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The Standard Model of Cosmology

• Ordinary Atoms:(Baryons) 5%!

• Dark Matter: 26%!

• Dark Energy:  69%!



The Initial Conditions Puzzles

• The Horizon Problem: Why is the Universe so homogeneous and 
isotropic? During its evolution, the Universe did not have enough 
time to become so isotropic and homogeneous.

• The Flatness Problem: Why is the Universe so flat? If              
today,  then extrapolating back to very early Universe at Planck 
time we find                       .           

• There are tiny fluctuations at the level of             on the 
smooth CMB background, which are almost scale invariant, 
adiabatic and Gaussian. What mechanism can create these 
perturbations ?                                                                      
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Despite the successes of the big bang cosmology, 
there are initial conditions problems:
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Inflation

A short period of acceleration in very early 
Universe will provide all these necessary initial 

conditions and flattens the Universe. 

www.astro.princeton.edu/~tremaine/ast541/das.ppt

• Primordial quantum fluctuations 
during inflation seeds the observed 
almost scale invariant Gaussian 
perturbations in CMB. 

• Originally all of these modes were 
inside the horizon. Inflation stretches 
their wavelengths outside the horizon. 
While outside the horizon, they 
``freeze out``.  Later on they re-enter 
the horizon to form the observed 
structures.

http://www.astro.princeton.edu/~tremaine/ast541/das.ppt


Inflation and Observations

All observations (WMAP, Planck,...) strongly support inflation.

The basic predictions of inflation are that the primordial perturbations are
nearly scale invariant, nearly adiabatic and nearly Gaussian.

In CMB perturbations we observe the quantum vacuum fluctuations.
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Slow Roll Inflation
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In most models, inflation is derived by a scalar field, the inflaton. 
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Baumann.

The necessary condition for inflation

Inflation ends when the field reaches near the minimum of its potential.

The inflaton field oscillates around the minimum of its potential 
releasing its energy into the Standard Model Particle Physics

Reheating

To solve the flatness and horizon problem we require   N= H (tf - ti) = 60.
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Models of Inflation

Large field inflation:
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Small field inflation:



Various Potential Considered:

Power-Law Inflation

Hilltop models

Natural Inflation

D-brane Inflation

Exponential Potentials

Spontaneously broken SUSY

Starobinsky R2 Inflation

Planck Collaboration: Constraints on inflation 15
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where V(�) is the inflaton potential, the subscript � denotes the
derivative with respect to �, and Mpl = (8⇡G)�1/2 is the reduced
Planck mass (see also Table 2).

By using Eqs. (39) and (40) with ✏3 = ✏4 = 0 and the pri-
mordial power spectra to lowest order in the HFFs, the derived
constraints for the first two slow-roll potential parameters are:

✏V < 0.0068 (95 % CL, Planck TT+lowP) , (42)
⌘V = �0.010+0.005

�0.009 (68 % CL, Planck TT+lowP) . (43)

When high-` polarization is included we obtain ✏V < 0.0067 at
95 % CL and ⌘V = �0.010+0.004

�0.009 at 68 % CL. By using Eqs. (39),
(40), and (41) with ✏4 = 0 and the primordial power spectra to
second order in the HFFs, the derived constraints for the slow-
roll potential parameters are:

✏V < 0.012 (95 % CL, Planck TT+lowP) , (44)
⌘V = �0.0080+0.0088

�0.0146 (68 % CL, Planck TT+lowP) , (45)

⇠V = 0.0070+0.0045
�0.0069 (68 % CL, Planck TT+lowP) . (46)

When high-` polarization is included we obtain ✏V < 0.011 at
95 % CL, and ⌘V = �0.0092+0.0074

�0.0127 and ⇠2V = 0.0044+0.0037
�0.0050, both

at 68 % CL.
In Figs. 10 and 11 we show the 68 % CL and 95 % CL of the

HFFs and the derived potential slow-roll parameters with and
without the inclusion of high-` polarization, comparing with the
Planck 2013 results.

6.2. Implications for selected inflationary models

The predictions to lowest order in the slow-roll approximation
for (ns, r) of a few inflationary models with a representative un-
certainty for the entropy generation stage (50 < N⇤ < 60) are
shown in Fig. 12.

In the following we discuss the implications of Planck
TT+lowP+BAO data for selected slow-roll inflationary models
by taking into account the uncertainties in the entropy genera-
tion stage. We model these uncertainties by two parameters, as
in PCI13: the energy scale ⇢th by which the Universe has ther-
malized, and the parameter wint which characterizes the effec-
tive equation of state between the end of inflation and the energy
scale specified by ⇢th. For each inflationary model we provide
in Table 6 and in the main text the ��2 value with respect to
the base ⇤CDM model and the Bayesian evidence with respect
to the R2 inflationary model (Starobinsky, 1980), computed by
CosmoMC connected to CAMB using MultiNest as the sam-
pler. We use the primordial power spectra of cosmological fluc-
tuations generated during slow-roll inflation parameterized by
the HFFs, ✏i, to second order, which can be expressed in terms
of the number of e-folds to the end of inflation, N⇤, and the pa-
rameters of the considered inflationary model, using modified
routines of the public code ASPIC6 (Martin et al., 2014). For
the number of e-folds to the end of inflation (Liddle & Leach,

6 http://cp3.irmp.ucl.ac.be/˜ringeval/aspic.
html

2003; Martin & Ringeval, 2010) we use the expression (PCI13)

N⇤ ⇡ 67 � ln
 

k⇤
a0H0

!

