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Poisson-Lie symmetry

Poisson bracket

A Poisson bracket is real bilinear map that is satisfying in the
following conditions:

{,}: C>(M,R) x C*(M, R) — C>(M, R)

{c1f+ 29, h} = ci{f, h} + c2{g, h} (1.1)
{f.9t = —{g.f} (1.2)

{fg. h} = H{g, h} + g{h. f} (1.3)
{f.{g.h}} +{h.{f.g}} +{g.{h.f}} =0 (1.4)



Poisson-Lie symmetry

Poisson structure

{f,g} = N(df, dg) (1.5)



Poisson-Lie symmetry

Poisson structure

{f,g} = N(df, dg) (1.5)

{f.{g,ht} +{h.{f.g9}} +{g.{h,f}} =0

l

[m,n)=0 (1.6)

where 2-vector 1 is called Poisson structure. The manifold M
endowed with a Poisson structure is called a Poisson manifold.

A. Lichnerowicz, J. Differential Geometry. 12 (1977) 253-300.



Poisson-Lie symmetry

Lie bialgebra

A Lie bialgebra structure on Lie algebra is a skew-symmetric
linear map ¢

1N g—-0gx®dg

VX, Yeg (X, Y]) =[(X),1Y+Y1]+[1X+X®1,6(Y)],

(1.7)
2) the dual map ¢! : g* ® g* — g* is a Lie bracket on g*

vXeg.&neg (E@n6(X)=(6"(¢®@n), X) = ([&n], X).
(1.8)
The Lie bialgebra defined in this way will be denoted by (g, g*)

or (g,9).

V. G. Drinfel'd, Sov. Math. Dokl. 27 (1983) 68-71.



Poisson-Lie symmetry

Also, condition (1.7) can be rewritten in the following form
d*[Xv Y]g = [Xv d*Y]g_[Y> d*x]g (19)

where d., being the Chevalley-Eilenberg differential of g* acting
ong.



Also, condition (1.7) can be rewritten in the following form
d*[Xv Y]g = [Xv d*Y]g_[Y> d*x]g (19)

where d., being the Chevalley-Eilenberg differential of g* acting
on g. By choosing

1-
d.X; = —Effk,-Xj/\Xk, (1.10)
we have a well-known Bianchi identity

fi/_k?mnk _ fikm;cknj + f’_kn?mkj + fkjm?kni + fkjn;cmki (1 .11)

where S
(X, X1 = f* X [X7, X0 = Pl XK,



Poisson-Lie symmetry

Poisson-Lie symmetry

This symmetry does not require the isometry in the original and
dual target manifolds

d*J/:—%?jk,-*Jj/\*Jk, (1.12)



Poisson-Lie symmetry

Poisson-Lie symmetry

This symmetry does not require the isometry in the original and
dual target manifolds

1~
d*J,-:—éf/k,-*JjA*Jk, (1.12)
J
Ly = VA VITE L En. (1.13)
Then, the integrability condition for £,,&,,, gives the Bianchi
identity
f/jk?mnk _ fikm'fknj + fikn?mkj + fkjm'fkni + fkjn'fmki (1 -14)

C. Klim¢ik and P. Severa, Phys. Lett. B. 351 (1995) 455-462.



Jacobi structure and Jacobi-Lie bialgebra

Jacobi bracket

A Jacobi bracket is real bilinear map that is satisfying in the
following conditions:

{,}:C¥(M,R) x C=(M,R) — C=(M,R)

{c1f + cog, h} = ci{f, g} + c2{g, h} (2.1)
{f.9} =—{9.f} (2.2)

{fg.h} = f{g, h} + g{h, f}—fg{1, h} (2.3)
{f.{g.h}} +{h.{f.g}} + {g.{h.f}} =0 (2.4)

A. Kirillov, Russ. Math. Surv. 31 (1976) 55-75.



Jacobi structure and Jacobi-Lie bialgebra

Jacobi structure

{f, g} = A\(df,dg) + fE(g) — gE(f) (2.5)



Jacobi structure and Jacobi-Lie bialgebra

Jacobi structure

{f, g} = A\(df,dg) + fE(g) — gE(f) (2.5)

{fv {gv h}} + {hv {f>g}} + {gv {hv f}} =0
1
[AA =2EAA, [E,A] = 0. (2.6)

A Jacobi structure on M is a pair (A, E), where A is a 2-vector
and E is a vector field on M.

