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approximate calculations
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experimental input for guidance

- atomic conformations of small   
  molecules,
- simple chemical reaction rates, 
- structural phase transitions, 
  ferromagnetism, 
- superconducting transition 

temperatures
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higher organizing principles in nature 

The emergent physical phenomena regulated by 
higher organizing principles have a property,  
namely their insensitivity to microscopics. 

The elementary excitations 

One main purpose of  CMP is to study 

phonon 

cooper pairs 

composite fermions 

magnon 

exciton 

polaron 
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Introduction to Majorana Fermions

A Majorana fermion is its own antiparticle �†
= �

⇧ History: Neutral spin-1/2 particles as real solutions of Dirac eq.

⇧ Particle physics: Neutrinos might be Majorana fermions!

Neutrinoless double beta decay (Not yet observed)

Emergence in condensed matter

⇧ Prehistory: d = (�1 + i�2)/
p

2

⇧ Isolated Majoranas are believed to exist in:
Fractional quantum Hall state at ⌫ = 5/2

Boundaries of topological superconductors

(vortex cores and edges)
Ettore Majorana
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  Majorana’s as protected qubits

DecoherenceA big challenge for Quantum Computer: 
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Phase error: 
Isolated Majorana is immune against any error 

A big challenge for Quantum Computer: 
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Spinless p-wave superconductor (SPSC)

  Toy model: Kitaev proposal for Majorana fermions
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Spinless p-wave superconductor (SPSC)

  Toy model: Kitaev proposal for Majorana fermions
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Spinless p-wave superconductor (SPSC)

  Toy model: Kitaev proposal for Majorana fermions
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  Toy model: Kitaev proposal for Majorana fermions

(a) The Majorana operators from the same site paired, to form     
     a ground state with occupation number 0;

(b) The Majorana operators at the ends remain unpaired,
      leading to a two-fold degenerate ground state,  

�ic1c2N | 0i = | 0i � ic1c2N | 1i = �| 1i
d†d| 0i = 0 , d†d| 1i = | 1ic1 = d+ d† , c2N = (d� d†)/i )



  Toy model: Kitaev proposal for Majorana fermions

Jordan-Wigner transformation

Majorana operators

fermions. It is perhaps not surprising that a fermionic description exists for spin 1/2
systems – we simplify identify the up and down state of each spin with the presence
or absence of a fermion. The only difficulty arises in arranging the transformation
so that the appropriate (anti)-commutation relations hold in each description. The
Jordan-Wigner transformation does this by introducing string-like fermion operators
that work out quite nicely in 1-D nearest neighbor models.

To reduce HS to HF , we

1. Associate the projection onto the z-axis of the spin with the fermionic occupation
number:

| ↑
〉

↔ n = 0, | ↓
〉

↔ n = 1. (2.11)

That is,

σz
j = (−1)a†

jaj . (2.12)

2. Introduce the string-like annihilation and creation operators

aj =

(

j−1
∏

k=1

σz
k

)

σ+
j

a†
j =

(

j−1
∏

k=1

σz
k

)

σ−j (2.13)

where σ+ and σ− are the usual spin raising and lower operators. At this stage, we
can check that the usual fermionic anticommutation relations hold for the aj , a

†
j:

{

ai, a
†
j

}

= δij (2.14)

3. Observe that
σx

j σ
x
j+1 = −(aj − a†

j)(aj+1 + a†
j+1), (2.15)

so HS (Eq. (2.1)) reduces to HF (Eq. (2.4)) with

w = J, µ = −2hz (2.16)

2.3 Majorana operators

Majorana operators provide a convenient alternative representation of Fermi systems
when the number of particles is only conserved modulo 2, as in a superconductor.
Given a set of N Dirac fermions with annihilation/creation operators aj , a

†
j , we can

define a set of 2N real Majorana fermion operators as follows:

c2j−1 = aj + a†
j

c2j =
aj − a†

j

i
. (2.17)

These operators are Hermitian and satisfy a fermionic anticommutation relation:

c†k = ck
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2

Topological phenomena in 1D:
boundary modes in the Majorana
chain

We will consider two examples of 1D models with Z2 symmetry and topological
degeneracy: the transverse field Ising model (TFIM) and the spin-polarized supercon-
ductor (SPSC). Although these models look rather different physically, we will find
that they are mathematically equivalent and that they both exhibit a topological phase
in which the ground state degeneracy is dependent on the boundary conditions of the
chain. That is, the ground state on an open chain is 2-fold degenerate due to the pres-
ence of boundary zero modes, whereas the ground state is unique on a closed loop.
This topological degeneracy will be stable to small local perturbations that respect
the Z2 symmetry. More details on these models may be found in Kitaev (2000).

