MHD Simulations of jet-disk structure at different astrophysical objects

Somayeh Sheikhnezami

Institute for Research in Fundamental Sciences

Radio Galaxy 3C31 Intensity Gradient

VLA 20cm image (c) NRAO/AUI 2000

Astrophysical jets

- Collimated beam of matter with higher velocity than outer medium
- Transport mass, momentum, energy and magnetic
- Sources: young stars, active galactic nuclei, micro quasars, gamma ray bursts, planetary nebulae, pulsars

arcsec-scale radio jets from the superluminal Galactic jet source GRS~1915+105. (VLA) Mirabel & Rodriguez (1994)

extragalactic jet (AGN jet)

M87 central region (Biretta et al, 1999)

HH 212 , H2, 2.12 μm (McCaughrean et al. '98)

Studying jets / outflows ??

Jet propagation and interaction with ambient

- Interesting astrophysical phenomena (Physic lab)
- Important for angular momentum removal
- Impact on ISM/IGM : Driving Turbulence, energy (work in progress)
- Constraining on star formation
- Shock chemistry -> ambient and jet source compositions

Studying jets / outflows ??

Internal structure

- Internal structure of jet/internal heating
- Matter contents !?
- Instability inside the jet, (MRI?! Work In progress)

Jet formation

- What are deriving mechanisms of jets?
- Which system can have jet?
- Launching area, physical conditions
- Disk-jet connection? Source properties?

Jet properties in general:

Accretion disk and jet in a proto-star HH30 (HST)

5 GHz VLBA image of the core in M87 with fractional polarization electric vectors superposed. (P. Kharb et al. 2012 ApJ 754)

Jet Launching

Jet formation : Launching and acceleration

Disk wind Blandford & Payne 1982

Sheikhnezami, S., et.al 2012, ApJ, 757, 65 Fendt & Sheikhnezami 2013 APJ Stepanovs, D., Fendt, C., Sheikhnezami, S. 2014, APJ Sheikhnezami & Fendt, 2015, APJ Sheikhnezami & Fendt, 2018, APJ

Numerical approach

- Non-observable Physical processes.
- Limited information by dynamical parameters
- Nonlinear system of hyperbolic conservation laws

Dark Matter

Gas Temperature

Numerical approach

- PLUTO code, MHD module
- Parallel processing in Large Cluster, THEO, HYDRA, DRACO, ISAAC

- Post Processing
- Analyzing the outputs
- Visualization IDL, PYTHON, VISIT....

Initial Conditions

Hydrostatic corona and thin sub Keplerian disk

Axisymmetric
$$\mathcal{E} = \frac{H}{r} = 0.1$$

Density contrast $\sim 10^{-4}$

Field distribution (Zanni et al.2007)

$$\vec{B} = \vec{B}_{p} + B_{\varphi} \ \hat{e}_{\varphi}$$
$$\vec{B}_{p} = \frac{1}{r} \vec{\nabla} \psi \times \hat{e}_{\varphi} \ , B_{\varphi} = \frac{\psi(r, z)}{r}$$
$$\psi = \frac{4}{3} B_{z0} r_{0}^{2} \left(\frac{r}{r_{0}}\right)^{3/4} \frac{m^{5/4}}{\left[m^{2} + \frac{z^{2}}{r^{2}}\right]^{5/8}}$$

Axisymmetric jet launching:

- Reference run in 2D
- Hydrostatic corona in equilibrium with thin sub Keplerian disk
- Density distribution in color
- Density contrast $\sim 10^{-4}$
- Magnetic field lines in orange
- Including disk and jet evolution

Bipolar Jets Launched from Magnetically Diffusive Accretion Disks

Sheikhnezami, S., Fendt, C., Porth, O., Vaidya, B., & Ghanbari, J. 2012, **ApJ**, 757, 65

Our previous works

• Axisymmetric launching:

Bipolar Jets Launched from Magnetically Diffusive Accretion Disks.

I. Ejection Efficiency versus Field Strength and Diffusivity, Sheikhnezami, S., et.al 2012, ApJ, 757, 65

Accretion –ejection connection Mass stream line

Bipolar jets launched from asymmetric disks

- Co-existence of jet and counter jet
- Typically asymmetric in shape with very few exceptions, HH212

HH 212 H2, 2.12 µm (McCaughrean etal 1

NK1

SK1

Our previous works

• Bipolar jet asymmetry :

Bipolar Jets Launched from Accretion Disks. II. The Formation of Asymmetric Jets and Counter Jets,

Fendt, C. & Sheikhnezami, S. 2013, ApJ, 774, 12

20 - 30% differenes in mass fluxes for the jet and counter jet Jet mass fluxes close to disk 0.020Jppen/lower ejection rate 0.015 0.010 0.005 0.000 400 1200 200600 800 1000 0 Time t Fendt, C. & Sheikhnezami .S, 2013, ApJ, 774, 12

IPM 2018

Jet precession and wiggling in observation

HH-47 (HST)

VLBA observations of the X-ray binary SS 433 CREDIT: A. Mioduszewski et al., NRAO/AUI/NSF HH-47 1,500 light-years away, at the edge of the Gum Nebula (HST)

3D MHD simulations of Jet formation / why!!?