+
1
4

ln
0

B

B

B

B

B

@

V2⇤
M4

pl⇢end

1

C

C

C

C

C

A

+
1 � 3wint

12(1 + wint)
ln

 

⇢th

⇢end

!

� 1
12

ln(gth) ,

(47)

where ⇢end is the energy density at the end of inflation, a0H0 is
the present Hubble scale, V⇤ is the potential energy when k⇤ left
the Hubble radius during inflation, and gth is the number of ef-
fective bosonic degrees of freedom at the energy scale ⇢th. We
consider the pivot scale k⇤ = 0.002 Mpc�1, gth = 103, ✏end = 1,
and a logarithmic prior on ⇢th (in the interval [(103 GeV)4, ⇢end]).
We have validated the slow-roll approach by cross-checking
the Bayes factor computations against the fully numerical in-
flationary mode equation solver ModeCode coupled to the
PolyChord sampler.

Power-law potentials

We first investigate the class of inflationary models with a single
monomial potential (Linde, 1983):
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in which inflation occurs for large values of the inflaton � > Mpl.
The predictions for the scalar spectral index and the tensor-
to-scalar ratio at first order in the slow-roll approximation are
ns � 1 ⇡ �2(n + 2)/(4N⇤ + n) and r ⇡ 16n/(4N⇤ + n), respec-
tively. By assuming a dust equation of state (i.e., wint = 0) prior
to thermalization, the cubic and quartic potentials are strongly
disfavoured by ln B = �11.6 and ln B = �23.3, respectively. The
quadratic potential is moderately disfavoured by ln B = �4.7.
Other values, such as n = 4/3, 1, and 2/3, motivated by ax-
ion monodromy (Silverstein & Westphal, 2008; McAllister et al.,
2010), are compatible with Planck data with wint = 0.

Small modifications occur when considering the effective
equation of state parameter, wint = (n � 2)/(n + 2), defined by
averaging over the coherent oscillation regime which follows in-
flation (Turner, 1983). The Bayes factors are slightly modified
when wint is allowed to float, as can be seen from Table 6.

Hilltop models

In hilltop models (Boubekeur & Lyth, 2005), with potential

V(�) ⇡ ⇤4
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the inflaton rolls away from an unstable equilibrium. The
predictions to first order in the slow-roll approximation are
r ⇡ 8p2(Mpl/µ)2x2p�2/(1 � xp)2 and ns � 1 ⇡ �2p(p �
1)(Mpl/µ)2xp�2/(1 � xp) � 3r/8, where x = �⇤/µ. As in PCI13,
the ellipsis in Eq. (49) and in what follows indicates higher-order
terms that are negligible during inflation but ensure positiveness
of the potential.

By sampling log10(µ/Mpl) within the prior [0.30, 4.85] for
p = 2, we obtain log10(µ/Mpl) > 1.02 (1.05) at 95 % CL and
ln B = �2.6 (�2.4) for wint = 0 (allowing wint to float).

An exact potential which could also apply after inflation,
instead of the approximated one in Eq. (49), might be needed
for a better comparison among different models. Hilltop mod-
els in Eq. (49) approximate a linear potential V(�) / � for
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where V(�) is the inflaton potential, the subscript � denotes the
derivative with respect to �, and Mpl = (8⇡G)�1/2 is the reduced
Planck mass (see also Table 2).

By using Eqs. (39) and (40) with ✏3 = ✏4 = 0 and the pri-
mordial power spectra to lowest order in the HFFs, the derived
constraints for the first two slow-roll potential parameters are:

✏V < 0.0068 (95 % CL, Planck TT+lowP) , (42)
⌘V = �0.010+0.005

�0.009 (68 % CL, Planck TT+lowP) . (43)

When high-` polarization is included we obtain ✏V < 0.0067 at
95 % CL and ⌘V = �0.010+0.004

�0.009 at 68 % CL. By using Eqs. (39),
(40), and (41) with ✏4 = 0 and the primordial power spectra to
second order in the HFFs, the derived constraints for the slow-
roll potential parameters are:
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In Figs. 10 and 11 we show the 68 % CL and 95 % CL of the

HFFs and the derived potential slow-roll parameters with and
without the inclusion of high-` polarization, comparing with the
Planck 2013 results.

6.2. Implications for selected inflationary models

The predictions to lowest order in the slow-roll approximation
for (ns, r) of a few inflationary models with a representative un-
certainty for the entropy generation stage (50 < N⇤ < 60) are
shown in Fig. 12.