1. The transverse field Ising model is a spin-1/2 model with Hamiltonian:

HS = −J
N−1
∑

j=1

σx
j σ

x
j+1 − hz

N
∑

j=1

σz
j . (2.1)

Here J is the ferromagnetic exchange coupling in the x direction and hz is a
uniform transverse (z) field. This model has a Z2 symmetry given by a global
spin flip in the σx basis:

PS =
N
∏

j=1

σz
j (2.2)

2. The spin-polarized 1-D superconductor is a fermionic system with Hamiltonian:

HF =
N−1
∑

j=1

(

−w(a†
jaj+1 + a†

j+1aj) + ∆ajaj+1 + ∆∗a†
j+1a

†
j

)

−µ
N
∑

j=1

(

a†
jaj −

1

2

)

(2.3)

where aj and a†
j are fermionic annihilation and creation operators, w is the hop-

ping amplitude, ∆ is the superconducting gap and µ is the chemical potential.
For simplicity, we will assume that ∆ = ∆∗ = w, so that
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HF = w
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This model has a Z2 symmetry given by the fermionic parity operator:

PF = (−1)
P

j a†
jaj (2.5)

Although the two models are mathematically equivalent, as we will see in Sec.
2.2, they are clearly physically different. In particular, for the superconductor, the Z2

symmetry of fermionic parity cannot be lifted by any local physical operator, as such
operators must contain an even number of fermion operators. Unfortunately, for the
spin system the degeneracy is lifted by a simple longitudinal magnetic field hx

∑

j σ
x
j

and thus the topological phase of the TFIM would be much harder to find in nature.

2.1 Nature of topological degeneracy (spin language)

Consider the transverse field Ising model of Eq. (2.1). With no applied field, there are
a pair of Ising ground states (hz = 0):

|ψ→
〉

= |→→→ · · ·→
〉

, |ψ←
〉

= |←←← · · ·←
〉

. (2.6)

The introduction of a small field hz allows the spins to flip in the σx basis. In particular,
tunneling between the two classical ground states arises via a soliton (domain-wall)
propagating from one side of the system to the other:

|→→→ · · ·→
〉

−→ |←:→→ · · ·→
〉

−→ |←←:→ · · ·→
〉

(2.7)

−→ |←←←: · · ·→
〉

−→ · · · −→ |←←← · · ·←
〉

. (2.8)

As usual, the tunneling amplitude t associated with this transition falls off exponen-
tially in the distance the soliton must propagate

t ∼ e−N/ξ (2.9)

where ξ is the correlation length of the model. The two-fold degeneracy is therefore
lifted by the effective Hamiltonian:

Heff =

(

0 −t
−t 0

)

. (2.10)

The splitting is exponentially small in the system size and the two-fold degeneracy is
recovered in the thermodynamic limit as expected. Moreover, it is clear why introduc-
tion of a longitudinal field hx will fully split the degeneracy.

2.2 Reduction of TFIM to SPSC by the Jordan-Wigner
transformation

To show the equivalence of the one dimensional models introduced above, we will use
a standard Jordan-Wigner transformation to convert the spins of the Ising model into

TFIM:                         SPSC:

Transverse field Ising model (TFIM)       exercise 1



Topological phenomena in 1D: boundary modes in the Majorana chain

w

c1 c6c5c4c3c2 c2N−1 c2N

v w v w v vw

Fig. 2.1 Majorana chain representation of 1-d superconductor. Each boxed pair of Majoranas

corresponds to one site of the original fermionic chain.

c2
k = 1, ckcl = −clck(k "= l). (2.18)

Or, more compactly,

{ck, cl} = 2δkl. (2.19)

From any pair of Majorana operators, we can construct an annihilation and creation
operator for a standard Dirac fermion (a = (c1 + ic2)/2 and h.c.), and thus the unique
irreducible representation for the pair is a 2-dimensional Hilbert space which is either
occupied or unoccupied by the a fermion.

