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Uncorrelated Electron Systems Uncorrelated Electron Systems 

Each electron moves in a periodic potential

Electron states form bands with dispersion ɛn(k)

The ground state is a filled Fermi surface: (e.g. copper)

Interactions produce scattering of electrons, which are 

otherwise well-defined (quasi-)particles

If the Fermi level crosses a band, the system is a conductor; 

otherwise it is an insulator (or a semiconductor).



The “theory of everything” in solids :

. . . is reduced to something manageable :

Uncorrelated Electron Systems Uncorrelated Electron Systems 



Uncorrelated Electron Systems Uncorrelated Electron Systems 

1 Dimension



Mattheiss, Phys. Rev. Lett. 58, 1028 (1987)

Band structure of La2CuO4

According to this, the material 

is a metal.

In reality, it is an 

antiferromagnetic insulator!



They are strong deviations from the independent-electron picture

Many families of materials  are not adequately described by band 

theory, or by Fermi liquid theory :

High-Tc cuprate superconductors

Organic superconductors (quasi-1D or quasi-2D)

Most magnetic systems, 

etc.

Correlations make life difficult (and interesting...)

Electron Correlations



The Hubbard ModelThe Hubbard ModelThe Hubbard Model



Used independently by Gutzwiller, Hubbard, Kanamori

Basic assumption : 

Keep only local Coulomb repulsion (in the Wannier sense)

One-band Hamiltonian:
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The Hubbard Model
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: Destroys electron in state α (=iσ) of wavefunctions φα(r) 

: Creates electron in state α

: number of electrons (0 or 1) in state α
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Hubbard  Model
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Real Space : k Space : 



Hubbard model : noninteracting limitHubbard model : noninteracting limitHubbard model : noninteracting limit

U = 0 : reduces to band theory
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Hubbard model : large-U limit

Electrons localized so as to minimize the double-occupancy

Ground state may be highly degenerate as U → ∞

half-filled case → Heisenberg model :
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Tendency towards antiferromagnetism!

Hence the HM describes undoped cuprates well.



Hubbard model : large-U limit (cont.)

Away from half-filling, the HM goes to the t-J model when U >> t.

(Anderson 1987)
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The t-J model makes sense only when J << t.

Single-occupancy constraint : no site is allowed to have 

two electrons



The Hubbard Model on finite cluster

Simple Hubbard model (conserves N↑ and N↓ separately):

Typical cluster (L=10 sites):



The Hubbard Model on finite cluster

A band structure calculation involves the self-consistent of the 

Schrödinger equation for a single electron :

an eigenproblem of dimension N ~103

But the HM is a full many-body problem, not an effective one-

body problem.

Finding just the ground state of the Hubbard model with 

N↑ + N↓ electrons on L sites requires solving an eigensystem

of dimension



Half-filled Hubbard model  L = 6

The Hubbard Model on finite cluster

Sparse matrix structure 

400  × 400



Half-filled Hubbard model  L = 16

The Hubbard Model on finite cluster

For N↑ = N↓ = 8 , this is 165 636 900.



Therefore, Hubbard model is difficult to solve

The more difficult the model, the more there are 

methods to solve it!

Solving the Hubbard Model



Perturbation theory in U/t (a bad idea) or in t/U (more difficult)

Self-consistent schemes based on perturbation theory (better)

Two-particle self-consistent method (TPSC) [Tremblay et al.]

Variational methods for the ground state (e.g. Gutzwiller)

Various reductions to a 1-body Hamiltonian:

Mean-field theory for the ordered state (Hartree-Fock)

Slave-boson methods

Monte Carlo simulations

Exact diagonalizations on small periodic clusters

Dynamical Mean-Field theory (DMFT)

Quantum Cluster Approaches : CPT, DCA, CDMFT, VCA

Methods of Solving the Model



The Lanczos AlgorithmThe Lanczos AlgorithmThe Lanczos Algorithm



Steps:

1. Building a basis

2. Constructing the Hamiltonian matrix

3. Finding the ground state (e.g. by the 

Lanczos method)

4. Calculating the one-body Green function

Solving the Hubbard Model



Basis of occupation number eigenstates:

Building a basis

Binary representation of basis states:



The Lanczos Algorithm

Finds the lowest eigenpair by an iterative application of H

Start with random vector

An iterative procedure builds the Krylov subspace:

0ϕ



Lanczos three-way recursion:

with the coefficients:

The Lanczos Algorithm



The projected Hamiltonian has the tri-diagonal form

The basis contains normalized states

M

The Lanczos Algorithm



At each step n, find the lowest eigenvalue of that matrix

Stop when the lowest eigenvalue E0 has converged

(∆E0 = E0 < 10-12)

Then re-run to find eigenvector                         

as the         ’s are not kept in memory.

n
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Typical required number of iterations: from 20 to 200

Extreme eigenvalues converge first

Rate of convergence increases with separation between ground state and

first excited state

Cannot resolve degenerate ground states : only one state per ground state

manifold is picked up

The Lanczos Algorithm



Lanczos Method and Green Function



Lanczos Method and Green Function

Then Gµµ,e is given by a Jacobi continued fraction

The coefficients an and bn are stored in memory

What about non diagonal elements Gµν,e?

E. Dagotto, Rev. Mod. Phys. 66:763 (1994)



Lanczos Method and Green Function

Trick: Define the combination

E. Dagotto, Rev. Mod. Phys. 66:763 (1994)

G+
µν,e(ω) can be calculated like Gµν,e(ω)

We have 

Then

Likewise for Gµν,h(ω)



The Band Lanczos Algorithm

Define

Extended Krylov space :

States are built iteratively and orthogonalized

Possible linearly dependent states are eliminated (‘deflation’) 

A band representation of the Hamiltonian (2L + 1 diagonals) is formed in 

the Krylov subspace. 

It is diagonalized and the eigenpairs are used to build an approximate  

Lehmann representation



The usual Lanczos method for the Green function needs 3 vectors in memory, 

and L(L + 1) Lanczos procedures. 

The Band Lanczos method requires 3L + 1 vectors in memory, but requires 

only 2 iterative procedures ((e) et (h)). 

If Memory allows it, the band Lanczos is much faster

The Band Lanczos Algorithm



To be continued ...To be continued ...To be continued ...