In the following we discuss the implications of Planck
TT+lowP+BAO data for selected slow-roll inflationary models
by taking into account the uncertainties in the entropy genera-
tion stage. We model these uncertainties by two parameters, as
in PCI13: the energy scale ⇢th by which the Universe has ther-
malized, and the parameter wint which characterizes the effec-
tive equation of state between the end of inflation and the energy
scale specified by ⇢th. For each inflationary model we provide
in Table 6 and in the main text the ��2 value with respect to
the base ⇤CDM model and the Bayesian evidence with respect
to the R2 inflationary model (Starobinsky, 1980), computed by
CosmoMC connected to CAMB using MultiNest as the sam-
pler. We use the primordial power spectra of cosmological fluc-
tuations generated during slow-roll inflation parameterized by
the HFFs, ✏i, to second order, which can be expressed in terms
of the number of e-folds to the end of inflation, N⇤, and the pa-
rameters of the considered inflationary model, using modified
routines of the public code ASPIC6 (Martin et al., 2014). For
the number of e-folds to the end of inflation (Liddle & Leach,
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where ⇢end is the energy density at the end of inflation, a0H0 is
the present Hubble scale, V⇤ is the potential energy when k⇤ left
the Hubble radius during inflation, and gth is the number of ef-
fective bosonic degrees of freedom at the energy scale ⇢th. We
consider the pivot scale k⇤ = 0.002 Mpc�1, gth = 103, ✏end = 1,
and a logarithmic prior on ⇢th (in the interval [(103 GeV)4, ⇢end]).
We have validated the slow-roll approach by cross-checking
the Bayes factor computations against the fully numerical in-
flationary mode equation solver ModeCode coupled to the
PolyChord sampler.

Power-law potentials

We first investigate the class of inflationary models with a single
monomial potential (Linde, 1983):
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in which inflation occurs for large values of the inflaton � > Mpl.
The predictions for the scalar spectral index and the tensor-
to-scalar ratio at first order in the slow-roll approximation are
ns � 1 ⇡ �2(n + 2)/(4N⇤ + n) and r ⇡ 16n/(4N⇤ + n), respec-
tively. By assuming a dust equation of state (i.e., wint = 0) prior
to thermalization, the cubic and quartic potentials are strongly
disfavoured by ln B = �11.6 and ln B = �23.3, respectively. The
quadratic potential is moderately disfavoured by ln B = �4.7.
Other values, such as n = 4/3, 1, and 2/3, motivated by ax-
ion monodromy (Silverstein & Westphal, 2008; McAllister et al.,
2010), are compatible with Planck data with wint = 0.

Small modifications occur when considering the effective
equation of state parameter, wint = (n � 2)/(n + 2), defined by
averaging over the coherent oscillation regime which follows in-
flation (Turner, 1983). The Bayes factors are slightly modified
when wint is allowed to float, as can be seen from Table 6.

Hilltop models

In hilltop models (Boubekeur & Lyth, 2005), with potential
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the inflaton rolls away from an unstable equilibrium. The
predictions to first order in the slow-roll approximation are
r ⇡ 8p2(Mpl/µ)2x2p�2/(1 � xp)2 and ns � 1 ⇡ �2p(p �
1)(Mpl/µ)2xp�2/(1 � xp) � 3r/8, where x = �⇤/µ. As in PCI13,
the ellipsis in Eq. (49) and in what follows indicates higher-order
terms that are negligible during inflation but ensure positiveness
of the potential.

By sampling log10(µ/Mpl) within the prior [0.30, 4.85] for
p = 2, we obtain log10(µ/Mpl) > 1.02 (1.05) at 95 % CL and
ln B = �2.6 (�2.4) for wint = 0 (allowing wint to float).

An exact potential which could also apply after inflation,
instead of the approximated one in Eq. (49), might be needed
for a better comparison among different models. Hilltop mod-
els in Eq. (49) approximate a linear potential V(�) / � for

Planck Collaboration: Constraints on inflation 17

µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
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where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
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p

�p + ...

!

. (51)

We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
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. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
Z

d4x
p�g
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
⇣

1 � e�
p

2/3�/Mpl
⌘2

(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
 

1 � µ
p

�p + ...

!

. (51)

We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
⇣

1 � e�q�/Mpl + ...
⌘

. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
Z

d4x
p�g

M2
pl
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
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1 � e�
p

2/3�/Mpl
⌘2

(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
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f
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, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
 

1 � µ
p
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. (51)

We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
⇣

1 � e�q�/Mpl + ...
⌘

. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
Z

d4x
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
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1 � e�
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2/3�/Mpl
⌘2

(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
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, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
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We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
⇣

1 � e�q�/Mpl + ...
⌘

. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential
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(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
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1 + cos
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where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
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We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:
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. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (54)

is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential

V(�) = ⇤4
⇣

1 � e�
p

2/3�/Mpl
⌘2

(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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µ/Mpl � 1. By considering a double-well potential, V(�) =
⇤4[1��2/(2µ2)]2, instead, we obtain a slightly worse Bayes fac-
tor than the hilltop p = 2 model, ln B = �3.1 (�2.3) for wint = 0
(wint allowed to vary). This different result can be easily under-
stood. Although the double-well potential is equal to the hilltop
model for � ⌧ µ, it approximates V(�) / �2 for µ/Mpl � 1.
Since a linear potential is a better fit to Planck than �2, the fit
of the double-well potential is therefore worse than the hilltop
p = 2 case for µ/Mpl � 1, and this partially explains the slightly
different Bayes factors obtained.

