Jacobi-Lie symmetry in H₄-WZW model

Mehdi Sephid

Azarbaijan Shahid Madani University

25th IPM Physics Spring Conference June 2018

Outline

- Poisson-Lie symmetry
- Jacobi structure and Jacobi-Lie bialgebra
- Jacobi-Lie symmetry
- ▶ Jacobi-Lie symmetry in H₄-WZW model

Poisson bracket

A Poisson bracket is real bilinear map that is satisfying in the following conditions:

$$\{,\}: C^{\infty}(M,R) \times C^{\infty}(M,R) \mapsto C^{\infty}(M,R)$$

$$\{c_1f + c_2g, h\} = c_1\{f, h\} + c_2\{g, h\}$$
 (1.1)

$$\{f,g\} = -\{g,f\} \tag{1.2}$$

$$\{fg,h\} = f\{g,h\} + g\{h,f\} \tag{1.3}$$

$$\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$$
 (1.4)

Poisson structure

$$\{f,g\} = \Pi(df,dg) \tag{1.5}$$

Poisson structure

$$\{f,g\} = \Pi(df,dg) \tag{1.5}$$

$$\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$$

$$\downarrow \qquad \qquad [\Pi, \Pi] = 0 \qquad (1.6)$$

where 2-vector Π is called Poisson structure. The manifold M endowed with a Poisson structure is called a Poisson manifold.

A. Lichnerowicz, J. Differential Geometry. 12 (1977) 253-300.

Lie bialgebra

A Lie bialgebra structure on Lie algebra is a skew-symmetric linear map δ

1)
$$\delta: \mathbf{g} \to \mathbf{g} \otimes \mathbf{g}$$

$$\forall X, Y \in \mathbf{g} \quad \delta([X, Y]) = [\delta(X), 1 \otimes Y + Y \otimes 1] + [1 \otimes X + X \otimes 1, \delta(Y)], \tag{1.7}$$

2) the dual map $\delta^t : \mathbf{g}^* \otimes \mathbf{g}^* \to \mathbf{g}^*$ is a Lie bracket on \mathbf{g}^*

$$\forall X \in \mathbf{g}, \xi, \eta \in \mathbf{g}^* \quad (\xi \otimes \eta, \delta(X)) = (\delta^t(\xi \otimes \eta), X) = ([\xi, \eta]_*, X).$$
(1.8)

The Lie bialgebra defined in this way will be denoted by $(\mathbf{g}, \mathbf{g}^*)$ or (\mathbf{g}, δ) .

V. G. Drinfel'd, Sov. Math. Dokl. 27 (1983) 68-71.

Also, condition (1.7) can be rewritten in the following form

$$d_*[X, Y]^{\mathbf{g}} = [X, d_* Y]^{\mathbf{g}} - [Y, d_* X]^{\mathbf{g}}.$$
 (1.9)

where d_* being the Chevalley-Eilenberg differential of \mathbf{g}^* acting on \mathbf{g} .

Also, condition (1.7) can be rewritten in the following form

$$d_*[X,Y]^{\mathbf{g}} = [X,d_*Y]^{\mathbf{g}} - [Y,d_*X]^{\mathbf{g}}.$$
 (1.9)

where d_* being the Chevalley-Eilenberg differential of \mathbf{g}^* acting on \mathbf{g} . By choosing

$$d_*X_i = -\frac{1}{2}\tilde{f}^{jk}{}_iX_j \wedge X_k, \qquad (1.10)$$

we have a well-known Bianchi identity

$$f_{ij}{}^{k}\tilde{f}^{mn}{}_{k} = f_{ik}{}^{m}\tilde{f}^{kn}{}_{j} + f_{ik}{}^{n}\tilde{f}^{mk}{}_{j} + f_{kj}{}^{m}\tilde{f}^{kn}{}_{i} + f_{kj}{}^{n}\tilde{f}^{mk}{}_{i}$$
 (1.11)

where

$$[X_i, X_j] = f_{ij}{}^k X_k \quad [\tilde{X}^i, \tilde{X}^j] = \tilde{f}^{ij}{}_k \tilde{X}^k.$$

Poisson-Lie symmetry

This symmetry does not require the isometry in the original and dual target manifolds

$$d \star J_i = -\frac{1}{2} \tilde{f}^{jk}{}_i \star J_j \wedge \star J_k, \qquad (1.12)$$

Poisson-Lie symmetry

This symmetry does not require the isometry in the original and dual target manifolds

$$d \star J_i = -\frac{1}{2} \tilde{f}^{jk}{}_i \star J_j \wedge \star J_k, \qquad (1.12)$$

$$\mathcal{L}_{\nu}\mathcal{E}_{\mu\nu} = \tilde{\mathbf{f}}^{jk}{}_{i}\mathbf{v}_{i}{}^{\lambda}\mathbf{v}_{k}{}^{\eta}\mathcal{E}_{\mu\nu}\mathcal{E}_{\lambda\nu}.$$

