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Uncorrelated Electron Systems

Each electron moves in a periodic potential

Electron states form bands with dispersion ¢, (k)

The ground state 1s a filled Fermi surface: (e.g. copper)
Interactions produce scattering of electrons, which are
otherwise well-defined (quasi-)particles

If the Fermi level crosses a band, the system is a conductor;

otherwise it 1s an 1nsulator (or a semiconductor).



Uncorrelated Electron Systems

The “theory of everything” in solids :
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Uncorrelated Electron Systems

1 Dimension Yren(K) = Z e~k My, (r — n)
e(k)
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Band structure of La,CuQO,

» According to this, the material

EMERGY (V)

1s a metal.

e In reality, it 1s an

antiferromagnetic insulator!

Mattheiss, Phys. Rev. Lett. 58, 1028 (1987)



Electron Correlations

B They are strong deviations from the independent-electron picture
B Many families of materials are not adequately described by band
theory, or by Fermi liquid theory :
B High-T, cuprate superconductors
B Organic superconductors (quasi-1D or quasi-2D)
B Most magnetic systems,
E etc.

B Correlations make life difficult (and interesting...)






The Hubbard Model

B Used independently by Gutzwiller, Hubbard, Kanamori
B Basic assumption :
Keep only local Coulomb repulsion (in the Wannier sense)

B One-band Hamiltonian:

H = th] C,,C JG+UZnTn +,uZn

i,j,O
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Hubbard Model

C, :Destroys electron in state a (=io) of wavetunctions @ ,(r)

C, : Creates electron in state «

_ T _
Ny =CuCs  :number of electrons (0 or 1) in state o

{CZz’Cﬂ}:gczﬁ 9 {Ccpcﬂ}:{cgacg}zo

H = th] C,,C JG+UZnTn +,uZn

i,j,O

Real Space : k Space :
a— (r,o0) a— (k,b,0)



Hubbard model : noninteracting limit

U =0 : reduces to band theory

1 —i(n;,—n;)k
Eky=—>» t,e
N

Ex : square lattice with NN hopping 7, NNN hopping ¢’ and 3" neighbor ¢”

E(k) =—-2t(cosk, +cosk)
— 2t'(cos(kx +k,)+cos(k, —k, ))
— 2t”(cos 2k, +cos2k, )
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Hubbard model : large-U limit

Electrons localized so as to minimize the double-occupancy
Ground state may be highly degenerate as U —

half-filled case — Heisenberg model :

41 1
H—JY S-S, , |J=— ., S==cloc,
i, U 2

Tendency towards antiferromagnetism!

Hence the HM describes undoped cuprates well.



Hubbard model : large-U limit (cont.)

Away from half-filling, the HM goes to the #-J/ model when U >> t.
(Anderson 1987)

4t;
H = Ztu CioC JG+ZJZJ i ? Jij: .
ij,0 U
B The #-J model makes sense only when J << t.

B Single-occupancy constraint : no site is allowed to have

two electrons



The Hubbard Model on finite cluster

Simple Hubbard model (conserves N, and N, separately):

Typical cluster (L=10 sites):



The Hubbard Model on finite cluster

A band structure calculation involves the self-consistent of the
Schrodinger equation for a single electron :

an eigenproblem of dimension N ~103

But the HM i1s a full many-body problem, not an effective one-
body problem.

Finding just the ground state of the Hubbard model with

N, + N, electrons on L sites requires solving an eigensystem

of dimension
L! L!

NAL — N ) NL — Ny




The Hubbard Model on finite cluster

Half-filled Hubbard model L =6

Sparse matrix structure
400 x 400




The Hubbard Model on finite cluster

Half-filled Hubbard model L =16
For N, = N, = 8 , this 1s 165 636 900.

L dimension
2 4
4 36
6 400
8 4 900
10 63 504
12 853776
14 11778 624
16 | 165 636 900




Solving the Hubbard Model

# Therefore, Hubbard model 1s difficult to solve

# The more difficult the model, the more there are

methods to solve it!