Both models HS and HF can be written as

Hmaj =
i

2



v
N
∑

j=1

c2j−1c2j + w
N−1
∑

j=1

c2jc2j+1



 (2.20)

where v = hz = −µ/2 and w = J . The Z2 symmetry of fermionic parity is given in
the Majorana language by

Pmaj =
N
∏

k=1

(−ic2k−1c2k). (2.21)

We can view this model graphically as a chain of coupled Majorona modes, two to
each of the N sites of the original problem as in Fig. 2.1. If v = 0, then the Majorana
modes at the ends of the chain are not coupled to anything. This immediately allows
us to identify the 2-fold ground state degeneracy in Hmaj as the tensor factor given
by the 2-dimensional representation of the boundary pair c1, c2N .

We will see in Sec. 2.4 that if v "= 0 but |v| < w, the operators c1 and c2N are
replaced by some boundary mode operators bl, br. The effective Hamiltonian for this
piece of the system is then

Heff =
i

2
εblbr = ε(a†a−

1

2
) (2.22)

where ε ∼ e−N/ξ and a, a† are the Dirac fermion operators constructed from the
boundary pair. Thus, the ground state degeneracy is lifted by only an exponentially
small splitting in system size.
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Jordan-Wigner transformation

Majorana operators

fermions. It is perhaps not surprising that a fermionic description exists for spin 1/2
systems – we simplify identify the up and down state of each spin with the presence
or absence of a fermion. The only difficulty arises in arranging the transformation
so that the appropriate (anti)-commutation relations hold in each description. The
Jordan-Wigner transformation does this by introducing string-like fermion operators
that work out quite nicely in 1-D nearest neighbor models.
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where σ+ and σ− are the usual spin raising and lower operators. At this stage, we
can check that the usual fermionic anticommutation relations hold for the aj , a
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so HS (Eq. (2.1)) reduces to HF (Eq. (2.4)) with

w = J, µ = −2hz (2.16)
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when the number of particles is only conserved modulo 2, as in a superconductor.
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HF = w
N−1
∑

j=1

(aj − a†
j)(aj+1 + a†

j+1)− µ
N
∑

j=1

(

a†
jaj − 1/2

)

. (2.4)

This model has a Z2 symmetry given by the fermionic parity operator:

PF = (−1)
P

j a†
jaj (2.5)

Although the two models are mathematically equivalent, as we will see in Sec.
2.2, they are clearly physically different. In particular, for the superconductor, the Z2

symmetry of fermionic parity cannot be lifted by any local physical operator, as such
operators must contain an even number of fermion operators. Unfortunately, for the
spin system the degeneracy is lifted by a simple longitudinal magnetic field hx

∑

j σ
x
j

and thus the topological phase of the TFIM would be much harder to find in nature.

2.1 Nature of topological degeneracy (spin language)

Consider the transverse field Ising model of Eq. (2.1). With no applied field, there are
a pair of Ising ground states (hz = 0):

|ψ→
〉

= |→→→ · · ·→
〉

, |ψ←
〉

= |←←← · · ·←
〉

. (2.6)

The introduction of a small field hz allows the spins to flip in the σx basis. In particular,
tunneling between the two classical ground states arises via a soliton (domain-wall)
propagating from one side of the system to the other:

|→→→ · · ·→
〉

−→ |←:→→ · · ·→
〉

−→ |←←:→ · · ·→
〉

(2.7)

−→ |←←←: · · ·→
〉

−→ · · · −→ |←←← · · ·←
〉

. (2.8)

As usual, the tunneling amplitude t associated with this transition falls off exponen-
tially in the distance the soliton must propagate

t ∼ e−N/ξ (2.9)

where ξ is the correlation length of the model. The two-fold degeneracy is therefore
lifted by the effective Hamiltonian:

Heff =

(

0 −t
−t 0

)

. (2.10)

The splitting is exponentially small in the system size and the two-fold degeneracy is
recovered in the thermodynamic limit as expected. Moreover, it is clear why introduc-
tion of a longitudinal field hx will fully split the degeneracy.