Then, the integrability condition for $\mathcal{L}_{v_i}\mathcal{E}_{\mu\nu}$ gives the Bianchi identity

$$f_{ij}{}^{k}\tilde{f}^{mn}{}_{k} = f_{ik}{}^{m}\tilde{f}^{kn}{}_{j} + f_{ik}{}^{n}\tilde{f}^{mk}{}_{j} + f_{kj}{}^{m}\tilde{f}^{kn}{}_{i} + f_{kj}{}^{n}\tilde{f}^{mk}{}_{i}$$
(1.14)

C. Klimčik and P. Ševera, Phys. Lett. B. 351 (1995) 455-462.

(1.13)

Jacobi bracket

A Jacobi bracket is real bilinear map that is satisfying in the following conditions:

$$\{,\}: C^{\infty}(M,R) \times C^{\infty}(M,R) \mapsto C^{\infty}(M,R)$$

$$\{c_1f + c_2g, h\} = c_1\{f, g\} + c_2\{g, h\}$$
 (2.1)

$$\{f,g\} = -\{g,f\} \tag{2.2}$$

$$\{fg,h\} = f\{g,h\} + g\{h,f\} - fg\{1,h\}$$
 (2.3)

$$\{f,\{g,h\}\}+\{h,\{f,g\}\}+\{g,\{h,f\}\}=0 \tag{2.4}$$

A. Kirillov, Russ. Math. Surv. 31 (1976) 55-75.

Jacobi structure

$$\{f,g\} = \Lambda(df,dg) + fE(g) - gE(f) \tag{2.5}$$

Jacobi structure

$$\{f,g\} = \Lambda(df,dg) + fE(g) - gE(f) \tag{2.5}$$

$$\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$$

$$\downarrow \qquad \qquad [\Lambda, \Lambda] = 2E \wedge \Lambda , [E, \Lambda] = 0. \tag{2.6}$$

A Jacobi structure on M is a pair (Λ, E) , where Λ is a 2-vector and E is a vector field on M.

A. Lichnerowicz, J. Math. Pures Appl. 57 (1978) 453-488.

Jacobi-Lie bialgebra

A Jacobi-Lie bialgebra is a pair $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$, where $(\mathbf{g}, [,]^{\mathbf{g}})$ is a real Lie algebra of finite dimension and \mathbf{g}^* is dual space of \mathbf{g} with Lie bracket $[,]^{\mathbf{g}^*}$, such that we have

$$d_{*X_0}[X,Y]^{\mathbf{g}} = [X,d_{*X_0}Y]_{\phi_0}^{\mathbf{g}} - [Y,d_{*X_0}X]_{\phi_0}^{\mathbf{g}}, \tag{2.7}$$

$$\phi_0(X_0) = 0, (2.8)$$

$$i_{\phi_0}(d_*X_0) + [X_0, X] = 0.$$
 (2.9)

Jacobi-Lie bialgebra

A Jacobi-Lie bialgebra is a pair $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$, where $(\mathbf{g}, [,]^{\mathbf{g}})$ is a real Lie algebra of finite dimension and \mathbf{g}^* is dual space of \mathbf{g} with Lie bracket $[,]^{\mathbf{g}^*}$, such that we have

$$d_{*X_0}[X,Y]^{\mathbf{g}} = [X,d_{*X_0}Y]_{\phi_0}^{\mathbf{g}} - [Y,d_{*X_0}X]_{\phi_0}^{\mathbf{g}}, \tag{2.7}$$

$$\phi_0(X_0) = 0, (2.8)$$

$$i_{\phi_0}(d_*X_0) + [X_0, X] = 0.$$
 (2.9)

The $X_0 \in \mathbf{g}$ and $\phi_0 \in \mathbf{g}^*$ are 1-cocycles on \mathbf{g}^* and \mathbf{g} , respectively, i.e. we must have

$$d_*X_0 = 0, (2.10)$$

$$d\phi_0 = 0. (2.11)$$

We expand $X_0 \in \mathbf{g}$ and $\phi_0 \in \mathbf{g}^*$ in terms of the basis of the Lie algebras \mathbf{g} and \mathbf{g}^*

$$X_0 = \alpha^i X_i \qquad , \qquad \phi_0 = \beta_j \tilde{X}^j, \tag{2.12}$$

We expand $X_0 \in \mathbf{g}$ and $\phi_0 \in \mathbf{g}^*$ in terms of the basis of the Lie algebras \mathbf{g} and \mathbf{g}^*

$$X_0 = \alpha^i X_i \qquad , \qquad \phi_0 = \beta_j \tilde{X}^j, \tag{2.12}$$

Now, according to the generalized Chevalley-Eilenberg differential d_{*X_0} as follows

$$\forall Y \in \mathbf{g} \qquad d_{*X_0}Y = d_*Y + X_0 \wedge Y, \qquad (2.13)$$

and using

$$d_*X_i = -\frac{1}{2}\tilde{f}^{jk}{}_iX_j \wedge X_k, \qquad (2.14)$$

we have the new definition of Jacobi-Lie bialgebras for physical applications.