In the p = 4 case, we obtain log10(µ/Mpl) > 1.05 (1.02) at
95 % CL and ln B = �2.8 (�2.6) for wint = 0 (allowing wint to
float), assuming a prior range [�2, 2] for log10(µ/Mpl).

Natural inflation

In natural inflation (Freese et al., 1990; Adams et al., 1993) a
non-perturbative shift symmetry is invoked to suppress radiative
corrections, leading to the periodic potential

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (50)

where f is the scale which determines the curvature of the po-
tential. We sample log10( f /Mpl) within the prior [0.3, 2.5] as in
PCI13. We obtain log10( f /Mpl) > 0.84 (> 0.83) at 95 % CL and
ln B = �2.4 (�2.3) for wint = 0 (allowing wint to vary).

Note that the super-Planckian value for f required by ob-
servations is not necessarily a problem for this class of models.
When several fields �i with a cosine potential as in Eq. (50) and
scales fi appear in the Lagrangian, an effective single field infla-
tionary trajectory can be found for a suitable choice of param-
eters (Kim et al., 2005). In such a setting, the super-Planckian
value of the effective scale f required by observations can be
obtained even if the original scales statisfy fi ⌧ Mpl (Kim et al.,
2005).

D-brane inflation

Inflation can be caused by physics in extra dimensions. If
the standard model of particle physics is confined to our 3-
dimensional brane, the distance between our brane and anti-
brane can drive inflation. We consider the following parameteri-
zation for the effective potential driving inflation:

V(�) = ⇤4
 

1 � µ
p

�p + ...

!

. (51)

We sample log10(µ/Mpl) within the prior [�6, 0.3]. We consider
p = 4 (Kachru et al., 2003; Dvali et al., 2001) and p = 2 (Garcia-
Bellido et al., 2002). The predictions for r and ns can be obtained
from the hilltop case with the substitution p ! �p. These mod-
els agree with the Planck data with a Bayes factor of ln B = �0.4
(�0.6) and ln B = �0.7 (�0.9) for p = 4 and p = 2, respectively,
for wint = 0 (allowing wint to vary).

Exponential potentials

Exponential potentials are ubiquitous in inflationary models mo-
tivated by supergravity and string theory (Goncharov & Linde,
1984; Stewart, 1995; Dvali & Tye, 1999; Burgess et al., 2002;
Cicoli et al., 2009). We restrict ourselves to the analysis of the
following class of potentials:

V(�) = ⇤4
⇣

1 � e�q�/Mpl + ...
⌘

. (52)

As for the hilltop models described earlier, the ellipsis indicates
possible higher-order terms that are negligible during inflation
but ensure positiveness of the potential. These models predict
r ⇡ 8q2e�2q�/Mpl/(1 � e�q�/Mpl )2 and ns � 1 ⇡ �q2e�q�/Mpl (2 +
e�q�/Mpl )/(1 � e�q�/Mpl )2 in a slow-roll trajectory characterized
by N ⇡ f (�/Mpl) � f (�end/Mpl), with f (x) = (eqx � qx)/q2.
By sampling log10(q/Mpl) within the prior [�3, 3], we obtain a
Bayes factor of �0.6 for wint = 0 (�0.9 when wint is allowed to
vary).

Spontaneously broken SUSY

Hybrid models (Copeland et al., 1994; Linde, 1994) predict-
ing ns > 1 are strongly disfavoured by the Planck data, as for
the first cosmological release (PCI13). An example of a hybrid
model predicting ns < 1 is the case in which slow-roll infla-
tion is driven by loop corrections in spontaneously broken su-
persymmetric (SUSY) grand unified theories (Dvali et al., 1994)
described by the potential

V(�) = ⇤4
h

1 + ↵h log(�/Mpl)
i

, (53)

where ↵h > 0 is a dimensionless parameter. Note that for
↵h ⌧ 1, this model leads to the same predictions as the power-
law potential for p ⌧ 1 to lowest order in the slow-roll approxi-
mation. By sampling log10(↵h) on a flat prior [�2.5, 1], we obtain
a Bayes factor of �2.2 for wint = 0 (�1.7 when wint is allowed to
vary).

R2 inflation

The first inflationary model proposed (Starobinsky, 1980), with
action
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is still within the Planck 68 % CL constraints, as it was for the
Planck 2013 release (PCI13). This model corresponds to the po-
tential
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(55)

in the Einstein frame, which leads to the slow-roll predictions
ns � 1 ⇡ �2/N and r ⇡ 12/N2 (Starobinsky, 1980; Mukhanov &
Chibisov, 1981).