2.2 Reduction of TFIM to SPSC by the Jordan-Wigner
transformation

To show the equivalence of the one dimensional models introduced above, we will use
a standard Jordan-Wigner transformation to convert the spins of the Ising model into

TFIM:                         SPSC:

Transverse field Ising model (TFIM)       exercise 1



Topological phenomena in 1D: boundary modes in the Majorana chain

w

c1 c6c5c4c3c2 c2N−1 c2N

v w v w v vw

Fig. 2.1 Majorana chain representation of 1-d superconductor. Each boxed pair of Majoranas

corresponds to one site of the original fermionic chain.

c2
k = 1, ckcl = −clck(k "= l). (2.18)

Or, more compactly,

{ck, cl} = 2δkl. (2.19)

From any pair of Majorana operators, we can construct an annihilation and creation
operator for a standard Dirac fermion (a = (c1 + ic2)/2 and h.c.), and thus the unique
irreducible representation for the pair is a 2-dimensional Hilbert space which is either
occupied or unoccupied by the a fermion.

Both models HS and HF can be written as

Hmaj =
i

2



v
N
∑

j=1

c2j−1c2j + w
N−1
∑

j=1

c2jc2j+1



 (2.20)

where v = hz = −µ/2 and w = J . The Z2 symmetry of fermionic parity is given in
the Majorana language by

Pmaj =
N
∏

k=1

(−ic2k−1c2k). (2.21)

We can view this model graphically as a chain of coupled Majorona modes, two to
each of the N sites of the original problem as in Fig. 2.1. If v = 0, then the Majorana
modes at the ends of the chain are not coupled to anything. This immediately allows
us to identify the 2-fold ground state degeneracy in Hmaj as the tensor factor given
by the 2-dimensional representation of the boundary pair c1, c2N .

We will see in Sec. 2.4 that if v "= 0 but |v| < w, the operators c1 and c2N are
replaced by some boundary mode operators bl, br. The effective Hamiltonian for this
piece of the system is then

Heff =
i

2
εblbr = ε(a†a−

1

2
) (2.22)

where ε ∼ e−N/ξ and a, a† are the Dirac fermion operators constructed from the
boundary pair. Thus, the ground state degeneracy is lifted by only an exponentially
small splitting in system size.
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We will consider two examples of 1D models with Z2 symmetry and topological
degeneracy: the transverse field Ising model (TFIM) and the spin-polarized supercon-
ductor (SPSC). Although these models look rather different physically, we will find
that they are mathematically equivalent and that they both exhibit a topological phase
in which the ground state degeneracy is dependent on the boundary conditions of the
chain. That is, the ground state on an open chain is 2-fold degenerate due to the pres-
ence of boundary zero modes, whereas the ground state is unique on a closed loop.
This topological degeneracy will be stable to small local perturbations that respect
the Z2 symmetry. More details on these models may be found in Kitaev (2000).

1. The transverse field Ising model is a spin-1/2 model with Hamiltonian:

HS = −J
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Here J is the ferromagnetic exchange coupling in the x direction and hz is a
uniform transverse (z) field. This model has a Z2 symmetry given by a global
spin flip in the σx basis:

PS =
N
∏

j=1

σz
j (2.2)

2. The spin-polarized 1-D superconductor is a fermionic system with Hamiltonian:
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where aj and a†
j are fermionic annihilation and creation operators, w is the hop-

ping amplitude, ∆ is the superconducting gap and µ is the chemical potential.
For simplicity, we will assume that ∆ = ∆∗ = w, so that
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fermionic parity cannot be disturbed by local perturbation,
but the spin      symmetry can be removed by
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Jordan-Wigner transformation

Majorana operators

fermions. It is perhaps not surprising that a fermionic description exists for spin 1/2
systems – we simplify identify the up and down state of each spin with the presence
or absence of a fermion. The only difficulty arises in arranging the transformation
so that the appropriate (anti)-commutation relations hold in each description. The
Jordan-Wigner transformation does this by introducing string-like fermion operators
that work out quite nicely in 1-D nearest neighbor models.

To reduce HS to HF , we

1. Associate the projection onto the z-axis of the spin with the fermionic occupation
number:

| ↑
〉

↔ n = 0, | ↓
〉

↔ n = 1. (2.11)

That is,

σz
j = (−1)a†

jaj . (2.12)

2. Introduce the string-like annihilation and creation operators

aj =

(

j−1
∏

k=1

σz
k

)

σ+
j

a†
j =

(

j−1
∏

k=1

σz
k

)

σ−j (2.13)

where σ+ and σ− are the usual spin raising and lower operators. At this stage, we
can check that the usual fermionic anticommutation relations hold for the aj , a

†
j:

{

ai, a
†
j

}

= δij (2.14)