A Jacobi-Lie bialgebra is a pair $((\mathbf{g},\phi_0),(\mathbf{g}^*,X_0))$ where $(\mathbf{g},[,]^{\mathbf{g}})$ is a real Lie algebra of finite dimension with the basis $\{X_i\}$, and \mathbf{g}^* is dual space of \mathbf{g} with Lie bracket $[,]^{\mathbf{g}^*}$ and basis $\{\tilde{X}^i\}$, such that $X_0=\alpha^iX_i\in\mathbf{g}$ and $\phi_0=\beta_j\tilde{X}^j\in\mathbf{g}^*$ are 1-cocycles on \mathbf{g}^* and \mathbf{g} , respectively, i.e

$$\alpha^i \tilde{f}^{mn}{}_i = 0, \tag{2.15}$$

$$\beta_i f_{mn}{}^i = 0, \tag{2.16}$$

and we have

$$f_{ij}{}^{k}\tilde{f}^{mn}{}_{k} - f_{ik}{}^{m}\tilde{f}^{kn}{}_{j} - f_{ik}{}^{n}\tilde{f}^{mk}{}_{j} - f_{kj}{}^{m}\tilde{f}^{kn}{}_{i} - f_{kj}{}^{n}\tilde{f}^{mk}{}_{i}$$

$$+ \beta_{i}\tilde{f}^{mn}{}_{j} - \beta_{j}\tilde{f}^{mn}{}_{i} + \alpha^{m}f_{ij}{}^{n} - \alpha^{n}f_{ij}{}^{m} + (\alpha^{k}f_{ik}{}^{m} - \alpha^{m}\beta_{i})\delta_{j}{}^{n}$$

$$- (\alpha^{k}f_{jk}{}^{m} - \alpha^{m}\beta_{j})\delta_{i}{}^{n} - (\alpha^{k}f_{ik}{}^{n} - \alpha^{n}\beta_{i})\delta_{j}{}^{m} + (\alpha^{k}f_{jk}{}^{n} - \alpha^{n}\beta_{j})\delta_{i}{}^{m} = 0, \quad (2.17)$$

$$\alpha^i \beta_i = 0, \tag{2.18}$$

$$\alpha^n f_{ni}^m - \beta_n \tilde{f}^{nm}{}_i = 0. ag{2.19}$$

Jacobi-Lie symmetry

We consider two-dimensional sigma model on the target space M with background matrix $\mathcal{E}_{\mu\nu}=G_{\mu\nu}+B_{\mu\nu}$ in the presence of a σ -function on M ($\sigma\in C^{\infty}(M)$)

$$S = \frac{1}{2} \int_{\Sigma} d\xi^{+} \wedge d\xi^{-} \ \mathbf{e}^{\sigma(\mathbf{x})} \mathcal{E}_{\mu\nu}(\mathbf{x}) \ \partial_{+} \mathbf{x}^{\mu} \partial_{-} \mathbf{x}^{\nu}$$
 (3.1)

where ξ^{\pm} and $\{x^{\mu}\}$ are coordinates of the world sheet Σ and manifold M, respectively.

One can consider the free action of Lie group G on manifold M by the following transformation

$$x^{\mu} \to x^{\mu} + \epsilon^{i}(\xi^{+}, \xi^{-})v_{i}^{\mu}.$$
 (3.2)

One can consider the free action of Lie group G on manifold M by the following transformation

$$X^{\mu} \to X^{\mu} + \epsilon^{i}(\xi^{+}, \xi^{-})v_{i}^{\mu}.$$
 (3.2)

The variation of action (3.1) under transformation (3.2) is calculated to be

$$\delta S = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} e^{\sigma(x)} \epsilon^{i} (\mathcal{L}_{\nu_{i}} \mathcal{E}_{\mu\nu} + \nu_{i}^{\lambda} \partial_{\lambda} \sigma \mathcal{E}_{\mu\nu}) \partial_{+} x^{\mu} \partial_{-} x^{\nu}$$
$$- \frac{1}{2} \int d\epsilon^{i} \wedge \star J_{i}, \qquad (3.3)$$

where Hodge star of the Noether's currents have the following form

$$\star J_i = e^{\sigma(x)} (\mathcal{E}_{\mu\gamma} \ v_i^{\gamma} \ \partial_+ x^{\mu} d\xi^+ - \mathcal{E}_{\gamma\nu} \ v_i^{\gamma} \ \partial_- x^{\nu} d\xi^-). \tag{3.4}$$

