High efficiency silicon and perovskite-silicon solar cells for electricity generation

Ali Dabirian

Email: dabirian@ipm.ir

From Solar Energy to Electricity

Worldwide electric capacity of solar power by technology. Total of 308 GW in 2016.^[1]

Global accumulative PV installed

Figure 16. Solar PV Global Capacity, by Country and Region, 2006-2016

In Iran it is about 100 MW. Total national grid capacity 75 GW.

Grid-parity in PV is already there

• Swanson PV curve.

Photovoltaics Technology

Photovoltaics

1) Sunlight is absorbed by a semiconductor material and its energy is transferred to an electron

2) In presence of an electric field, electric charges can be separated

Fundamental limit of efficiency

Source U. Sydney, only bandgap Ok, efficiencies might have increased

Single junction ~ In the Schockley-Queisser radiative limit (radiative equilibrium of cell with the sun for a single semiconductor junction) \rightarrow 33%

Under concentration can be increased by a few percent !

Radiative Recombination Limit: W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).

Major PV technologies

Crystalline silicon Mono and multicrystalline

Status: main market share

Thin films CIGS, CdTe, Thin film silicon

Status: stabilised market share

Concentrator technologies Mostly III-V based

Status: trying entering the market, many start-ups

Emerging technologies Nano inorganic (Quatum dot) Organic-Polymer, perovskites Dye sensitized and variations

Status: niche application

Market

PV Technologies market share

- Crystalline Si technology does and will hold >90% of PV market • share.
- Alternative low-cost technologies have not came close to Si • efficiencies and price levels.

Crystalline Si terminology

• Wafer

• Cell: processed wafer (20-30 steps)

- Module (a number of cells that are put in series with a two socket as energy output)

Crystalline Si supply chain

Features

- Full metal rear side
- Screen printed front grid
- no local features

On the market:

 η = 14-21% on monocrystalline Si PV modules

 $\eta = 12-18\%$ on multicrystalline Si PV modules

Dangling bonds and surface passivation

At any semiconductor surface the crystal symmetry is broken

 \rightarrow Localized electronic states in the bandgap (whatever the surface condition: bare, in contact with a metallic or oxidized surfaces)

 \rightarrow recombination sink for carriers.

Recombination can be avoided by

- Minimizing the number of defects at the surface
- By creating a local electrical field that repels the minority carriers

a) with additional dopants n^+ or p^-

- b) with fixed charges that can create an inversion layer
- By combining the different effects

How does surface passivation work?

Two fundamentally different ways to avoid surface recombination:1. Repelling of generated carriers from surface by electrical field2. Chemical passivation of surfacestates

field effect

For good devices:

Intrinsic films

•Go towards the <u>amorphous-to-crystalline transition</u> as much as possible, but NO EPITAXY !

- \succ Use highly depleted silane plasmas
- > H $_2$ plasma during a-Si:H growth ('layer-by-laye:
- Layer properties
 - Increase in hydrogen content
 - Increase in band gap
 - More disordered
 - Etching effect if H₂ plasma is too long

 Globally beneficial for devices

Surface passivation measurement

- Measurement of the photoconductivity
- → Linked with the carrier density in the wafer
- If τ_{bulk} is high, surface passivation quality may be evaluated.

A. Descoeudres et al. IEEE JPV 2013

c-Si substrate

Al-BSF, PERC

TOP-Con

by Fraunhofer ISE, 25.1%

Heterojunction solar cell (Panasonic HIT®)

World record of Silicon PV with HIT technology

ARTICLES PUBLISHED: 20 MARCH 2017 | VOLUME: 2 | ARTICLE NUMBER: 17032

Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%

Kunta Yoshikawa^{*}, Hayato Kawasaki, Wataru Yoshida, Toru Irie, Katsunori Konishi, Kunihiro Nakano, Toshihiko Uto, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu and Kenji Yamamoto

Photovoltaic & Thin Film Device Research Laboratories, Kaneka corporation, 5-1-1 Torikai-Nishi, Settsu, Osaka 566-0072, Japan. *e-mail: Kunta.yoshikawa@kaneka.co.jp

