A simple model to calculate the full transverse spin structure function

Fatemeh Taghavi Shahri, IPM & Ferdowsi University of Mashhad

Azam Tahamtan, IUST Firooz Arash, Tafresh University

Polarized hadron structure

Valon model for extacting hadron structure

Transverse spin structure function

Spin is everywhere...

Polarized Deep Inelastic Electron Scattering

 $x = \frac{Q^2}{2M\nu}$ Fraction of nucleon momentum carried by the struck quark

 Q^2 = 4-momentum transfer of the virtual photon, ν = energy transfer, θ = scattering angle

All information about the nucleon vertex is contained in

 F_2 and F_1 the unpolarized (spin averaged) structure functions,

and

 g_1 and g_2 the spin dependent structure functions

$$l \leftarrow \mathbb{N} \qquad \mathbb{N} \qquad \sigma_{\pm}^{\pm} - \sigma_{\pm}^{\pm} \approx g_1$$
Where:
$$g_1(x,Q^2) = \sum e_a^2 (\delta q(x,Q^2) + \delta \overline{q}(x,Q^2))$$

 $\delta q(x) = q \uparrow (x) - q \downarrow (x)$ Probability to find parton with spin aligned/anti-aligned to proton spin

The first moment is a measure for the quark contribution to the proton spin.

$$\Delta q = \int_{0}^{1} \delta q(x, Q^2) dx$$

Analogy with un polarized case:

$$F_1(x,Q^2) = \frac{1}{2} \sum_{q} e_q^{2} (q(x,Q^2) + \overline{q}(x,Q^2))$$

$$g_1(x,Q^2) = \sum e_q^2 \left(\delta q(x,Q^2) + \overline{\delta q}(x,Q^2) \right)$$

 $q(x) = q \uparrow (x) + q \downarrow (x) \qquad \qquad \delta q(x) = q \uparrow (x) - q \downarrow (x)$

Study of Nucleon Structure function in the Valon model

- •Valon : valence quark and its associated sea quarks and gluons.
- •The structure of a valon arises from the perturbative dressing of the valence quark in QCD.
- •The valons carry all the momentum of nucleon and the quantum number of valon is the quantum number of its valence quark.
- They play a role in scattering problems as the constituent quarks do in bound-state problems.
 At sufficiently low value of O² the internal structure
- •At sufficiently low value of Q^2 the internal structure of a valon cannot be resolved.

The existence of the valon can be inferred from the measurement of the Natchmann moments of the proton structure functions at **Jefferson laboratory**. They point to the existence of a new scaling that can be interpreted as a constituent form factor consistent with the elastic nucleon data. They suggest that there exist extended objects inside the proton and the size of these constituents are 0.2-0.3 fm.(hep-ph/0301206v2)

The structure function of a hadron is convolution of two distributions:

- valon distributions in proton.
- Structure function of a valon.

In an unpolarized situation we can write:

If you know PDF in a valon, you can get PDF in proton as:

Un-polarized structure of nucleon in the framework of valon model had been studied in : Firooz Arash & Ali.N.Khorramian-Physical Review C 67,045201 (2003) Polarized Nucleon Structure in valon framework:

F.Arash, F.Taghavi Shahri, JHEP07(2007)071

Transverse structure function is made of two components: a twist-2 part and a mixed twist part:

$$g_2(x,Q^2) = g_2^{ww}(x,Q^2) + \bar{g}_2(x,Q^2)$$

$$g_2^{ww}(x,Q^2) = -g_1(x,Q^2) + \int_0^1 g_1(x,Q^2) \frac{dy}{y}$$

$$\bar{g}_2(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} (\frac{m}{M} h_T(y,Q^2) + \xi(y,Q^2)) \frac{dy}{y}.$$

The twist-3 term represents qgq correlations. Therefore, any non-zero result for this term at a given Q^2 will reflect a departure from the non-interacting partonic regime

K.Slifer et.al(RSS Collaboration), Phys.Rev.Lett 105,101601(2010)

Only these two groups calculated the twist-3 part:

X.Song, Phys.Rev.D 54,1955(1996)

X.Song, Phys.Rev.D 63,094019(2001)

M. Wakamatsu, Phys.Lett. B487 (2000) 118-124

We have these sum rules :

There are two important and well known sum rules regarding $g_1(x, Q^2)$ and $g_2(x, Q^2)$.

The first one is OPE sum rule:

$$\Gamma_1^n = \int_0^1 x^n g_1(x, Q^2) dx = \frac{a_n}{2}, n = 0, 2, 4, ...$$

$$\Gamma_2^n = \int_0^1 x^n g_2(x, Q^2) dx = \frac{1}{2} \frac{n}{n+1} (d_n - a_n), n = 2, 4, \dots$$

The second one is Burkhardt-Cottingham sum rule

$$\int_0^1 g_2(x,Q^2)dx = 0$$

$$\int_{0}^{1} g_{2}^{ww}(x, Q^{2})dx = 0$$
$$\int_{0}^{1} x^{2} g_{2}^{ww}(x, Q^{2})dx = -\frac{1}{3}a_{2}$$
$$\int_{0}^{1} x^{2} \bar{g}_{2}(x, Q^{2})dx = \frac{1}{3}d_{2}$$