If we consider $\phi_0 = d\sigma \in \Omega^1(M)$ as a 1-cocycle on ${\bf g}$ (Lie algebra of the Lie group ${\bf G}$) with values in ${\bf g}^*$, then we have ϕ_0 -Lie derivative in the sense of D. Iglesias and J. C. Marrero as

$$(\mathcal{L}_{\phi_0})_{\nu_i} \mathcal{E}_{\mu\nu} = \mathcal{L}_{\nu_i} \mathcal{E}_{\mu\nu} + \langle \phi_0, \nu_i \rangle \mathcal{E}_{\mu\nu}. \tag{3.5}$$

If we consider $\phi_0 = d\sigma \in \Omega^1(M)$ as a 1-cocycle on **g** (Lie algebra of the Lie group G) with values in g^* , then we have ϕ_0 -Lie derivative in the sense of D. Iglesias and J. C. Marrero as

$$(\mathcal{L}_{\phi_0})_{\nu_i} \mathcal{E}_{\mu\nu} = \mathcal{L}_{\nu_i} \mathcal{E}_{\mu\nu} + \langle \phi_0, \nu_i \rangle \mathcal{E}_{\mu\nu}. \tag{3.5}$$

Therefore, one can rewrite the variation of S using the above definition for ϕ_0 -Lie derivative as follows

$$\delta \mathcal{S} = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \ e^{\sigma(x)} \epsilon^{i} (\mathcal{L}_{\phi_{0}})_{v_{i}} \mathcal{E}_{\mu\nu} \ \partial_{+} x^{\mu} \partial_{-} x^{\nu} - \frac{1}{2} \int d\epsilon^{i} \wedge \star J_{i}. \tag{3.6}$$

Now, with $\delta S = 0$ we have

$$d \star J_i = e^{\sigma(x)} [(\mathcal{L}_{\phi_0})_{v_i} \mathcal{E}_{\mu\nu} \ \partial_+ x^{\mu} \partial_- x^{\nu}] d\xi^- \wedge d\xi^+. \tag{3.7}$$

Now, with $\delta S = 0$ we have

$$d \star J_i = e^{\sigma(x)} [(\mathcal{L}_{\phi_0})_{\nu_i} \mathcal{E}_{\mu\nu} \ \partial_+ x^{\mu} \partial_- x^{\nu}] d\xi^- \wedge d\xi^+. \tag{3.7}$$

We assume that the 1-forms $\star J_i$ are not closed and they obey the following generalized Maurer-Cartan equation

$$d \star J_i = -\frac{1}{2} e^{-\sigma} (\tilde{f}^{jk}{}_i - \alpha^j \delta^k{}_i + \alpha^k \delta^j{}_i) \star J_j \wedge \star J_k, \tag{3.8}$$

Now, with $\delta S = 0$ we have

$$d \star J_i = e^{\sigma(x)} [(\mathcal{L}_{\phi_0})_{\nu_i} \mathcal{E}_{\mu\nu} \ \partial_+ x^{\mu} \partial_- x^{\nu}] d\xi^- \wedge d\xi^+. \tag{3.7}$$

We assume that the 1-forms $\star J_i$ are not closed and they obey the following generalized Maurer-Cartan equation

$$d \star J_i = -\frac{1}{2} e^{-\sigma} (\tilde{f}^{jk}{}_i - \alpha^j \delta^k{}_i + \alpha^k \delta^j{}_i) \star J_j \wedge \star J_k, \tag{3.8}$$

Using (3.7) and (3.8) the condition of *Jacobi-Lie symmetry* can be formulated in the following form

$$(\mathcal{L}_{\phi_0})_{\mathbf{v}_i} \mathcal{E}_{\mu\nu} = (\tilde{\mathbf{f}}^{j\mathbf{k}}{}_i - \alpha^j \delta^{\mathbf{k}}{}_i + \alpha^{\mathbf{k}} \delta^j{}_i) \mathbf{v}_j{}^{\lambda} \mathbf{v}_{\mathbf{k}}{}^{\eta} \mathcal{E}_{\mu\eta} \mathcal{E}_{\lambda\nu}. \tag{3.9}$$

Note that, this symmetry is a generalization of the Poisson-Lie symmetry and subsequently isometry symmetry.

Now, we will consider the integrability condition for the ϕ_0 -Lie derivative

$$(\mathcal{L}_{\phi_0})_{[v_i,v_i]} \mathcal{E}_{\mu\nu} = (\mathcal{L}_{\phi_0})_{v_i} (\mathcal{L}_{\phi_0})_{v_i} \mathcal{E}_{\mu\nu} - (\mathcal{L}_{\phi_0})_{v_i} (\mathcal{L}_{\phi_0})_{v_i} \mathcal{E}_{\mu\nu}.$$
 (3.10)

Now, we will consider the integrability condition for the ϕ_0 -Lie derivative

$$(\mathcal{L}_{\phi_0})_{[v_i,v_j]} \mathcal{E}_{\mu\nu} = (\mathcal{L}_{\phi_0})_{v_i} (\mathcal{L}_{\phi_0})_{v_j} \mathcal{E}_{\mu\nu} - (\mathcal{L}_{\phi_0})_{v_j} (\mathcal{L}_{\phi_0})_{v_i} \mathcal{E}_{\mu\nu}. \quad (3.10)$$

