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The Standard Model of Cosmology

® Ordinary Atoms:(Baryons) 5%
® Dark Matter: 26%

® Dark Energy: 69%
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The Initial Conditions Puzzles

Despite the successes of the big bang cosmology,
there are initial conditions problems:

® The Horizon Problem:Why is the Universe so homogeneous and
isotropic? During its evolution, the Universe did not have enough
time to become so isotropic and homogeneous.

® The Flatness Problem:Why is the Universe so flat? If 2 ~1

today, then extrapolating back to very early Universe at Planck
time we find | — 1] ~ 107

® There are tiny fluctuations at the level of 10~ on the
smooth CMB background, which are almost scale invariant,
adiabatic and Gaussian.What mechanism can create these
perturbations !



Inflation

A short period of acceleration in very early

Universe will provide all these necessary initial

conditions and flattens the Universe.

® Primordial quantum fluctuations
during inflation seeds the observed
almost scale invariant Gaussian
perturbations in CMB.

® Originally all of these modes were
inside the horizon. Inflation stretches
their wavelengths outside the horizon.
While outside the horizon, they
" freeze out . Later on they re-enter
the horizon to form the observed

structures.
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Inflation and Observations

All observations (WMAP, Planck,...) strongly support inflation.

The basic predictions of inflation are that the primordial perturbations are
nearly scale invariant, nearly adiabatic and nearly Gaussian.

In CMB perturbations we observe the quantum vacuum fluctuations.

Planck Observation




Slow Roll Inflation
The necessary condition for inflation
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In most models, inflation is derived by a scalar field, the inflaton.
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Inflation ends when the field reaches near the minimum of its potential.

Baumann.

To solve the flatness and horizon problem we require  N= H (tf - ti) = 60.
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Reheating )

The inflaton field oscillates around the minimum of its potential
releasing its energy into the Standard Model Particle Physics




Models of Inflation
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Various Potential Considered:

Power-Law Inflation

Hilltop models

Natural Inflation

D-brane Inflation

Exponential Potentials

Spontaneously broken SUSY

Starobinsky R? Inflation

V(g) = AM;;(MiI) ,
p

V(¢)zA4(1—M—§+..

(0) + cos 7
uP
V(¢)_A4(1_ﬁ+ )

V(g) = A*(1— e @M 1 )
V(g) = A*|1 + @y log(p/Mp) |
M2

S :fd“x\/—_ngl(R+ —)

V(g) = A*(1 = V29I’



Tensor-to-scalar ratio (79.002)

Constraint on Single Field Inflation
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@ The joint data analysis from Planck/BICEP2/Keck Array indicates r < 0.1.
o The data prefers concave potential with 8?2V < 0.

e Simple potential such as ¢? and ¢* are disfavored.
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Alternatives to Inflation: prospects

Alternative to inflation includes models of bounce and string gas cosmology.

Predictions of bounce scenarios: a

® Produce adiabatic, almost scale invariant perturbations.

® No appreciable amount of gravitational waves.

® Significant amount of non-gaussianity.

PLANCK and upcoming observations may have a
good chance to verify or rule out bounce
(ekpyrotic)/inflationary scenarios.

Open questions and future directions:

How to achieve bounce or bypass NEC!?

Can ekpyrotic models be embedded in high energy physics!?
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Stochastic Inflation

Stochastic inflation is an elegant approach to study primordial perturbations in
inflationary backgrounds.

Quantum perturbations swept out to super-horizon scales by the background
expansion act a source for small scale perturbations. This effect can be captured by a

Gaussian noise £(N).

The corresponding Langevin equation for the inflaton dynamics is given by
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First Passage Time
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Suppose the inflaton field is initially located at ¢ = ¢.. Then the probability p; that it
first reaches ¢ before reaching ¢» is given by
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This can be solved to give
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Note that v ~ 107 !2 and the integrand is exponentially sensitive to the shape of the
potential.
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Fall and Escape Probability

M. Noorbala, H. Assadullahi, H. F., V. Vennin, D. Wands, 2018

Using the first passage technique mentioned above, we can calculate the
fall and escape probability in inflationary potentials.
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Falling from local maximum

Suppose the field is initially located at the v
maximum of the potential. We would like

to calculate the probability that it falls to

either of its two minima due to

quantum fluctuations (quantum kicks).

Because of the exponential form of the integrand, |
most of the contributions to the integral comes from O_ o
near the maximum:
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For the series expansion near the maximum to be valid we require
Then the integral can be taken using the method of the steepest descent and
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The fractional ratio of the probabilities, R, is given by

p- 2 [2v(0)v"(0)
R=""n~1—24/2
P~ 3V v (o)




Example:

v(®) = A
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Escaping from local minimum

Suppose the field is located at a local minimum
of the potential. We would like to calculate the
probability for escaping through either of barriers.

If the following conditions are met
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and the ratio of the two tunnelling probabilities is
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Since v ~ 10712 the dominant contributions come from the exponential terms and
R ~ el/v(ie4)—1/v(d_)



M. Noorbala, H. Assadullahi, H. F., V. Vennin, D. Wands, 2018
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Left: A < \73 and the sharp maximum approximation breaks down at € < \73.
Right: A > \73 and the sharp maximum approximation always holds.

In both cases, R significantly differs from one when € > \73.



Tunnellzng Z'n/ a generic pOtentia,l M. Noorbala, H. Assadullahi, H. F., V. Vennin, D. Wands, 2018

Let us consider a general potential UA

with multiple minima and maxima.

We define p;jc as the probability of
before reaching ¢y,
starting from ¢;.

Example: p;+ in previous example
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From our starting formula, we have: [
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From the integral structure of Ilj we obtain
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This formula expresses pj34 entirely
in terms of building blocks “fall” (p234) b b 0
and ‘“escape” (p123 and p3p1) probabilities.




Conclusion

e Inflation is the leading paradigm for early Universe
and for generating large scale structures.

@ The basic predictions of inflation are that the
primordial perturbations are nearly scale invariant,
nearly adiabatic and nearly Gaussian.

@ Stochastic inflation is a novel method to study
primordial perturbations using stochastic formalism.

@ Super-horizon perturbations act as a source of
Gaussian noise for small scale perturbations
inside the horizon.

@ Using the first passage technique, we can calculate
the falling probability from a local maximum to
nearby minima and the escaping probability from
a local minimum to nearby maxima.

@ The fall probability and the escape probability
are the building blocks for calculating the tunnelling in
a generic potential with multiple maxima and minima.







Decay rate

Using the first passage technique, we can calculate
the typical time it takes for falling or escaping.

The mean number of e-folds (N') to reach either
¢_ or ¢, starting from the initial value ¢, is given by

v/ 1

V2 - M,% v(o)

with boundary conditions (N)(¢_) = (N)(¢+) = 0.

This can be solved to obtain

N (6) = /¢ dx /fb(cb,m) /\CZ, V(ly) exo {V(ly) - V(lx)}

where ¢(¢_, ¢+ ) is an integration constant that is implicitly set through the
boundary condition (N)(¢+) = 0.