A. Lichnerowicz, J. Math. Pures Appl. 57 (1978) 453-488.



Jacobi structure and Jacobi-Lie bialgebra

Jacobi-Lie bialgebra

A Jacobi-Lie bialgebra is a pair ((g, ¢0), (9", Xo)), where
(9,[,]9) is a real Lie algebra of finite dimension and g* is dual
space of g with Lie bracket [,]9", such that we have

d*Xo [X7 Y]g - [X7 d*Xo Y]go - [Ya d*XOX]gO7 (27)

$o(Xo) =0,
i¢0(d*Xo) + [Xo, X] =0.



Jacobi structure and Jacobi-Lie bialgebra

Jacobi-Lie bialgebra

A Jacobi-Lie bialgebra is a pair ((g, ¢0), (9", Xo)), where
(9,[,]9) is a real Lie algebra of finite dimension and g* is dual
space of g with Lie bracket [,]9", such that we have

duxy [X, Y19 = [X, dux, Y19, — [V, dix, X2,

$o(Xo) =0,
3o (0 Xo) + [Xo, X] = 0.

The Xp € g and ¢g € g* are 1-cocycles on g* and g,
respectively, i.e. we must have

d.Xo =0, (2.10)
d¢o = 0. (2.11)

D. Iglesias and J. C. Marrero, J. Geom. Phys. 40 (2001) 176-199.



Jacobi structure and Jacobi-Lie bialgebra

We expand Xj € g and ¢g € g* in terms of the basis of the Lie
algebras g and g*

Xo=a'X; ,  ¢o=pBX, (2.12)



Jacobi structure and Jacobi-Lie bialgebra

We expand X, € g and ¢¢ € g* in terms of the basis of the Lie
algebras g and g*
Xo=dXi o= pX, (2.12)

Now, according to the generalized Chevalley-Eilenberg
differential d.x, as follows

VY €g A, Y =Y+ XA Y, (2.13)

and using

0LX; = 3 PX A X (2.14)

we have the new definition of Jacobi-Lie bialgebras for physical
applications.



Jacobi structure and Jacobi-Lie bialgebra

A Jacobi-Lie bialgebra is a pair ((g, ¢0), (g*, Xo)) where (g, [,]2) is a
real Lie algebra of finite dimension with the baS|s {Xi}, and g* is dual
space of g with Lie bracket |, ]9° and basis {X'}, such that
Xo=a'X;cgand ¢g = B,X/ € g* are 1-cocycles on g* and g,
respectively, i.e

f’"”, =0, (2.15)

ﬂi mn = 07 (216)
and we have

fl_jk?mnk o f_km?kn, - fikn?mk‘ o fk‘m?kni o fkjn?mkl_
FBE; — G QT — oM (F T — a5
—(a ™ —a™B))6;"— (a¥ Fi"—aB1) 5™+ (X fi "~ a"Bj)6i™ = 0, (2.17)

o' =0, (2.18)

ng.m Tnm
(0% fnl - ﬁnf i = 0. (2.19)
A. Rezaei-Aghdam and M. Sephid, Int. J. Geom. Methods Mod. Phys. 13 (2016) 1650087.
(12) A. Rezaei-Aghdam and M. Sephid, Int. J. Geom. Methods Mod. Phys. 14 (2017) 1750007.
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Jacobi-Lie symmetry

We consider two-dimensional sigma model on the target space
M with background matrix &, = G, + B, in the presence of a
o-function on M (o € C>*(M))

S= ;/ dgt A dem e7ME,, (x) DXt X (3.1)
>

where ¢* and {x*} are coordinates of the world sheet * and
manifold M, respectively.