According to the definition of the ϕ_0 -Lie derivative presented in (3.5), and 1-cocycle condition on ϕ_0 i.e.,

$$\beta_k f_{ij}^{\ k} = 0, \tag{3.11}$$

where $\beta_k \equiv v_k^{\ \lambda} \partial_{\lambda} \sigma$, the integrability condition for ϕ_0 -Lie derivative is equivalent to the integrability condition for usual Lie derivative

$$\mathcal{L}_{[\mathbf{v}_i,\mathbf{v}_i]}\mathcal{E}_{\mu\nu} = \mathcal{L}_{\mathbf{v}_i}\mathcal{L}_{\mathbf{v}_j}\mathcal{E}_{\mu\nu} - \mathcal{L}_{\mathbf{v}_j}\mathcal{L}_{\mathbf{v}_i}\mathcal{E}_{\mu\nu}. \tag{3.12}$$

Now, using (3.5) and (3.9), after some computations, the integrability condition (3.12) gives the first condition of Jacobi-Lie bialgebra $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$, i.e.,

$$f_{ij}{}^{k}\tilde{f}^{mn}{}_{k} - f_{ik}{}^{m}\tilde{f}^{kn}{}_{j} - f_{ik}{}^{n}\tilde{f}^{mk}{}_{j} - f_{kj}{}^{m}\tilde{f}^{kn}{}_{i} - f_{kj}{}^{n}\tilde{f}^{mk}{}_{i}$$

$$+\beta_{i}\tilde{f}^{mn}{}_{j} - \beta_{j}\tilde{f}^{mn}{}_{i} + \alpha^{m}f_{ij}{}^{n} - \alpha^{n}f_{ij}{}^{m} + (\alpha^{k}f_{ik}{}^{m} - \alpha^{m}\beta_{i})\delta_{j}{}^{n}$$

$$-(\alpha^{k}f_{jk}{}^{m} - \alpha^{m}\beta_{j})\delta_{i}{}^{n} - (\alpha^{k}f_{ik}{}^{n} - \alpha^{n}\beta_{i})\delta_{j}{}^{m} + (\alpha^{k}f_{jk}{}^{n} - \alpha^{n}\beta_{j})\delta_{i}{}^{m} = 0.$$
(3.13)

In other words, the integrability condition of the ϕ_0 -Lie derivative together with the Jacobi-Lie symmetry (3.9) result that the ϕ_0 is 1-cocycle and the first condition of the Jacobi-Lie bialgebra $((\mathbf{g},\phi_0),(\mathbf{g}^*,X_0))$ is satisfied.

In the same way, one can consider the dual sigma model on the manifold \tilde{M} in the presence of a $\tilde{\sigma}$ -function

$$\tilde{S} = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \ \mathbf{e}^{\tilde{\sigma}(\tilde{\mathbf{x}})} \tilde{\mathcal{E}}_{\mu\nu}(\tilde{\mathbf{x}}) \ \partial_{+} \tilde{\mathbf{x}}^{\mu} \partial_{-} \tilde{\mathbf{x}}^{\nu}. \tag{3.14}$$

In the same way, one can consider the dual sigma model on the manifold \tilde{M} in the presence of a $\tilde{\sigma}$ -function

$$\tilde{S} = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \ e^{\tilde{\sigma}(\tilde{X})} \tilde{\mathcal{E}}_{\mu\nu}(\tilde{X}) \ \partial_{+} \tilde{X}^{\mu} \partial_{-} \tilde{X}^{\nu}. \tag{3.14}$$

If we consider $X_0=d\tilde{\sigma}\in\Omega^1(\tilde{M})$ as a 1-cocycle on \mathbf{g}^* with values in \mathbf{g} , then, we have X_0 -Lie derivative as

$$(\mathcal{L}_{*X_0})_{\tilde{v}^i}\tilde{\mathcal{E}}_{\mu\nu} = \mathcal{L}_{*\tilde{v}^i}\tilde{\mathcal{E}}_{\mu\nu} + \langle X_0, \tilde{v}^i \rangle \tilde{\mathcal{E}}_{\mu\nu}. \tag{3.15}$$

In the same way, one can consider the dual sigma model on the manifold \tilde{M} in the presence of a $\tilde{\sigma}$ -function

$$\tilde{S} = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \ e^{\tilde{\sigma}(\tilde{X})} \tilde{\mathcal{E}}_{\mu\nu}(\tilde{X}) \ \partial_{+} \tilde{X}^{\mu} \partial_{-} \tilde{X}^{\nu}. \tag{3.14}$$

