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Entanglement entropy

Consider a state |ψ〉 in a Hilbert space H, which evolves in time by its

Hamiltonian H

Physical quantities are computed as expectation values of operators as fol-

lows

〈O〉 = 〈ψ|O|ψ〉 = Tr(ρO)

where we defined the density matrix ρ = |ψ〉〈ψ|. This system is called a

pure state as it is described by a unique wave function |ψ〉.

In mixed states, the system is described by a density matrix ρ. An example

of a mixed state is the canonical distribution

ρ =
e−βH

Tr(e−βH)
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Assume that the quantum system has multiple degrees of freedom and so

one can decompose the total system into two subsystems A and B

A

B

H = HA ⊗HB
The reduced density matrix of the subsystem A

ρA = TrB(ρ)

Then the entanglement entropy is defined as the von-Neumann entropy for

A

SA = −Tr(ρA ln ρA)
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Properties of Entanglement entropy

A
B

A

1. For pure state

SA = AB

2. For two subspace A and B, the strong subadditivity is

SA + SB ≤ SA∪B + SA∩B
3. Leading divergence term is proportional to the area of the boundary ∂A

SA = c0
Area

εd−1
+O(ε−(d−2)),

where c0 is a numerical constant; ε is the ultra-violet(UV) cut off in quantum
field theories.
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Example

Two spins 1
2

|ψ〉 = | ↑〉A ⊗ | ↑〉B, |ψ̃〉 =
1√
2

(| ↑〉A ⊗ | ↓〉B + | ↓〉A ⊗ | ↑〉B)

The corresponding density matrices are

ρ = |ψ〉〈ψ|, ρ̃ = |ψ̃〉〈ψ̃|

ρA =

(
1 0
0 0

)
, ρ̃A =

(
1
2 0

0 1
2

)

So that S = 0 while S̃ = ln 2.
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Holography and holographic entanglement entropy

AdS/CFT correspondence

Basically AdS/CFT correspondence is a duality or a relation between two

theories one with a gravity and the other without gravity.

The gravitational theory is usually defined in higher dimension.

Well developed case is the one where the gravity is defined on an AdS

geometry where the dual theory is a CFT living in the conformal boundary

of AdS space.

7



Classical gravity on an asympotically locally AdSd+1 background is dual to

a d-dimensional Large N strongly coupled field theory with a UV fixed point

on its boundary.

AdSd+1 metric in Poincare coordinates

ds2 =
r2

R2
(−dt2 + d~x2) +

R2

r2
dr2.

AdSd+1 metric in global coordinates

ds2 = −(1 +
r2

R2
)dt2 +

dr2

1 + r2

R2

+ r2dΩ2
d−1.

Here boundary is at r →∞
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There is one to one correspondence between objects in CFT and those in

the gravitational theory on AdS space.

Gravity ⇐⇒ Field theory

{r, t, ~x} ⇐⇒ {scale of energy, t, ~x}
Near boundary
Near horizon

⇐⇒ UV, IR regions

Symmetries ⇐⇒ Symmetries

Fields Φ(r, t, ~x) ⇐⇒ Operators O(t, ~x)

On shell action ⇐⇒ Generating function
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Holographic Formula for Entanglement Entropy

For static background and fixed time divide the boundary into A and B.
Extend this division A∪B to of the bulk spacetime. Extend ∂A to a surface
γA in the entire spacetime such that ∂γA = ∂A.

SA =
Area(γA)

4G(d+2)
N
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Consider a strip in a d dimensional CFT at fixed time

t = fixed, −
`

2
≤ x1 ≤

`

2
, 0 ≤ xi ≤ L, i = 2, · · · , d− 1.

dS2 =
R2

z2
(−dt2 + dz2 + dx2

1 + dx2
i ), z =

1

r
Consider a profile in the bulk x1 = x(z), so that the induced metric reads

dS2
ind =

R2

z2
[(1 + x′2)dz2 + dx2

i ].
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The area of the induced metric is