Methods of Solving the Model

Perturbation theory in U/t (a bad idea) or in #/U (more difficult)
Self-consistent schemes based on perturbation theory (better)
Two-particle self-consistent method (TPSC) [Tremblay et al.]
Variational methods for the ground state (e.g. Gutzwiller)

Various reductions to a 1-body Hamiltonian:

Mean-field theory for the ordered state (Hartree-Fock)
Slave-boson methods
Monte Carlo simulations

Exact diagonalizations on small periodic clusters

Dynamical Mean-Field theory (DMFT)

Quantum Cluster Approaches : CPT, DCA, CDMFT, VCA






Solving the Hubbard Model

Steps:
1. Building a basis
2. Constructing the Hamiltonian matrix
3. Finding the ground state (e.g. by the
[Lanczos method)

4. Calculating the one-body Green function



Building a basis

Basis of occupation number eigenstates:

(] )™ (el )™ (e ) (e ) 0)

Binary representation of basis states:

b) where b= by + 2%b,



The Lanczos Algorithm

B Finds the lowest eigenpair by an iterative application of H
B Start with random vector \(00>

E An iterative procedure builds the Krylov subspace:

A = span {|¢o), H|po), H|po), -+, H"|¢po)}



The Lanczos Algorithm

Lanczos three-way recursion:

‘¢n+1> — H‘¢n> — an‘¢n> — b%‘¢n—1>

with the coefficients:
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The Lanczos Algorithm

The projected Hamiltonian has the tri-diagonal form

(a0 Dy 0 0 --- 0
bl al bg 0 0
H=10 02 a2 b3 --- 0
\0 0 0 0 - aum)

The basis contains normalized states

n) = |¢n)/V/ (Pnlén)




The Lanczos Algorithm

At each step n, find the lowest eigenvalue of that matrix
Stop when the lowest eigenvalue E, has converged
(AEy,=E,< 101?)

Then re-run to find eigenvector | W> = Z v, n>

as the ‘(0,1 >’s are not kept in memory.

Typical required number of iterations: from 20 to 200

Extreme eigenvalues converge first

Rate of convergence increases with separation between ground state and
first excited state

Cannot resolve degenerate ground states : only one state per ground state

manifold 1s picked up



Lanczos Method and Green Function

GH*V(('U) — Guv,e(w)_FGuﬂ,h(w)

1

Crrel@) = (Qleu—g—pcbl®)
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Crvnw) = (9] )

Vw—I—H—EO:



Lanczos Method and Green Function

Then G, 1s given by a Jacobi continued fraction
(Dl Pu)
Gpe(w) = 2
W — ag — !
b3
W —al] —
w —_ a2 — e e e

B The coefficients a, and b, are stored in memory

B What about non diagonal elements G, ,?

E. Dagotto, Rev. Mod. Phys. 66:763 (1994)



Lanczos Method and Green Function

Trick: Define the combination

R
w—H + Ey

GZD@( ) <Q‘(CM+CV) CM+CV)T|Q>

G* (@) can be calculated like G, (@)

We have
G,UJ/,EZ (w) — GVﬂae (w)

Then

Gpe(w) = % [GZI/ (W) = Gupe(w) — ije(w)]

Likewise for G, (@)
E. Dagotto, Rev. Mod. Phys. 66:763 (1994)



The Band Lanczos Algorithm

Define

b)) = cL\Q),/JJ: 1,....L
Extended Krylov space :

{1010, 161),H|o1), ... HIGL), ...
(H)M|én),..., (H)M|g1) |

e States are built iteratively and orthogonalized

» Possible linearly dependent states are eliminated (‘deflation’)

» A band representation of the Hamiltonian (2L + 1 diagonals) 1s formed in
the Krylov subspace.

e It is diagonalized and the eigenpairs are used to build an approximate

Lehmann representation



The Band Lanczos Algorithm

B The usual Lanczos method for the Green function needs 3 vectors in memory,
and L(L + 1) Lanczos procedures.

B The Band Lanczos method requires 3L + 1 vectors in memory, but requires
only 2 iterative procedures ((e) et (h)).

B If Memory allows it, the band Lanczos is much faster