If we consider $X_0=d\tilde{\sigma}\in\Omega^1(\tilde{M})$ as a 1-cocycle on \mathbf{g}^* with values in \mathbf{g} , then, we have X_0 -Lie derivative as

$$(\mathcal{L}_{*X_0})_{\tilde{v}^i}\tilde{\mathcal{E}}_{\mu\nu} = \mathcal{L}_{*\tilde{v}^i}\tilde{\mathcal{E}}_{\mu\nu} + \langle X_0, \tilde{v}^i \rangle \tilde{\mathcal{E}}_{\mu\nu}. \tag{3.15}$$

Using the equations of motion related to \tilde{S} and the following generalized Maurer-cartan equation

$$d \star \tilde{J}^{i} = -\frac{1}{2} e^{-\tilde{\sigma}} (f_{jk}{}^{i} - \beta_{j} \delta_{k}{}^{i} + \beta_{k} \delta_{j}{}^{i}) \star \tilde{J}^{j} \wedge \star \tilde{J}^{k}, \qquad (3.16)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

The integrability condition for $(\mathcal{L}_{*X_0})_{\tilde{v}^i}$

$$(\mathcal{L}_{*}\chi_{0})_{[\tilde{v}^{m},\tilde{v}^{n}]}\tilde{\mathcal{E}}_{\mu\nu} = (\mathcal{L}_{*}\chi_{0})_{\tilde{v}^{m}}(\mathcal{L}_{*}\chi_{0})_{\tilde{v}^{n}}\tilde{\mathcal{E}}_{\mu\nu} - (\mathcal{L}_{*}\chi_{0})_{\tilde{v}^{n}}(\mathcal{L}_{*}\chi_{0})_{\tilde{v}^{m}}\tilde{\mathcal{E}}_{\mu\nu},$$
(3.18)

with the 1-cocycle condition for X_0 i.e.,

$$\alpha^k \tilde{f}^{mn}{}_k = 0, \tag{3.19}$$

is equivalent to the integrability condition for $(\mathcal{L}_*)_{\tilde{\nu}^i}$ as follows

$$\mathcal{L}_{*[\tilde{\mathbf{V}}^{m},\tilde{\mathbf{V}}^{n}]}\tilde{\mathcal{E}}_{\mu\nu} = \mathcal{L}_{*\tilde{\mathbf{V}}^{m}}\mathcal{L}_{*\tilde{\mathbf{V}}^{n}}\tilde{\mathcal{E}}_{\mu\nu} - \mathcal{L}_{*\tilde{\mathbf{V}}^{n}}\mathcal{L}_{*\tilde{\mathbf{V}}^{m}}\tilde{\mathcal{E}}_{\mu\nu}. \tag{3.20}$$

The integrability condition for $(\mathcal{L}_{*X_0})_{\tilde{v}^i}$

$$(\mathcal{L}_{*X_{0}})_{[\tilde{v}^{m},\tilde{v}^{n}]}\tilde{\mathcal{E}}_{\mu\nu} = (\mathcal{L}_{*X_{0}})_{\tilde{v}^{m}}(\mathcal{L}_{*X_{0}})_{\tilde{v}^{n}}\tilde{\mathcal{E}}_{\mu\nu} - (\mathcal{L}_{*X_{0}})_{\tilde{v}^{n}}(\mathcal{L}_{*X_{0}})_{\tilde{v}^{m}}\tilde{\mathcal{E}}_{\mu\nu},$$
(3.18)

with the 1-cocycle condition for X_0 i.e.,

$$\alpha^k \tilde{f}^{mn}{}_k = 0, \tag{3.19}$$

is equivalent to the integrability condition for $(\mathcal{L}_*)_{ ilde{
u}^i}$ as follows

$$\mathcal{L}_{*[\tilde{V}^{m},\tilde{V}^{n}]}\tilde{\mathcal{E}}_{\mu\nu} = \mathcal{L}_{*\tilde{V}^{m}}\mathcal{L}_{*\tilde{V}^{n}}\tilde{\mathcal{E}}_{\mu\nu} - \mathcal{L}_{*\tilde{V}^{n}}\mathcal{L}_{*\tilde{V}^{m}}\tilde{\mathcal{E}}_{\mu\nu}. \tag{3.20}$$

Using (3.15) and (3.17), relation (3.20) is converted to the first condition of the Jacobi-Lie bialgebras $((\mathbf{g}^*, X_0), (\mathbf{g}, \phi_0))$

$$f_{ij}{}^{k}\tilde{f}^{mn}{}_{k} - f_{ik}{}^{m}\tilde{f}^{kn}{}_{j} - f_{ik}{}^{n}\tilde{f}^{mk}{}_{j} - f_{kj}{}^{m}\tilde{f}^{kn}{}_{i} - f_{kj}{}^{n}\tilde{f}^{mk}{}_{i}$$

$$+\beta_{i}\tilde{f}^{mn}{}_{j} - \beta_{j}\tilde{f}^{mn}{}_{i} + \alpha^{m}f_{ij}{}^{n} - \alpha^{n}f_{ij}{}^{m} + (\beta_{k}\tilde{f}^{mk}{}_{i} - \alpha^{m}\beta_{i})\delta_{j}{}^{n}$$

$$-(\beta_{k}\tilde{f}^{mk}{}_{j} - \alpha^{m}\beta_{j})\delta_{i}{}^{n} - (\beta_{k}\tilde{f}^{nk}{}_{i} - \alpha^{n}\beta_{i})\delta_{j}{}^{m} + (\beta_{k}\tilde{f}^{nk}{}_{j} - \alpha^{n}\beta_{j})\delta_{i}{}^{m} = 0.$$
(3.21)