A = Ld−2Rd−1
∫
dz

√
1 + x′2

zd−1

One needs to minimize the area

x′

zd−1
√

1 + x′2
= constant =

1

zd−1
t

The width and the entanglement entropy are

`

2
=
∫ zt

0
dz

(z/zt)d−1√
1− ( zzt)

2(d−1)
, S =

Ld−2Rd−1

2G

∫ zt
ε

dz

zd−1
√

1− ( zzt)
2(d−1)

,

where zt is a turning point and ε is a UV cut-off.
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S =



Ld−2Rd−1

2G

(
− 1

(d−1)εd−2 + c0
`d−2

)
for d 6= 2,

R
2G ln `

ε, for d = 2,

with c0 being a numerical factor

c0 =
2d−2π

d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)

d−1
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For holographic entanglement entropy

1. The formula leads to the area law (for Einstein gravity).

2. The strong subadditivity can also be holographically proven (for static

background)

3. For 2D CFT using AdS3 one finds

SA =
c

3
ln
`

ε

where ` width of strip, c = 3R
2G.
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Time-dependent backgrounds

So far we have considered static case where we have a time slice on which

we can define minimal surfaces. In the time-dependent case there is no a

natural choice of the time-slices.

In Lorentzian geometry there is no minimal area surface. In order to resolve

this issue we use the covariant holographic entanglement entropy which is

SA(t) =
Area(γA(t))

4G(d+2)
N

where γA(t) is the extremal surface in the bulk Lorentzian spacetime with

the boundary condition ∂γA(t) = ∂A(t).
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Example of time-dependent case: Black hole formation or Thermalization

Geometry ⇐⇒ State

AdS solution ⇐⇒ Vaccum state

Black hole ⇐⇒ Excited state; thermal

Let us perturbe a system so that the end point of the time evolution would be

a thermal state. This might be done by a global quantum quench. Typically

during evolution the system is out of equilibrium.

The thermalization process after a global quantum quench may be map to

a black hole formation due to a gravitational collapse.
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A quantum quench in the field theory may occurs due to a sudden change in

the system which might be caused by turning on the source of an operator

in an interval δt→ 0.

This change can excite the system to an excited state with non-zero energy

density that could eventually thermalize to an equilibrium state.

From gravity point of view this might be described by a gravitational collapse

of a thin shell of matter which can be modelled by an AdS-Vaidya metric.

dS2 =
R2

r2
[f(r, v)dv2 − 2drdv + d~x2], f(ρ, v) = 1−mθ(v)rd

where r ρ is the radial coordinate, xis are spatial boundary coordinates and v

is the null coordinate. Here θ(v) is the step function and therefore for v < 0

the geometry is an AdS metric while for v > 0 it is an AdS-Schwarzschild

black hole.
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To compute the entanglement entropy for a strip with width `, let us consider

the following strip

−
`

2
≤ x1 = x ≤

`

2
, 0 ≤ xa ≤ L, for a = 2, · · · , d.

Since the metric is not static one needs to use the covariant proposal for

the holographic entanglement entropy. Therefore the corresponding co-

dimension two hypersurface in the bulk may be parametrized by v(x) and

ρ(x). Then the induced metric on the hypersurface is

ds2
ind =

1

ρ2

[(
1− f(ρ, v)v′2 − 2v′ρ′

)
dx2 + dx2

a

)
,
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The area of the hypersurface reads

A =
Ld−2

2

∫ `/2

−`/2
dx

√
1− 2v′ρ′ − v′2f

ρd−1

We note, however, that since the action is independent of x the correspond-
ing Hamiltonian is a constant of motion

ρd−1L = H = constant.

Moreover we have two equations of motion for v and ρ. Indeed, by making
use of the above conservation law the corresponding equations of motion
read

∂xPv =
P2
ρ

2

∂f

∂v
, ∂xPρ =

P2
ρ

2

∂f

∂ρ
+

d− 1

ρ2d−1
H2,

where

Pv = ρ′+ ρ1−zv′f, Pρ = v′,

are the momenta conjugate to v and ρ up to a factor of H−1, respectively.
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These equations have to be supplemented by the following boundary condi-

tions

ρ(
`

2
) = 0, v(

`

2
) = t, ρ′(0) = 0, v′(0) = 0,

and

ρ(0) = ρt, v(0) = vt,

where (ρt, vt) is the coordinate of the extremal hypersurface turning point in

the bulk.