Jacobi-Lie symmetry

One can consider the free action of Lie group G on manifold M
by the following transformation

Xt — xH 4 (T Tt (3.2)



Jacobi-Lie symmetry

One can consider the free action of Lie group G on manifold M
by the following transformation

Xt — xH 4 (T Tt (3.2)
The variation of action (3.1) under transformation (3.2) is
calculated to be

1 .
(SS = 2/d5+ A df_ eU(X)E’(ﬁvI.EuV + V,-)‘@)\a gl“/) 8+XM8,XV

- ;/dei/\*J,-, (3.3)

where Hodge star of the Noether's currents have the following
form

*Ji = € ON(E,, v Dyxtdet — &, v O_x"dET).  (3.4)



Jacobi-Lie symmetry

If we consider ¢g = do € Q'(M) as a 1-cocycle on g (Lie
algebra of the Lie group G) with values in g*, then we have
¢o-Lie derivative in the sense of D. Iglesias and J. C. Marrero as

(E%)V/g/w = ‘CVigNV+ < ¢g, Vi > 5!”" (3.5)



Jacobi-Lie symmetry

If we consider ¢g = do € Q'(M) as a 1-cocycle on g (Lie
algebra of the Lie group G) with values in g*, then we have
¢o-Lie derivative in the sense of D. Iglesias and J. C. Marrero as

(E(bo)vigwj = ‘CVigNV+ < ¢g, Vi > ‘C:MV' (3.5)

Therefore, one can rewrite the variation of S using the above
definition for ¢g-Lie derivative as follows

§S = ;/d§+ Ade™ e (Ly ) Ep 8+x“8_x”—;/d6i A *Jj.
(3.6)



Jacobi-Lie symmetry

Now, with 6S = 0 we have

dxJi = € DO[(Ly ), Ew D1 X1I_XV]dE™ A dET. (3.7)



Jacobi-Lie symmetry

Now, with 6S = 0 we have
dxJi = € DO[(Ly ), Ew D1 X1I_XV]dE™ A dET. (3.7)

We assume that the 1-forms xJ; are not closed and they obey
the following generalized Maurer-Cartan equation

1 o ) .
d*¢:f§€”Wﬁ—a@ﬁ+awm*4A*¢, (3.8)



Jacobi-Lie symmetry

Now, with 6S = 0 we have
dxJi = € DO[(Ly ), Ew D1 X1I_XV]dE™ A dET. (3.7)

We assume that the 1-forms xJ; are not closed and they obey
the following generalized Maurer-Cartan equation

1 o ) .
dxdJ = 7§e*"(ffk,- — oJ5K; + oK) x Jj A wdk, (3.8)

Using (3.7) and (3.8) the condition of Jacobi-Lie symmetry can
be formulated in the following form

(Lo il = (FK; — oI55+ X )W A ViE - (3.9)

Note that, this symmetry is a generalization of the Poisson-Lie
symmetry and subsequently isometry symmetry.

A. Rezaei-Aghdam and M. Sephid, Nucl. Phys. B. 926 (2018) 602-613.



Jacobi-Lie symmetry

Now, we will consider the integrability condition for the ¢q-Lie
derivative

(E%)[Vf,v/]gﬂl/ = (E%)VI(E%)V/"SuV - (‘C¢0)V/(‘C¢0)V/5#V' (3.10)



Jacobi-Lie symmetry

Now, we will consider the integrability condition for the ¢q-Lie
derivative

(E%)[Vf,v/]gﬂl/ = (’C¢0)Vi(’c¢0)ngﬂ'/ - (‘C¢0)V/(‘C¢0)V/5#V' (3.10)
According to the definition of the ¢g-Lie derivative presented in
(3.5), and 1-cocycle condition on ¢y i.e.,

Bifik =0, (3.11)

where Bx = v dy0, the integrability condition for ¢o-Lie
derivative is equivalent to the integrability condition for usual Lie
derivative

LrvyiEuw = Lo Ly — LoyLyEp. (3.12)