Finally, with subtraction of the relations (3.13) and (3.21), we arrive to the third condition of Jacobi-Lie bialgebras $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$ and $((\mathbf{g}^*, X_0), (\mathbf{g}, \phi_0))$, i.e.,

$$\alpha^k f_{ik}^{\ m} - \beta_k \tilde{f}^{mk}_{\ i} = 0. \tag{3.22}$$

Finally, with subtraction of the relations (3.13) and (3.21), we arrive to the third condition of Jacobi-Lie bialgebras $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$ and $((\mathbf{g}^*, X_0), (\mathbf{g}, \phi_0))$, i.e.,

$$\alpha^k f_{ik}^{\ m} - \beta_k \tilde{f}^{mk}_{\ i} = 0. \tag{3.22}$$

If α^i and β_i in relations (3.11), (3.13), (3.19), (3.21) and (3.22) are satisfying in the following relation

$$\alpha^i \beta_i = 0, \tag{3.23}$$

then, we have the second condition of the Jacobi-Lie bialgebras $((\mathbf{g}, \phi_0), (\mathbf{g}^*, X_0))$ and $((\mathbf{g}^*, X_0), (\mathbf{g}, \phi_0))$. The equation (3.23) can be obtained from the isometric symmetry in direction of 1-cocycles X_0 and ϕ_0 , i.e.,

$$(\mathcal{L})\chi_0 \mathcal{E}_{\mu\nu} = 0$$
 , $(\mathcal{L}_*)_{\phi_0} \tilde{\mathcal{E}}_{\mu\nu} = 0$. (3.24)

WZW model on the Heisenberg Lie group H₄

The WZW action on Lie group G is written as

$$S_{WZW}(g) = \frac{K}{4\pi} \int_{\Sigma} d\xi^{+} \wedge d\xi^{-} L_{+}^{i} \Omega_{ij} L_{-}^{j} + \frac{K}{24\pi} \int_{B} d^{3}\xi \, \varepsilon^{\gamma\alpha\beta} L_{\gamma}^{i} \Omega_{il} L_{\alpha}^{j} f_{jk}^{l} L_{\beta}^{k}, \tag{4.1}$$

where $\Omega_{ij} = \langle X_i, X_j \rangle$ is non-degenerate ad-invariant bilinear form in the following relation

$$< X_i, [X_j, X_k] > = < [X_i, X_j], X_k >,$$
 (4.2)

C. R. Nappi and E. Witten, Phys. Rev. Lett. 71 (1993) 3751.

The oscillator Lie algebra h_4 (related to Heisenberg Lie group H_4) with four generators $\{a, a^{\dagger}, N = aa^{\dagger}, M\}$

$$[N, a^{\dagger}] = a^{\dagger}, \quad [N, a] = -a, \quad [a, a^{\dagger}] = M,$$
 (4.3)

has ad-invariant symmetric bilinear form Ω_{ij} as

$$\Omega_{ij} = \begin{pmatrix} 0 & 0 & 0 & -\kappa \\ 0 & 0 & \kappa & 0 \\ 0 & \kappa & 0 & 0 \\ -\kappa & 0 & 0 & \kappa' \end{pmatrix}, \qquad \kappa \in \Re - \{0\}, \quad \kappa' \in \Re.$$
 (4.4)

Using the parametrization $g=e^{\nu X_4}~e^{u X_3}~e^{x X_1}~e^{y X_2}~$ and $\kappa'=0$ H_4 -WZW action is written as

$$S_{wzw} = \frac{\kappa K}{4\pi} \int d\xi^{+} \wedge d\xi^{-} \Big\{ -\partial_{+}x\partial_{-}v - \partial_{+}v\partial_{-}x + e^{x} \Big(\partial_{+}y\partial_{-}u + \partial_{+}u\partial_{-}y + y\partial_{+}u\partial_{-}x - y\partial_{+}x\partial_{-}u \Big) \Big\}.$$
(4.5)