Efficiences Beyond Si Fundamental Limits

Multijunction concept

III-V+ Si Tandems

Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions

Stephanie Essig^{1*}, Christophe Allebé², Timothy Remo³, John F. Geisz³, Myles A. Steiner³, Kelsey Horowitz³, Loris Barraud², J. Scott Ward³, Manuel Schnabel³, Antoine Descoeudres², David L. Young³, Michael Woodhouse³, Matthieu Despeisse², Christophe Ballif^{1,2} and Adele Tamboli³

Perovskite/c-Si Multi-junction cell

- CH₃NH₃PbI₃ bandgap is 1.56 eV
- c-Si bandgap is 1.1 eV

Efficiency beyond 26.33% using perovskite-Si tandem

		Top Cell					Bottom Cell				Tandem
Optics (Top Cell Interfaces)	Connection	Thickness (nm)	$J_{\rm SC}~({\rm mA/cm^2})$	$V_{\rm OC}~({\rm mV})$	FF (%)	η (%)	$J_{\rm SC}~({\rm mA/cm^2})$	$V_{\rm OC}~({\rm mV})$	FF (%)	η (%)	η (%)
Single Pass (Planar Front/ $R_b = 0$)	2 T (CM)	278.7 nm	21.68	1100	89.1	21.24	21.68	748.9	88.9	14.43	35.67
$PLE = 2$ (Scattering Front, $R_b = 0$)	2 T (CM)	139.35 nm	21.68	1100	89.1	21.24	21.68	748.9	88.9	14.43	35.67
Lambertian (Scattering/Scattering)	2 T (CM)	140 nm	17.23	1100	89.1	16.89	17.23	744	88.8	11.4	28.3
Lambertian (Scattering/Scattering)	4 T	140 nm	25.7	1100	89.1	25.2	17.23	744	88.8	11.4	36.6
Lambertian (Scattering/Scattering)	4T	300 nm	26.62	1100	89.1	26.09	16.6	744	88.8	10.95	37.04
Lambertian (Scattering/Scattering)	4 T	500 nm	26.89	1100	89.1	26.35	16.38	743.8	88.8	10.82	37.17

P.Loper et al. IEEE JPV., 2015.

Most efficient monolithic perovskite/silicon tandem

mature

ARTICLES https://doi.org/10.1038/s41563-018-0115-4

Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency 11.06.2018

Florent Sahli¹,^{3*}, Jérémie Werner^{1,3}, Brett A. Kamino², Matthias Bräuninger¹, Raphaël Monnard¹, Bertrand Paviet-Salomon², Loris Barraud², Laura Ding², Juan J. Diaz Leon², Davide Sacchetto², Gianluca Cattaneo², Matthieu Despeisse², Mathieu Boccard¹, Sylvain Nicolay², Quentin Jeangros^{1*}, Bjoern Niesen² and Christophe Ballif^{1,2}

Oxford PV reports 25.2 % 156 mm x 156 mm perovskite-silicon tandem solar cells at the company's industrial pilot line in Brandenburg an der Havel, Germany.(15.06.2018)

Our Research at IPM on Si and Tandem Cells (1. Theory and Simulation)

A. Dabirian et al. IEEE Journal of Photovoltaics, 7, 718, (2017).B. Eftekharinia, et al, (in preparation)

26

2. Our Research at IPM on Si Solar Cell Characterization

Solar cell measurement setups:

1- Temperature variable IV tester

2- Localized characterization of solar cells

3. Our Research at IPM on Si PV Modules

1- Novel encapsulation methods

Glass Polymer Solar cell Polymer Backsheet or glass

2- Colored cells

A. Dabirian et al. patent pending.

4. Our Research at IPM on Fabrication of Tandem Cells

Acknowledgements

Dr. Behrooz Eftekharinia Hossein Pezeshki Tahereh Hamedi Samaneh Eftekhari

Thank you!

Questions and Answers

Email: dabirian@ipm.ir