole of the droplets along the nematic director
- The nematic director tends to tilt

Finite element method

$$\begin{split} \hat{F} &= (\hat{F}_{LdG} - f_o V) + \hat{F}_{Elastic} + \hat{F}_{Surface} \\ \hat{F}[q] &= \int_{\Omega} \left\{ \frac{\tau}{2} Tr[q.q] - \frac{\sqrt{6}}{4} Tr[q.q.q] + \frac{1}{4} (Tr[q.q])^2 - f_o \right\} d\hat{V} \\ &+ \frac{1}{2} \left(\frac{\xi}{R} \right)^2 \int_{\Omega} (\hat{\partial}_k q_{ij} \hat{\partial}_k q_{ij}) d\hat{V} \\ &+ \left(\frac{\hat{W}}{R} \right) \int_{\partial \Omega} (\tilde{q}_{ij} - \tilde{q}_{ij}^{\perp}) (\tilde{q}_{ij} - \tilde{q}_{ij}^{\perp}) d\hat{S} \end{split}$$

Gmsh mesh generator

Conjugate Gradient minimizing method

3D calculations

Planar anchoring

D

θ

3D calculations

Planar anchoring

week ending 14 DECEMBER 2007 PHYSICAL REVIEW LETTERS PRL 99, 247801 (2007) Ş **Entangled Nematic Colloidal Dimers and Wires** M. Ravnik,¹ M. Škarabot,² S. Žumer,^{1,2} U. Tkalec,² I. Poberaj,¹ D. Babič,¹ N. Osterman,¹ and I. Muševič^{1,2,*} (a) (C) (a) (b) Time 1.8 s 0.1 0.08 0 s 0 s

More Complicated geometries of defects

PRL 106, 177801 (2011)

Shape-Controlled Colloidal Interactions in Nematic Liquid Crystals Clayton P. Lapointe, *et al. Science* **326**, 1083 (2009); DOI: 10.1126/science.1176587

XR

• Experimental observatins

• FEM method

$$\varphi^e = a^e x + b^e y + c^e z + d^e$$

• Spherical droplet

• Thick shells

• Thin shells

• Thin shells

t = 0s

PRL 99, 157801 (2007)

• Off center spheres in thick shell

• Off center spheres in thin shell