3. Observe that
σx

j σ
x
j+1 = −(aj − a†

j)(aj+1 + a†
j+1), (2.15)

so HS (Eq. (2.1)) reduces to HF (Eq. (2.4)) with

w = J, µ = −2hz (2.16)

2.3 Majorana operators

Majorana operators provide a convenient alternative representation of Fermi systems
when the number of particles is only conserved modulo 2, as in a superconductor.
Given a set of N Dirac fermions with annihilation/creation operators aj , a

†
j , we can

define a set of 2N real Majorana fermion operators as follows:

c2j−1 = aj + a†
j

c2j =
aj − a†

j

i
. (2.17)

These operators are Hermitian and satisfy a fermionic anticommutation relation:

c†k = ck
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We will consider two examples of 1D models with Z2 symmetry and topological
degeneracy: the transverse field Ising model (TFIM) and the spin-polarized supercon-
ductor (SPSC). Although these models look rather different physically, we will find
that they are mathematically equivalent and that they both exhibit a topological phase
in which the ground state degeneracy is dependent on the boundary conditions of the
chain. That is, the ground state on an open chain is 2-fold degenerate due to the pres-
ence of boundary zero modes, whereas the ground state is unique on a closed loop.
This topological degeneracy will be stable to small local perturbations that respect
the Z2 symmetry. More details on these models may be found in Kitaev (2000).
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This model has a Z2 symmetry given by the fermionic parity operator:

PF = (−1)
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Although the two models are mathematically equivalent, as we will see in Sec.
2.2, they are clearly physically different. In particular, for the superconductor, the Z2

symmetry of fermionic parity cannot be lifted by any local physical operator, as such
operators must contain an even number of fermion operators. Unfortunately, for the
spin system the degeneracy is lifted by a simple longitudinal magnetic field hx
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and thus the topological phase of the TFIM would be much harder to find in nature.

2.1 Nature of topological degeneracy (spin language)

Consider the transverse field Ising model of Eq. (2.1). With no applied field, there are
a pair of Ising ground states (hz = 0):

|ψ→
〉

= |→→→ · · ·→
〉

, |ψ←
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The introduction of a small field hz allows the spins to flip in the σx basis. In particular,
tunneling between the two classical ground states arises via a soliton (domain-wall)
propagating from one side of the system to the other:
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As usual, the tunneling amplitude t associated with this transition falls off exponen-
tially in the distance the soliton must propagate

t ∼ e−N/ξ (2.9)

where ξ is the correlation length of the model. The two-fold degeneracy is therefore
lifted by the effective Hamiltonian:

Heff =
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. (2.10)

The splitting is exponentially small in the system size and the two-fold degeneracy is
recovered in the thermodynamic limit as expected. Moreover, it is clear why introduc-
tion of a longitudinal field hx will fully split the degeneracy.

2.2 Reduction of TFIM to SPSC by the Jordan-Wigner
transformation

To show the equivalence of the one dimensional models introduced above, we will use
a standard Jordan-Wigner transformation to convert the spins of the Ising model into
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads

H = �µ
X

x

c†xcx � 1

2

X

x

(tc†xcx+1

+�ei�cxcx+1

+ h.c.),

(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:

H =

1

2

X

k2BZ

C†
kHkCk, Hk =

✓
✏k ˜

�

⇤
k

˜

�k �✏k

◆
, (3)

with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply

H =

X

k2BZ

E
bulk

(k)a†kak (4)
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where the bulk excitation energies are given by

E
bulk
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✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially

3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads
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where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
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where the bulk excitation energies are given by
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Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially

3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads

H = �µ
X

x

c†xcx � 1

2

X

x

(tc†xcx+1

+�ei�cxcx+1

+ h.c.),

(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:

H =

1

2

X

k2BZ

C†
kHkCk, Hk =

✓
✏k ˜

�

⇤
k

˜

�k �✏k

◆
, (3)

with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply

H =

X

k2BZ

E
bulk

(k)a†kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
�k (5)

uk =

˜

�

| ˜�|

p
E

bulk

+ ✏p
2E

bulk

, vk =

✓
E

bulk

� ✏
˜

�

◆
uk, (6)

where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z
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topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
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where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
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k = [c†k, c�k], one can write H in the standard Bogoliubov-
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where the bulk excitation energies are given by
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Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:
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with ✏k = �t cos k � µ the kinetic energy and ˜
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�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply
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where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially

3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor
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neighbor hopping strength, � � 0 is the p-wave pairing am-
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the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:

H =

1

2

X

k2BZ

C†
kHkCk, Hk =

✓
✏k ˜

�

⇤
k

˜

�k �✏k

◆
, (3)

with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply

H =

X

k2BZ

E
bulk

(k)a†kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
�k (5)

uk =

˜

�

| ˜�|

p
E

bulk

+ ✏p
2E

bulk

, vk =

✓
E

bulk

� ✏
˜

�

◆
uk, (6)

where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
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It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
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lar, since the two-component operator Ck in Eq. (3) satisfies
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from Eq. (11).
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zone so that the chain is fully gapped. One can then always
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make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '
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regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
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not guarantee that the weak and strong pairing regimes con-
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can also be added, but will not matter for our purposes.) Al-
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from Eq. (11).
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ
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there exists an even number of pairs of Fermi points, while
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logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads
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where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
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Hamiltonian becomes simply
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where the bulk excitation energies are given by
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✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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�kc
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads
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+�ei�cxcx+1

+ h.c.),

(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:
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with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply
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when expressed in terms of quasiparticle operators
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where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially

3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads

H = �µ
X

x

c†xcx � 1

2

X

x

(tc†xcx+1

+�ei�cxcx+1

+ h.c.),

(2)
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excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜
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k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,

|g.s.i /
Y

0<k<⇡

[1 + '
C.p.(k)c

†
�kc

†
k]|0i

'
C.p.(k) =

vk
uk

=

✓
E

bulk

� ✏
˜

�

◆
, (8)

where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads
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(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:
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with ✏k = �t cos k � µ the kinetic energy and ˜
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�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply
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where the bulk excitation energies are given by

E
bulk

(k) =
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✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '
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C.p.(k) at large
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(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x
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ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†
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= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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where s
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and s⇡ represent the sign of the kinetic energy (mea-
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Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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tinct trajectories, illustrated schematically in Figs. 1(b) and
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2

topological invariant

⌫ = s
0

s⇡, (13)
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[resulting in ˆ
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there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =
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C.p.(k) at large
x:54
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C.p.(x)| ⇠
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e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z
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s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
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fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
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well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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conventional phase transitions) distinguishing the weak and
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though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
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= �xCk, the vector h(k) must obey the important
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Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
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[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
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3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads
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where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:
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with ✏k = �t cos k � µ the kinetic energy and ˜
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Hamiltonian becomes simply
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where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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ited topological quantum information processing,12 the addi-
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able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.
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It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
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µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
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�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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filled band acquires a gap due to p-wave pairing. One can
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Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
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fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
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make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
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It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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logical invariant’ (akin to an order parameter in the theory of
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revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
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for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
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T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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where s
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[resulting in ˆ
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there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)

4

topological 
(weak pairing) 

non-topological 
(strong pairing) 

non-topological 
(strong pairing) 

(a)

k

(b)

(c)

(trivial)

(topological)

⌫ = 1

⌫ = �1

µ = �t

µ = t

�t cos k

FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
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ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =
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C.p.(k) at large
x:54
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C.p.(x)| ⇠
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e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =
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C.p.(k) at large
x:54
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C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
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ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
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and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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= s⇡)
or the opposite pole (if s
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= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
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tion in each regime. Equation (4) implies that the ground state
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '
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It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.
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logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
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resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
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relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.
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ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads

H = �µ
X

x

c†xcx � 1

2

X

x

(tc†xcx+1

+�ei�cxcx+1

+ h.c.),

(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:

H =

1

2

X

k2BZ

C†
kHkCk, Hk =

✓
✏k ˜

�

⇤
k

˜

�k �✏k

◆
, (3)

with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply

H =

X

k2BZ

E
bulk

(k)a†kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
�k (5)

uk =

˜

�

| ˜�|

p
E

bulk

+ ✏p
2E

bulk

, vk =

✓
E

bulk

� ✏
˜

�

◆
uk, (6)

where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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We begin by reviewing Kitaev’s toy lattice model9, intro-
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this setting Majorana zero-modes appear in an extremely sim-
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erators cx describing spinless fermions that hop on an N -site
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neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
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Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,

|g.s.i /
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[1 + '
C.p.(k)c

†
�kc

†
k]|0i

'
C.p.(k) =
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uk
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✓
E