After the Planck 2013 release, several theoretical develop-
ments supported the model in Eq. (54) beyond the original mo-
tivation of including quantum effects at one-loop (Starobinsky,
1980). No-scale supergravity (Ellis et al., 2013a), the large field
regime of superconformal D-term inflation (Buchmüller et al.,
2013), or recent developments in minimal supergravity (Farakos
et al., 2013; Ferrara et al., 2013b) can lead to a generalization
of the potential in Eq. (55) (see Ketov & Starobinsky (2011) for
a previous embedding of R2 inflation in F(R) supergravity). The
potential in Eq. (55) can also be generated by spontaneous break-
ing of conformal symmetry (Kallosh & Linde, 2013). This infla-
tionary model has ��2 ⇡ 0.8 (0.3) larger than the base ⇤CDM
model with no tensors for wint = 0 (for wint allowed to vary). We
obtain 54 < N⇤ < 62 (53 < N⇤ < 64) at 95 % CL for wint = 0
(for wint allowed to vary), compatible with the theoretical pre-
diction, N⇤ = 54 (Starobinsky, 1980; Vilenkin, 1985; Gorbunov
& Panin, 2011).
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

Constraint on Single Field Inflation

The joint data analysis from Planck/BICEP2/Keck Array indicates r < 0.1.

The data prefers concave potential with @2V < 0.

Simple potential such as �2 and �4 are disfavored.
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Alternatives to Inflation: prospects

PLANCK and upcoming observations may have a 
good chance to verify or rule out bounce 
(ekpyrotic)/inflationary scenarios.

Predictions of bounce scenarios:

Open questions and future directions:

How to achieve bounce or bypass NEC?

Can ekpyrotic models be embedded in high energy physics? 

Alternative to inflation includes models of bounce and string gas cosmology. 

• Produce adiabatic, almost scale invariant perturbations.

• No appreciable amount of gravitational waves.

• Significant amount of non-gaussianity.



Stochastic Inflation

Stochastic inflation is an elegant approach to study primordial perturbations in
inflationary backgrounds.

Quantum perturbations swept out to super-horizon scales by the background
expansion act a source for small scale perturbations. This e↵ect can be captured by a
Gaussian noise ⇠(N).

The corresponding Langevin equation for the inflaton dynamics is given by

d�

dN
= � V�

3H2
+

H

2⇡
⇠(N) ,

D

⇠(N) ⇠(N0)
E

= �(N � N0)

Stochastic inflation   Starobinsky (1986) 

"  Quantum fluctuations swept up to super-Hubble scales 
give stochastic kick, ξ(Ν), to coarse-grained (k<aH) field 

"  Number of e-folds to the end of inflation, N  , from a given 
field value, φ, becomes a stochastic variable 

 
 

V ϕ( )

ϕ

d'

dN
= � V 0

3H2
+

H

2⇡
⇠(N)

N 

D. Wands



First Passage Time

Suppose the inflaton field is initially located at � = �⇤. Then the probability p1 that it
first reaches �1 before reaching �2 is given by

v p001 (�)�
v 0

v
p01(�) = 0 , v ⌘ V (�)

24⇡2M4
P

This can be solved to give

p1 =

R �2
�⇤

exp
⇥ �1
v(x)

⇤

R �⇤
�1

exp
⇥ �1
v(x)

⇤

Note that v ⇠ 10�12 and the integrand is exponentially sensitive to the shape of the
potential.

Figure 1. Sketch of the dynamics solved in section 3. The inflaton is initially located at �⇤ and
evolves along the potential V (�) under the stochastic Langevin equation (1.1), until it reaches one of
the two ending values �1 or �2. The left panel is an example where inflation always terminates by
slow-roll violation, while the right panel stands for a situation where one of the ending points, �2,
corresponds to where V ⇠ M4

Pl above which inhomogeneities prevent inflation from occurring.

the power spectrum squared, is then given by

f
NL

=
5

72

d2�N 3

dhN i2
✓

d�N 2

dhN i

◆�2

, (3.14)

where 5/72 is a conventional historical factor. Analogously, the trispectrum is related to the
third derivative of �N 4 with respect to hN i, and so on and so forth.

The computational programme we must follow is now clear. For a given mode k, we
first calculate �⇤(k) (this sets the location of the observational window). We then consider
stochastic realizations of Eq. (1.1) that satisfy ' = �⇤(k) at some initial time,7 and denote by
N the number of e-folds that is realized before reaching �

end

. Among these realizations, we
calculate the first moments of this stochastic quantity, hN i, hN 2i, hN 3i, etc. We finally apply
relations such as Eqs. (3.12) and (3.14) to obtain the power spectrum, the non-Gaussianity
local parameter, or any higher order correlation function.