Jacobi-Lie symmetry in H₄-WZW model

From the Jacobi-Lie symmetry on (4.5) the non-zero commutation relations of the dual pair to the Heisenberg Lie algebra h_4 and 1-cocycles X_0 and ϕ_0 are found to be

i)
$$((h_4, 0), (A_2 \oplus 2A_1, 0))$$

$$[\tilde{X}^2, \tilde{X}^4] = \tilde{X}^2 \tag{4.6}$$

Jacobi-Lie symmetry in H₄-WZW model

From the Jacobi-Lie symmetry on (4.5) the non-zero commutation relations of the dual pair to the Heisenberg Lie algebra h_4 and 1-cocycles X_0 and ϕ_0 are found to be

i)
$$((\mathbf{h_4}, \mathbf{0}), (\mathcal{A}_2 \oplus \mathbf{2}\mathcal{A}_1, \mathbf{0}))$$

$$[\tilde{X}^2, \tilde{X}^4] = \tilde{X}^2 \tag{4.6}$$

ii)
$$((h_4, 0), (\mathcal{V} \oplus \Re.i, X_4))$$

$$[\tilde{X}^1, \tilde{X}^4] = -\tilde{X}^1 \ [\tilde{X}^3, \tilde{X}^4] = -\tilde{X}^3$$
 (4.7)

iii)
$$((h_4, 0), (A_{4,5}^{a,a}.i, \frac{a}{a-1}X_4))$$

$$[\tilde{X}^1, \tilde{X}^4] = -\frac{a}{a-1}\tilde{X}^1 \ [\tilde{X}^2, \tilde{X}^4] = -\frac{1}{a-1}\tilde{X}^2 \ [\tilde{X}^3, \tilde{X}^4] = -\frac{a}{a-1}\tilde{X}^3$$
 (4.8)

iv)
$$((h_4, 0), (A_{4,5}^{a,1}.i, \frac{1}{1-a}X_4))$$

$$[\tilde{X}^1, \tilde{X}^4] = \frac{1}{a-1}\tilde{X}^1 \ [\tilde{X}^2, \tilde{X}^4] = \frac{a}{a-1}\tilde{X}^2 \ [\tilde{X}^3, \tilde{X}^4] = \frac{1}{a-1}\tilde{X}^3$$
(4.9)

$$((\mathbf{h_4}, \mathbf{0}), (\mathcal{A}_{4,5}^{-1,1}.\mathbf{i}, \frac{1}{2}\mathbf{X_4}))$$

$$S = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \Big\{ -\partial_{+}x\partial_{-}v - \partial_{+}v\partial_{-}x + e^{x} \Big(\partial_{+}y\partial_{-}u + \partial_{+}u\partial_{-}y + y\partial_{+}u\partial_{-}x - y\partial_{+}x\partial_{-}u \Big) \Big\}.$$
 (4.10)

1

$$\tilde{S} = \frac{1}{2} \int d\xi^{+} \wedge d\xi^{-} \left\{ -e^{\frac{\tilde{v}}{2}} (\partial_{+} \tilde{x} \partial_{-} \tilde{v} + \partial_{+} \tilde{v} \partial_{-} \tilde{x}) \right. \\
+ \frac{1}{3 - 2e^{\frac{-\tilde{v}}{2}}} (\partial_{+} \tilde{y} \partial_{-} \tilde{u} + \tilde{u} \partial_{+} \tilde{y} \partial_{-} \tilde{v} + \tilde{y} \partial_{+} \tilde{v} \partial_{-} \tilde{u}) \\
+ \frac{1}{1 - 2e^{\frac{-\tilde{v}}{2}}} (-\partial_{+} \tilde{u} \partial_{-} \tilde{y} + \tilde{y} \partial_{+} \tilde{u} \partial_{-} \tilde{v} + \tilde{u} \partial_{+} \tilde{v} \partial_{-} \tilde{y}) \\
- \frac{2\tilde{y} \tilde{u}}{(1 - 2e^{\frac{-\tilde{v}}{2}})(3 - 2e^{\frac{-\tilde{v}}{2}})} \partial_{+} \tilde{v} \partial_{-} \tilde{v} \right\}.$$
(4.11)

A. Rezaei-Aghdam and M.Sephid, arXiv:1804.07948 [hep-th]

Thank you

Let G be a connected Lie group with Lie algebra \mathbf{g} . Let $\Phi: G \times V \to V$ be a representation of G on a vector space V and $T_{\mathbf{e}}\Phi: \mathbf{g} \times V \to V$ be the induced representation of \mathbf{g} on V.

If the map $\phi: G \to V$ is a 1-cocycle on G relative to Φ , i.e., if for $h,g \in G$

$$\phi(hg) = \phi(h) + \Phi(h, \phi(g)), \tag{1}$$

then $\epsilon =: (\delta \phi)(\mathbf{e}) : \mathbf{g} \to V$ is a 1-cocycle on \mathbf{g} relative to $T_{\mathbf{e}} \Phi$, i.e., for $X, Y \in \mathbf{g}$

$$T_{\mathbf{e}}\Phi(X,\epsilon(Y)) - T_{\mathbf{e}}\Phi(Y,\epsilon(X)) = \epsilon([X,Y]^{\mathbf{g}}).$$
 (2)