bulk

� ✏
˜

�

◆
, (8)

where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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h(⇡) = s⇡ẑ, (12)

where s
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and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z
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topological invariant
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via
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topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z
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topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
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Thus it suffices to specify h(k) only on the interval 0  k 
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from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
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from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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⌫ = �1 otherwise. From this perspective it is clear that ⌫ =
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leads to the appearance of Majorana modes in a chain with
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menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
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(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
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and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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tinct trajectories, illustrated schematically in Figs. 1(b) and
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via
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filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =
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k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
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ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
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and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s
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= s⇡)
or the opposite pole (if s
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= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =
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regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
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not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
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and strong pairing regimes are distinct phases separated by
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⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
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wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,
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�kc
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where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
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s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)
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pret '
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fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by
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logical invariant’ (akin to an order parameter in the theory of
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revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
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for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
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= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that
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h(0) = s
0

ẑ, ˆ
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where s
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and s⇡ represent the sign of the kinetic energy (mea-
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which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =
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2
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Trivial: an even number of pairs of Fermi points

Topological: an odd number of pairs of Fermi points

Transition takes place when the gap closes;
i.e. in the boundaries where h(k) is ill-defined. 
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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FIG. 4. !Color online" Boundary states for a topological super-
conductor !TSC". !a" A 1D superconductor with bound states
at its ends. The end state spectrum for !b" an ordinary 1D
superconductor and !c" a 1D topological superconductor. !d" A
topological 2D superconductor with !e" a chiral Majorana edge
mode. !c" A vortex with flux '=h /2e is associated with a zero
mode.
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
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same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by
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eigenstate of HBdG with energy E has a partner at −E.
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quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
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that can be continuously deformed into one another
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spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
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ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;

k

0 0
0

∆

−∆

∆

−∆

0

Φ

(a)

(b) (c)

(d)

(e)

1D T - SC 2D T - SC

ΓE

Γ−E = Γ E
†

Γ0 = Γ 0
†

Γ−E
=Γ E

†
ΓE

FIG. 4. !Color online" Boundary states for a topological super-
conductor !TSC". !a" A 1D superconductor with bound states
at its ends. The end state spectrum for !b" an ordinary 1D
superconductor and !c" a 1D topological superconductor. !d" A
topological 2D superconductor with !e" a chiral Majorana edge
mode. !c" A vortex with flux '=h /2e is associated with a zero
mode.

3051M. Z. Hasan and C. L. Kane: Colloquium: Topological insulators

Rev. Mod. Phys., Vol. 82, No. 4, October–December 2010

Hasan & Kane, RMP ’10

Introduction Majorana Dot Results Conclusions

Majorana Fermions in Topological Superconductors

Spinless p
x

+ ip
y

superconductor

HBdG(k) = [H0(k) � µ]⌧
z

+ �0(kx

⌧
x

+ ik
y

⌧
y

)

particle-hole symmetry:

⌅HBdG(k)⌅

�1
= �HBdG(�k) (⌅ = ⌧

x

C)

��E

= �

†
E

(E = 0 if exists is protected)

Superconductor-topological insulator interface

HBdG(k) = (v
F

k · � � µ)⌧
z

+ �0

defining new fermionic operator:

 
k

= (c
k" + ei✓kc

k#)/
p

2 (tan ✓k = k
y

/k
x

)
˜HBdG(k) = (v

F

|k|�µ)⌧
z

+�0(e
i✓k †

k

 †
�k

+H.c.)

Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".
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Topological insulators and superconductors fit to-
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that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
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symmetry expressed by
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These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
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it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
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Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states
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there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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Protected states can exist in the boundaries:
Majorana edge states (2D)

Majorana bound states at the ends (1D)
Majorana bound to vortex core (2D)   
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.
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For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by
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where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E
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=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;
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particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
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Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
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Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r

⇢
 †

✓
�r2

2m
� µ

◆
 

+

�

2

⇥
ei� (@x + i@y) +H.c.