3.3 First Passage Time Analysis

In what follows, this calculation is performed using the techniques developed in “first passage
time analysis” [72, 73], which was applied to stochastic inflation in Ref. [17]. We consider the
situation sketched in Fig. 1, where the inflaton is initially located at �⇤ and evolves in some
potential V (�) under Eq. (1.1). Because any part of the potential can a priori be explored,

7This calculation therefore relies on a specific choice of initial (in fact, pre-inflationary) conditions, since
all trajectories emerge from �⇤ at initial time. In principle, other choices could be made, even if most physical
quantities (in particular, perturbations during the last 60 e-folds) do not depend on them.
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Fall and Escape Probability

Using the first passage technique mentioned above, we can calculate the
fall and escape probability in inflationary potentials.

�

v

�+�� �

v

�+��

Figure 1. Sketch of the potentials studied in this work, where the field falls from a local
maximum towards either of two vacua (left panel, see Sec. 2), or escapes from a local minimum
through either of two potential barriers (right panel, see Sec. 3).

di↵erence between p
+

and p�, quantified by the ratio

R =
p
+

p�
=

Z
0

��

e
� 1

v(�) d�

Z
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+

0

e
� 1

v(�) d�
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In particular, we want to quantify the amount of symmetry breaking in the potential
that is required for having R significantly di↵erent from 1, i.e. for having substantially
asymmetric fall/escape probabilities.

The rest of this paper is organised as follows. In Sec. 2 we analyse the “fall problem”
where the inflaton falls from a local maximum towards either of two minima, and in Sec. 3
we study the “escape problem” where the inflaton crosses barriers located around a local
minimum of its potential. The time taken for these processes to happen is computed in
Sec. 4. The generic case featuring multiple minima and maxima is discussed in Sec. 5
and we conclude in Sec. 6. In Appendix A, an analytical approximation method used
throughout the paper and based on the steepest descent approximation is detailed.

2 Falling from a local maximum

Let us first discuss the case depicted in the left panel of Fig. 1, where the field is placed at
a local maximum of its potential and we calculate the probabilities that it falls towards
either of the two minima located on both sides. For a given potential, it is straightforward
to compute Eq. (1.5) numerically and an example will be discussed below. Let us first
derive an analytical approximation of the result in order to discuss the di↵erent regimes
that one can encounter.
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Fall and Escape Probability

Using the first passage technique mentioned above, we can calculate the
fall and escape probability in inflationary potentials.
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The ratio of probabilities
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R 0
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0 e

� 1
v(�) d�

. (4)

  M. Noorbala, H. Assadullahi, H. F., V. Vennin, D. Wands, 2018



Falling from local maximum

Suppose the field is initially located at the
maximum of the potential. We would like
to calculate the probability that it falls to
either of its two minima due to
quantum fluctuations (quantum kicks).

Because of the exponential form of the integrand,
most of the contributions to the integral comes from
near the maximum:
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For the series expansion near the maximum to be valid we require
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Then the integral can be taken using the method of the steepest descent and
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Figure 1. Sketch of the potentials studied in this work, where the field falls from a local
maximum towards either of two vacua (left panel, see Sec. 2), or escapes from a local minimum
through either of two potential barriers (right panel, see Sec. 3).
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In particular, we want to quantify the amount of symmetry breaking in the potential
that is required for having R significantly di↵erent from 1, i.e. for having substantially
asymmetric fall/escape probabilities.

The rest of this paper is organised as follows. In Sec. 2 we analyse the “fall problem”
where the inflaton falls from a local maximum towards either of two minima, and in Sec. 3
we study the “escape problem” where the inflaton crosses barriers located around a local
minimum of its potential. The time taken for these processes to happen is computed in
Sec. 4. The generic case featuring multiple minima and maxima is discussed in Sec. 5
and we conclude in Sec. 6. In Appendix A, an analytical approximation method used
throughout the paper and based on the steepest descent approximation is detailed.

2 Falling from a local maximum

Let us first discuss the case depicted in the left panel of Fig. 1, where the field is placed at
a local maximum of its potential and we calculate the probabilities that it falls towards
either of the two minima located on both sides. For a given potential, it is straightforward
to compute Eq. (1.5) numerically and an example will be discussed below. Let us first
derive an analytical approximation of the result in order to discuss the di↵erent regimes
that one can encounter.
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Figure 2. Probability decay ratio R = p+/p� as a function of the symmetry-breaking parameter
✏ for the model (2.8). The blue line is computed numerically from Eq. (1.5) and the black line
corresponds to the sharp maximum approximation (2.9). The solid part of the curves correspond
to when R < 1 while the dashed part of the curves correspond to when R > 1. The di↵erent
panels correspond to di↵erent regimes in parameter space. In the top left panel, � > v̄0 and in

the top right panel, v̄5/3
0 ⌧ � ⌧ v̄0. In both cases, the sharp maximum approximation is always

valid (the curves cannot be distinguished by eye) and R is always close to one. In the bottom

left panel, v̄2
0 ⌧ � ⌧ v̄5/3

0 , and when ✏ is su�ciently large, R can substantially deviate from one
and the sharp maximum approximation breaks down. In the bottom right panel, � ⌧ v̄2

0 for
which the approximation always breaks down and R can substantially deviate from one if ✏ is
large enough.