Calculation of the twist-2 term, $g_2^{ww}(x,Q^2)$

Calculating the twist-3 term, $\bar{g}_2(x,Q^2)$

$$\bar{g}_2(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} (\frac{m}{M} h_T(y,Q^2) + \xi(y,Q^2)) \frac{dy}{y},$$

$$\bar{g}_2(n,Q^2) = L^{\frac{\gamma_n^g}{2b_0}} \bar{g}_2(n,Q_0^2)$$

This part is important

$$\bar{g}_2(n, Q^2) = \int_0^1 x^{n-1} g_2(x, Q^2) dx,$$
$$L \equiv \frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)},$$
$$b_0 = \frac{11}{3} N_c - \frac{2}{3} N_f$$
$$\gamma_n^g = 2N_c(S_{n-1} - \frac{1}{4} + \frac{1}{2n})$$
$$S_{n-1} = \sum \frac{1}{j}$$

A.Ali, V.M.Brauun, G.Hiller, Phys.Lett.B 266(1991)117

$$\bar{g}_{2}^{valon}(z,Q_{0}^{2}) = A\delta(z-1)$$

$$g_{2}(n,Q_{0}^{2}) = A \times 1$$

$$\bar{g}_{2}^{valon}(z,Q^{2}) = f(Q^{2})\bar{g}_{2}(z,Q_{0}^{2}) = f(Q^{2})A\delta(z-1)$$

$$\bar{g}_{2}^{valon}(z,Q^{2} = 5GeV^{2}) = 0.0233z^{3.827}\delta(z-1)$$

____ 1

0.8

ملب

0.2

0.4

0.6

z

$$g_1^{^{3}\mathrm{He}}(x,Q^2) = \int_x^3 \frac{dy}{y} \Delta f_{^{3}\mathrm{He}}^n(y) g_1^n(x/y,Q^2) + 2 \int_x^3 \frac{dy}{y} \Delta f_{^{3}\mathrm{He}}^p(y) g_1^p(x/y,Q^2)$$

$$\Delta f^p_{^{3}\mathrm{He}}(y) = \frac{ap + cp \ y + ep \ y^2 + gp \ y^3 + ip \ y^4}{1 + bp \ y + dp \ y^2 + fp \ y^3 + hp \ y^4}$$

$$\Delta f_{^{3}\mathrm{He}}^{n}(y) = (\frac{an + cn \ x}{1 + bn \ x + dn \ x^{2}})^{2}$$

$\Delta f^p_{^{3}\mathrm{He}}(y)$		$\Delta f^n_{^3\mathrm{He}}(y)$		
ар	0.00203	an	0.03682	
bp	-4.01660	$^{\mathrm{bn}}$	-1.99756	
ср	-0.01385	$^{\mathrm{cn}}$	-0.01201	
$^{\rm dp}$	6.06288	dn	1.00815	
ер	0.02688			
fp	-4.07592			
$_{\rm gp}$	-0.02057			
hp	1.02974			
ip	0.00550			

Nuclear Physics A 831 (2009) 243–262.

	a_2^p	d_2^p	a_2^d	d_2^d
Valon model	0.0224	0.0042	0.010	0.0037
MIT bag model [28, 35]	_	0.01	_	0.005
QCD sum rule [36]	_	$-(0.6\pm0.3)10^{-2}$	_	-0.017
QCD sum rule [37]	_	$-(0.3\pm0.3)10^{-2}$	_	-0.013
Lattice QCD [38]	$(3\pm 0.64)10^{-2}$	$-(4.8\pm0.5)10^{-2}$	$(13.8\pm5.2)10^{-3}$	-0.022
CM bag model by Song [28]	0.0210	0.0174	0.0087	0.0067
E143 [1]	$(2.42\pm0.20)10^{-2}$	$(0.54\pm0.5)10^{-2}$	$(8.0\pm0.16)10^{-3}$	$(3.9\pm9.2)10^{-3}$

The twist-2 and twist-3 matrix elemet operators *a2 and d2, for the proton and* the deuteron, calculated in the valon model. Also included the experimental data and the results from other theoretical investigations.

The results for the Burkhardt-Cottingham sum rule.

$$\int_0^1 g_2(x,Q^2)dx = 0$$

	bag model by Song[28]	E143[1]	E155[3]	HERMES 2012[5]	Valon model
$\int g_2^p(x,Q^2) dx$	-0.0016	-0.014 ± 0.028	-0.022 ± 0.071	$0.006 \pm 0.024 \pm 0.017$	-0.004
$\int g_2^d(x,Q^2) dx$	-0.00287	-0.034 ± 0.082	0.023 ± 0.044	-	0.010

Conclusions

We have used the valon model and calculated the transverse spin structure function for nucleon and deuteron. We offer a simple approach for calculating the twist-3 part of the transverse spin structure function. It is evident that our results for both the twist-2 part and for the full transverse spin structure functions are in good agreements with the experimental data. We have also provided a comparison of our results with other works.

Thank you for your attention

Backup

$$p^{\uparrow} = \sqrt{\frac{2}{3}} (u^{\uparrow} u^{\uparrow}) d^{\downarrow} + \sqrt{\frac{1}{3}} (u^{\uparrow} u^{\downarrow}) d^{\uparrow}$$
(1)

$$u^{\uparrow} = 5/3 \quad u^{\downarrow} = 1/3 \quad d^{\uparrow} = 1/3 \quad d^{\downarrow} = 2/3.$$
 (2)

and so

$$u \equiv u^{\uparrow} + u^{\downarrow} \equiv \int dx u(x) = 2$$

$$d \equiv d^{\uparrow} + d^{\downarrow} \equiv \int dx d(x) = 1$$

$$\Delta u \equiv u^{\uparrow} - u^{\downarrow} \equiv \int dx \Delta u(x) = 4/3$$

$$\Delta d \equiv d^{\uparrow} - d^{\downarrow} \equiv \int dx \Delta d(x) = -1/3$$
(3)

This model clearly has all of the proton's spin carried by its valence quarks

$$\Delta q \equiv \Delta u + \Delta d = 1 \tag{4}$$