In what follows we will consider the case of `� ρH

The process we will be considering for the thermalization after a global

quantum quench consists of three phases: initial phase, intermediate phase

and final phase.
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• Early times growth where t� ρH

∆S ≈
Ld−2m

8G
t2,

• The intermediate region where `
2 � t� ρH

∆S = Ld−2Sth vE t,

where

vE =

(
d− 2

2(d− 1)

)d−1
d
√

d

d− 2
, Sth =

1

4Gρd−1
H

• Late time saturation t ∼ `
2

∆S =
Ld−2`

4Gρd−1
H

+ · · · .
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The first law of entanglement thermodynamics

Thermodynamics provides a useful tool to study a system when it is in the

thermal equilibrium. In this limit the physics may be described in terms of

few macroscopic quantities such as energy, temperaure, pressure, entropy.

There are also laws of thermodynamics which describe how these quantities

behave under various conditions. In particular the first law of thermodynam-

ics which is energy conservation, tells us how the entropy change as one

changes the energy of the system.

There are several interesting phenomena which occur when the system is far

from thermal equilibrium.
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The entanglement entropy may provide a useful quantity to study excited

quantum systems which are far from thermal equilibrium. For a generic

quantum system it is difficult to compute the entanglement entropy. Nev-

ertheless, at least, for those quantum systems which have holographic de-

scriptions, one may use the holographic entanglement entropy to explore the

behavior of the system.

Another quantity which can be always defined is the energy (or energy den-

sity) of the system. It is then natural to pose the question whether there

is a relation between the entanglement entropy of an excited state and its

energy.

For sufficiently small subsystem, the entanglement entropy is proportional to

the energy of the subsystem. The proportionality constant is indeed given

by the size of the entangling region.
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Recall

Gravity on an asymptotically locally AdS provides a holographic description

for a strongly coupled quantum field with a UV fixed point.

The information of quantum state in the dual field theory is encoded in the

bulk geometry. In particular the AdS geometry is dual to the ground state

of the dual conformal field theory.

Exciting the dual conformal field theory from the ground state to an excited

state holographically corresponds to modifying the bulk geometry from AdS

solution to a general asymptotically locally AdS solution.
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The aim is to compute the entanglement entropy of an excited state for the
case where the entangling region is sufficiently small.

Let’s now compute the holographic entanglement entropy for a strip in an
AdS black hole geometry.

dS2 =
L2

r2

(
−f(r)dt2 + g(r)dr2 + dx2

1 + dx2
d−2

)
, f(r) = g(r)−1 = 1−mrd

For the strip, the induced metric on this hypersurface

dS2
ind =

R2

r2

[ (
g(r) + x′2

)
dr2 + d~x2

]
.

Therefore the area A reads

A = Ld−2Rd−1
∫
dr

√
g + x′2

rd−1
,

`

2
=
∫ rt

0
dr

√
g(r)

(
r
rt

)d−1√
1−

(
r
rt

)2(d−1)
, S =

Ld−2Rd−1

2GN

∫ rt
ε

√
g(r)dr

rd−1

√
1−

(
r
rt

)2(d−1)
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In the limit of mld � 1 the change of the entanglement entropy is

∆S = S − S0 =
Ld−2Rd−1

32(d+ 1)GN

ml2
√
π

Γ( 1
2(d−1))2Γ( 1

d−1)

Γ( d
2(d−1))2Γ(1

2 + 1
d−1)

On the other hand since the change of the energy is

∆E =
(d− 1)Ld−2Rd−1ml

16πGN

Therefore one finds

∆S = c0`∆E

which can be recast to the following first law of the entanglement entropy

∆E = TE∆S

The entanglement temperature is

TE ∼
1

`
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Summary

1. Entanglement entropy is a good order parameter

2. There is very nice simple holographic description of entanglement entropy

4. Entanglement entropy might be a useful quantity to probe time dependent

system

3. One may define a framework for entanglement entropy such as thermo-

dynamics
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