In this expression, v̄(�) is an even function of � and �v(�) is an odd function of � with
vanishing derivative at the origin (such that � = 0 is a local maximum of the potential
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Escaping from local minimum

Suppose the field is located at a local minimum
of the potential. We would like to calculate the
probability for escaping through either of barriers.

If the following conditions are met
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and the ratio of the two tunnelling probabilities is
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Since v ⇠ 10�12 the dominant contributions come from the exponential terms and
R ⇠ e1/v(�+)�1/v(��).
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Figure 1. Sketch of the potentials studied in this work, where the field falls from a local
maximum towards either of two vacua (left panel, see Sec. 2), or escapes from a local minimum
through either of two potential barriers (right panel, see Sec. 3).
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In particular, we want to quantify the amount of symmetry breaking in the potential
that is required for having R significantly di↵erent from 1, i.e. for having substantially
asymmetric fall/escape probabilities.

The rest of this paper is organised as follows. In Sec. 2 we analyse the “fall problem”
where the inflaton falls from a local maximum towards either of two minima, and in Sec. 3
we study the “escape problem” where the inflaton crosses barriers located around a local
minimum of its potential. The time taken for these processes to happen is computed in
Sec. 4. The generic case featuring multiple minima and maxima is discussed in Sec. 5
and we conclude in Sec. 6. In Appendix A, an analytical approximation method used
throughout the paper and based on the steepest descent approximation is detailed.

2 Falling from a local maximum

Let us first discuss the case depicted in the left panel of Fig. 1, where the field is placed at
a local maximum of its potential and we calculate the probabilities that it falls towards
either of the two minima located on both sides. For a given potential, it is straightforward
to compute Eq. (1.5) numerically and an example will be discussed below. Let us first
derive an analytical approximation of the result in order to discuss the di↵erent regimes
that one can encounter.
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Example: v =

(
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Left: � < v̄2
0 and the sharp maximum approximation breaks down at ✏ < v̄2

0 .
Right: � > v̄2

0 and the sharp maximum approximation always holds.

In both cases, R significantly di↵ers from one when ✏ > v̄2
0 .
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Figure 3. Probability decay ratio R = p+/p� as a function of the symmetry-breaking parameter
✏ for the model (3.6). The blue line is computed numerically from Eq. (1.5) and the black line
corresponds to the sharp maximum approximation (3.7). The solid part of the curves correspond
to when R > 1 while the dashed part of the curves correspond to when R < 1. The di↵erent
panels correspond to di↵erent regimes in parameter space. In the left panel, � < v̄2

0 and the
sharp maximum approximation breaks down at ✏ < v̄2

0 . In the right panel, � > v̄2
0 and the

sharp maximum approximation always holds. In both cases, R significantly di↵ers from one
when ✏ > v̄2

0 . Notice that the (absolute value of the) logarithm of R itself is displayed with a
logarithmic scale.

This shows that, unless the symmetry breaking parameter is tiny ✏ ⌧ v2
0

, the tunnelling
probabilities are highly asymmetric.

The small ✏ limit can also be written for the generic even/odd decomposition of the
potential given in the first equality of Eq. (3.6), since at leading order in ✏ the maximas
are displaced according to �± ' ±µ⌥ ✏�v(µ)/v̄00(µ). This gives v(�±) ' v̄(µ)± ✏�v(µ),
hence R ⇠ e�2✏�v(µ)/v̄

2

(µ), which is of course consistent with Eq. (3.8).
The validity conditions (3.2) and (3.3) for the sharp maximum approximation can

also be checked. With the restrictions on parameters mentioned above, one can check
that the first condition is always satisfied, and the second one is violated only if both
� and ✏ are smaller than v̄2

0

. This gives rise to two regimes displayed in the two panels
of Fig. 3. If � ⌧ v̄2

0

, the sharp maximum approximation is only valid for ✏ � v̄2
0

. This
corresponds to the left panel in Fig. 3. If � � v̄2

0

, the sharp maximum approximation is
always valid, and this corresponds to the right panel in Fig. 3.

Interestingly, one notices that in the case � ⌧ v̄2
0

, the condition on ✏ for the
sharp maximum approximation to hold, ✏ > v̄2

0

, is precisely the one such that R < 1
according to Eq. (3.8). This shows that the sharp maximum approximation is always
valid to describe probability ratios away from one. In particular, the large ✏ limit,
R|

✏��

⇠ e�1/(v̄

0

��), is always correctly reproduced in Fig. 3.
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Tunnelling in a generic potential

Let us consider a general potential
with multiple minima and maxima.

We define pijk as the probability of
reaching �i before reaching �k ,
starting from �j .

Example: p+ in previous example
is p�+0�� .

From our starting formula, we have:

pijk =
I kj

I ki
, I ji ⌘

Z �j

�i

e�1/v d�

From the integral structure of I ji we obtain

p134 =
p123p234

1� p321p234

This formula expresses p134 entirely
in terms of building blocks “fall” (p234)
and “escape” (p123 and p321) probabilities.