Jacobi-Lie symmetry

Now, using (3.5) and (3.9), after some computations, the
integrability condition (3.12) gives the first condition of
Jacobi-Lie bialgebra ((g, ¢0), (9%, Xo)), i.€.,

fijk?mnk o fl_km?knj _ fl_kn’)‘cmkj o fkjm?kni o fkjn?mki
+5i?mnj o Bj?mni + amfijn N anfl_jm + (Oékfikm o amﬁl_)(sj_n

—(a¥Fi™ = a™B)5i" — (X i — a"B1) 5™ + (a¥ Fy " — ' B;) 6™ = 0.
(3.13)

In other words, the integrability condition of the ¢g-Lie derivative

together with the Jacobi-Lie symmetry (3.9) result that the ¢ is

1-cocycle and the first condition of the Jacobi-Lie bialgebra

((9, ¢0), (9%, Xo)) is satisfied.



Jacobi-Lie symmetry

In the same way, one can consider the dual sigma model on the
manifold M in the presence of a 5-function



Jacobi-Lie symmetry

In the same way, one can consider the dual sigma model on the
manifold M in the presence of a 5-function

If we consider Xy = d& € Q'(M) as a 1-cocycle on g* with
values in g, then, we have X,-Lie derivative as

(Laxy)vibuw = Lagi&ut < Xo, V' > €. (3.15)



Jacobi-Lie symmetry

In the same way, one can consider the dual sigma model on the
manifold M in the presence of a 5-function

If we consider Xy = d& € Q'(M) as a 1-cocycle on g* with
values in g, then, we have X,-Lie derivative as
(Laxy)vibuw = Lagi&ut < Xo, V' > €. (3.15)

Using the equations of motion related to S and the following
generalized Maurer-cartan equation

dxJ = %e—ff(;;-k’ — B0k’ + Bid’) x F A xJK, (3.16)
l
(Lixy)viCw = (i’ — Bidk’ + Bid) YA VKNE L €, . (3.17)



Jacobi-Lie symmetry

The integrability condition for (L. x, )i

(L) pm omEn = (Laxy)om(Laxg)inEpw — (Loxy)on(Laxy)ymEpuws
(3.18)
with the 1-cocycle condition for Xj i.e.,

oK™ =0, (3.19)
is equivalent to the integrability condition for (L..);: as follows
Loy gmEpy = LagmLagn€py — LagnLogmEpy. (3.20)



Jacobi-Lie symmetry

The integrability condition for (L. x, )i
(Loxo)pmimEw = (Laxo)om(Loxg) i€ — (Laxg)in(Loxg)ymEpn,

(3.18)
with the 1-cocycle condition for Xj i.e.,
okfm, =0, (3.19)
is equivalent to the integrability condition for (L..);: as follows
Loy gmEp = LagmLagn€py — LagnLogmEpy. (3.20)

Using (3.15) and (3.17), relation (3.20) is converted to the first
condition of the Jacobi-Lie bialgebras ((g*. Xp), (9, ¢0))

fijk?mnk - f,km?kn, . f,kn’fmk, - fkjm?kn' . fkjn?mk‘
+B:f n ijmnl + Oémf/j —a /j (/kamk - Oémﬁl)(; n

—(5kfmkj— ™ B7)5i" — (Bkf™ —a”8;)6; ™+ (BkF™j— " B;)5™ = 0.
(3.21)



Jacobi-Lie symmetry

Finally, with subtraction of the relations (3.13) and (3.21), we
arrive to the third condition of Jacobi-Lie bialgebras

((ga ¢0)7 (g*a XO)) and ((g*v XO)7 (97 ¢0))’ i'e-:

o™ — B f™k = 0. (3.22)



Jacobi-Lie symmetry

Finally, with subtraction of the relations (3.13) and (3.21), we
arrive to the third condition of Jacobi-Lie bialgebras

((9, %0), (9", Xo)) and ((g", Xo), (9 ¢0)), i.e.,
o™ — B f™k = 0. (3.22)
If o/ and g; in relations (3.11), (3.13), (3.19), (3.21) and (3.22)
are satisfying in the following relation
o/Bi =0, (3.23)

then, we have the second condition of the Jacobi-Lie bialgebras

((9, ¢0), (g7, Xo)) and ((g", Xo), (@, ¢0))- The equation (3.23)
can be obtained from the isometric symmetry in direction of