- Jets are not smooth but locally structured
- Typical asymmetry seen between jet and counter jet
- Asymmetry seen in disk/ jet system (C shape, S shape, warp)
- 3D evolution of launching area

Sheikhnezami & Fendt ApJ 2015

3D MHD simulation of single star/disk /jet

Recent study:

Sheikhnezami & Fendt APJ 2018

Inclined orbital planes

Mass density Moderate case δ

 $\delta = 10$

Sheikhnezami & Fendt APJ 2018

Indication of Jet precession

Take home message

Simulation is a useful tool to expose nice picture predictions of very complex models

t=2000

beikhnezami et.al 2018 **Fendt & Seikhnezami 2013**

Thanks For Your Attention

Stellar jets

Young stellar objects

- **Class 0** :just after collapse has started
- Class I: Completely embedded objects have SEDs with positive spectral index in the far-IR
- Class II (T Tauri) : YSOs with SEDs from a reddened stellar component and an IR excess
- **Class III** : The IR excess has disappeared; circumstellar gas still observable in atomic lines

Extragalactic jet

DRAGNs : large-scale double radio sources produced by outflows (jets) in active galactic nuclei (AGN). Overall radio size: 4.5 Mpc

Copyright (c) NRAO/AUI 1999

Centaurus A brightest and nearest of giant radio galaxies

- size ~ 10 degrees!!
- distance 3.5 Mpc
- (optical and radio image
- (VLA 6 cm), STScI/NASA)

IPM 2018

Ejection rate evolution

Current and future projects

- Launching area :
- Including the physic of the disk in the model like thermal cooling
- Jet feedback : Studying the Jet interaction with the ambient
- Including the energy equation cooling in the jet model
- Turbulence inside the jet/ heating
- Studying the protoplanetary disk
- Planet formation/ gap formation

Poloidal diffusivity governs the mass loading into the outflow.

higher ejection rates result in a lower asymptotic outflow velocities

Stellar jets

- Discovery : Herbig/ Haro objects (1940's)
- Scale: up to pc-scale jets
- Velocity < 500 km/s (proper motion, Doppler shift)
- source mass ~ M_{sun} ,
- L ~ 10³⁵ erg/s
- one-sided/ two-sided
- onion-like layering of velocities, the largest inside and the smallest on the larger scales

Stellar jet and outflow tracers:

- Millimeter molecular emission (Co, Sio): 1-10 km/s
- Near-IR H2 (2.12 μm) and [Fe II] (1.644 μm) :10's km/s
- Forbidden Emission Line , [SII], [NI], [NII], [OII], [OIII], [FeI] :100 Km/s
- X-ray : > 300 Km/s

Extragalactic jet

- AGN: Scale: 10⁶ pc,
- AGN jets are relativistic: velocities ~ c,
- source mass $\sim 10^{8-10} M_{sun}$,
- L ~ 10⁴³ -10⁴⁸ erg/s
- AGN jet radiation -> Synchrotron / inverse Compton
- exact velocity unknown, no direct detection
- mass fluxes unknown, matter content (leptonic/hadronic) not yet clear

Classic double-lobed radio source. The overall linear size is of the radio structure is **212 kpc**.

Disk evolution

Radial velocity map for reference run

Arrows : V_R direction

Accretion rate evolution

Ejection to accretion rates ratio

Jet radius and launching area :

Radius corresponding to the bulk of the mass flux at Zm

$$r_{jet} = \frac{\left[\int_{0}^{rm} r\rho v_{z} dr\right]_{zm}}{\left[\int_{0}^{rm} \rho v_{z} dr\right]_{zm}}$$

For reference run:

R_jet = 44r0 at z= 180 r0

Launching area: 4 r0

- YSO: Launching area 0.4AU
- AGN: Launching area 40 Rs

Ellerbroek et.al 2014 : Herbig Ae star HD 163296 -> Launching region <0.5 AU

Bipolar jets/ main goals :

- The evolution of the bipolar jets into both hemispheres
- Check for signatures of jet / counter jet asymmetry
- Asymmetry triggered intrinsically in the disk, or externally

Numerical approach - Simulations

- Symmetric accretion disk -> symmetric bipolar jet
- Asymmetric disk -> disk warping
- Symmetric disk with localized energy injection -> local disk asymmetry

Bipolar jet – Symmetric run

- Perfectly symmetric run
- Mass density in colot
- Magnetic field lines

Bipolar Jets Launched from Accretion Disks. II. The Formation of Asymmetric Jets and

Counter Jets, Fendt, C. & Sheikhnezami, S. 2013, **ApJ**, 774, 12

20 - 30% differenes in mass fluxes for the jet and counter jet

Equations of the system:

The conservative, time-dependent, resistive, inviscous MHD equations:

$$\begin{split} &\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \\ &\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot \left[\mathbf{v}\rho \mathbf{v} - \frac{\mathbf{B}\mathbf{B}}{4\pi} \right] + \nabla \left[P + \frac{B^2}{8\pi} \right] + \rho \nabla \Phi = 0, \\ &\frac{\partial e}{\partial t} + \nabla \cdot \left[\left(e + P + \frac{B^2}{8\pi} \right) \mathbf{v} - (\mathbf{v} \cdot \mathbf{B}) \frac{\mathbf{B}}{4\pi} + (\bar{\eta} : \mathbf{j}) \times \frac{\mathbf{B}}{4\pi} \right] \\ &= -\Lambda_{\text{cool}}. \end{split}$$

Jet properties in general:

- Highly collimated and originate in compact objects
- Show a chain of knots
- Often terminate in emission lobes
- •Jet sources host accretion disks
- Jet speed > escape speed: -> jets launched close to central object
- Indication of the magnetic field:
- B jet~ µG (YSO) ... mG (AGN),
- B source~ kG (YSO) ... GG (μ Q)