�1 �2 �3 �4 �

v

Figure 4. Sketch of the generic potential discussed in Sec. 5.

First, it is consistent with Eq. (4.8) in the following sense. In the stationary state,
the fraction of the stochastic processes that lie in the vacuum centred around �� is
given by p�,stat

and the decay rate towards the vacuum centred around �
+

is inversely
proportional to hN i

��!�

+

, so the flux of processes that cross the potential barrier right-
wards is proportional to p�,stat

/hN i
��!�

+

. Similarly, the flux of processes that cross
the potential barrier leftwards is proportional to p

+,stat

/hN i
�

+

!�� . Since the distribu-
tion is stationary, the two fluxes must exactly compensate each other. This leads to
R

stat

= p
+,stat

/p�,stat

= hN i
�

+

!��/hN i
��!�

+

. Plugging Eq. (4.8) into this formula,
one exactly recovers Eq. (4.11).

Second, Eq. (4.10) is a priori very much di↵erent from Eq. (1.5), and by comparing
their sharp maximum approximated versions, Eqs. (4.11) and (2.5), one notices that
indeed, R is typically very close to one while R

stat

is typically very di↵erent from one
because of the exponential term. The question then is: at the end of inflation, which
probability ratio correctly describes the fraction of space that lies in each vacuum? This
depends on the total duration of inflation. After one fall-down time hN i

fall

, given at
the beginning of Sec. 4.2, the ratio between the two vacua populations is given by R
in Eq. (2.5). Then, the stochastic processes can go from one vacuum the other, and
when N � hN i

�±!�⌥ given by Eq. (4.8), this ratio converges to the stationary value
given by R

stat

in Eq. (4.11). However, the equilibration time scale (4.8) towards the
stationary distribution (4.9) is typically very large (at observable scales, v . 10�10 so
hN i

�±!�⌥ ⇠ e10
10

). Unless inflation lasts for an gigantic number of e-folds, the relative
vacua populations at the end of inflation is therefore given by R, not R

stat

.

5 Tunnelling in a generic potential

Let us now consider the case of a generic potential with several minima and maxima as
the one sketched in Fig. 4. We will show that the results derived in the previous sections
are building blocks that can be readily assembled to tackle more complex situations such
as this one.
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maximum towards either of two vacua (left panel, see Sec. 2), or escapes from a local minimum
through either of two potential barriers (right panel, see Sec. 3).
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In particular, we want to quantify the amount of symmetry breaking in the potential
that is required for having R significantly di↵erent from 1, i.e. for having substantially
asymmetric fall/escape probabilities.

The rest of this paper is organised as follows. In Sec. 2 we analyse the “fall problem”
where the inflaton falls from a local maximum towards either of two minima, and in Sec. 3
we study the “escape problem” where the inflaton crosses barriers located around a local
minimum of its potential. The time taken for these processes to happen is computed in
Sec. 4. The generic case featuring multiple minima and maxima is discussed in Sec. 5
and we conclude in Sec. 6. In Appendix A, an analytical approximation method used
throughout the paper and based on the steepest descent approximation is detailed.

2 Falling from a local maximum

Let us first discuss the case depicted in the left panel of Fig. 1, where the field is placed at
a local maximum of its potential and we calculate the probabilities that it falls towards
either of the two minima located on both sides. For a given potential, it is straightforward
to compute Eq. (1.5) numerically and an example will be discussed below. Let us first
derive an analytical approximation of the result in order to discuss the di↵erent regimes
that one can encounter.
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asymmetric fall/escape probabilities.
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where the inflaton falls from a local maximum towards either of two minima, and in Sec. 3
we study the “escape problem” where the inflaton crosses barriers located around a local
minimum of its potential. The time taken for these processes to happen is computed in
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and we conclude in Sec. 6. In Appendix A, an analytical approximation method used
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Conclusion

Inflation is the leading paradigm for early Universe
and for generating large scale structures.

The basic predictions of inflation are that the
primordial perturbations are nearly scale invariant,
nearly adiabatic and nearly Gaussian.

Stochastic inflation is a novel method to study
primordial perturbations using stochastic formalism.

Super-horizon perturbations act as a source of
Gaussian noise for small scale perturbations
inside the horizon.

Using the first passage technique, we can calculate
the falling probability from a local maximum to
nearby minima and the escaping probability from
a local minimum to nearby maxima.

The fall probability and the escape probability
are the building blocks for calculating the tunnelling in
a generic potential with multiple maxima and minima.





Decay rate

Using the first passage technique, we can calculate
the typical time it takes for falling or escaping.

The mean number of e-folds
⌦N↵

to reach either
�� or �+, starting from the initial value �, is given by
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with boundary conditions hN i(��) = hN i(�+) = 0.
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where �̄(��,�+) is an integration constant that is implicitly set through the
boundary condition hN i(�+) = 0.
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through either of two potential barriers (right panel, see Sec. 3).
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