1-cocycles Xy and ¢y, i.e.,

L)xEw =0, (L)plw = 0. (3.24)
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WZW model on the Heisenberg Lie group H,

The WZW action on Lie group G is written as
K + — i j
Swzw(g) = ? df A df L+ Q,‘j L
T Jx
o )

K . .
+247T/Bd35 el U, £ LK, (4.1)

where Q; =< Xj, X; > is non-degenerate ad-invariant bilinear
form in the following relation

< )(ia [)(j>Xk] >=< [)(i7)(j]’Xk >, (42)

C. R. Nappi and E. Witten, Phys. Rev. Lett. 71 (1993) 3751.



Jacobi-Lie symmetry in Hy-WZW model

The oscillator Lie algebra hy (related to Heisenberg Lie group Hy)
with four generators {a, a’, N = aa', M}

N,a'] = af, [N,a=-a [aa] =M, (4.3)

has ad-invariant symmetric bilinear form Q; as

0 0 0 —&x
o 0 0 O _ ,
Qj 0 £ 0 0 , keR—-{0}, < eR (4.4)
-k 0 0 K

Using the parametrization g = "% e“% &% g% and k' =0
H;-WZW action is written as

s, - K / det A dg*{ O XO_v — DyvO_x
47

+ e (a+ YO_U+ 0, Ud_y + YD, ud_X — yd,xO_ u) } (4.5)

A. Eghbali and A. Rezaei-Aghdam, Nucl. Phys. B. 899 (2015).165.
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Jacobi-Lie symmetry in H,-WZW model

From the Jacobi-Lie symmetry on (4.5) the non-zero commutation
relations of the dual pair to the Heisenberg Lie algebra h4 and
1-cocycles Xp and ¢ are found to be

i) ((h47 0)7 (AZ (S¥) 2./41 ) 0))
X2, X4 = X? (4.6)
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Jacobi-Lie symmetry in H,-WZW model

From the Jacobi-Lie symmetry on (4.5) the non-zero commutation
relations of the dual pair to the Heisenberg Lie algebra h4 and
1-cocycles Xp and ¢ are found to be

i) ((h47 0)7 (AZ (S¥) 2./41 ) 0))
X2, X4 = X2 (4.6)
") ((h47 ) (V D §Ria X4))
[)"(1 )"(4] _ _)"'(1 [)"'(37)"'(4] _ _5(3 (4_7)
iii) ((ha,0), (A350, 327 Xa))

X', X4 = 7_15(‘ X2, X4 = 77_1)?2 X3, X% = TZS@ (4.8)
iv) ((ha, 0), (A750, +55Xa))
X', X4 = - (X2, X4 = a%)"@ X3, X4 = 511715(3 (4.9)



~11 .
((h47 0)7 (A475 1, %X4))
S— %/dﬁ* A d({ — 9 XO_V — Dy vD_x

e (a+ YO_ U+ UD_y+yD, ud_x— ya+xa,u) } (4.10)

)
= %/a/g+ A dg—{ o5 (0,XO_V + 8, VI_%)

+%(8+5/8_& + U0, yo_v + yo,vo_n)
3-2ez

+%(—6+&8,}7 + YO, L UO_V + U0 VO_Yy)
1-2ez2

_ o). (4.11)
(1—2ez)(3—2e72)

A. Rezaei-Aghdam and M.Sephid, arXiv:1804.07948 [hep-th].
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Thank you
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Let G be a connected Lie group with Lie algebra g. Let
o : G x V — V be arepresentation of G on a vector space V
and Ted : g x V — V be the induced representation of g on V.

If the map ¢ : G — V is a 1-cocycle on G relative to , i.e., if for

h,ge G

¢(hg) = ¢(h) + ®(h, ¢(g)), (1)
then e =: (d¢)(e) : g — Vis a 1-cocycle on g relative to Te®,
ie.,for X, Y eg

Te®(X, e(Y)) = Te®(Y, e(X) = €([X, Y]9). (2)
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