⇤�
, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2

Z
d2k

(2⇡)2
 

†
(k)H(k) (k),

H(k) =

✓
✏(k) ˜

�(k)
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�(k) �✏(k)
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(21)

with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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(weak pairing) 
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as

|g.s.i /
Y

k
x

�0,k
y

[1 + '
C.p.(k) (�k)

† (k)†]|0i

'
C.p.(k) =

v(k)

u(k)
=

✓
E
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� ✏
˜

�

◆
, (24)

where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r
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 †
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+
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ei� (@x + i@y) +H.c.
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, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1
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Z
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =
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(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r

⇢
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2

Z
d2k
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with ✏(k) =
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2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains
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�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as

|g.s.i /
Y

k
x

�0,k
y

[1 + '
C.p.(k) (�k)

† (k)†]|0i

'
C.p.(k) =

v(k)

u(k)
=

✓
E

bulk

� ✏
˜

�

◆
, (24)

where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as

|g.s.i /
Y

k
x

�0,k
y

[1 + '
C.p.(k) (�k)

† (k)†]|0i

'
C.p.(k) =

v(k)

u(k)
=

✓
E

bulk

� ✏
˜

�

◆
, (24)

where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =
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+
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, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =
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⇢
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⇤�
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
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(2⇡)2
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(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1
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with ✏(k) =
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2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads
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Z
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(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-
wave superconductor. The p-wave pairing opens a bulk gap except at
the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for
|µ| < t a topological weak pairing phase emerges. The topological
invariant ⌫ distinguishing these states can be visualized by consid-
ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the
unit sphere as k varies from 0 to ⇡; (b) and (c) illustrate the two types
of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can
make this distinction more quantitative following Read and
Green10 by examining the form of the ground-state wavefunc-
tion in each regime. Equation (4) implies that the ground state
|g.s.i must satisfy ak|g.s.i = 0 for all k so that no quasiparti-
cles are present. Equations (5) and (6) allow one to explicitly
write the ground state as follows,

|g.s.i /
Y

0<k<⇡

[1 + '
C.p.(k)c

†
�kc

†
k]|0i

'
C.p.(k) =

vk
uk

=

✓
E

bulk

� ✏
˜

�

◆
, (8)

where |0i is a state with no ck fermions present with mo-
menta in the interval 0 < |k| < ⇡. One can loosely inter-
pret '

C.p.(k) as the wavefunction for a Cooper pair formed
by fermions with momenta k and �k. An important differ-
ence between the µ < �t and |µ| < t regimes is manifested
in the real-space form '

C.p.(x) =

R
k
eikx'

C.p.(k) at large
x:54

|'
C.p.(x)| ⇠

⇢
e�|x|/⇣ , µ < �t (strong pairing)

const, |µ| < t (weak pairing).
(9)

It follows that µ < �t corresponds to a strong pairing
regime in which ‘molecule-like’ Cooper pairs form from two
fermions bound in real space over a length scale ⇣, whereas
in the weak pairing regime |µ| < t the Cooper pair size is
infinite10. We emphasize that this distinction by itself does
not guarantee that the weak and strong pairing regimes con-
stitute distinct phases. Indeed, similar physics occurs in the
well-studied “BCS-BEC crossover” in s-wave paired systems
where no sharp transition arises55,56. The fact that the weak
and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in
topology.

There are several ways in which one can express the ‘topo-
logical invariant’ (akin to an order parameter in the theory of
conventional phase transitions) distinguishing the weak and
strong pairing phases9. We will follow an approach that
closely parallels the 2D case we address in Sec. II B. Let us
revisit the Hamiltonian in Eq. (3), but now allow for addi-
tional perturbations that preserve translation symmetry.57 The
resulting 2⇥2 matrix Hk can be expressed in terms of a vector
of Pauli matrices � = �x

x̂+ �y
ŷ + �z

ẑ as follows,

Hk = h(k) · � (10)

for some vector h(k). (A term proportional to the identity
can also be added, but will not matter for our purposes.) Al-
though we are considering a rather general Hamiltonian here,
the structure of h(k) is not entirely arbitrary. In particu-
lar, since the two-component operator Ck in Eq. (3) satisfies
(C†

�k)
T

= �xCk, the vector h(k) must obey the important
relations

hx,y(k) = �hx,y(�k), hz(k) = hz(�k). (11)

Thus it suffices to specify h(k) only on the interval 0  k 
⇡, since h(k) on the other half of the Brillouin zone follows
from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin
zone so that the chain is fully gapped. One can then always
define a unit vector ˆh(k) = h(k)/|h(k)| that provides a map
from the Brillouin zone to the unit sphere. The relations of
Eq. (11) strongly restrict this map at k = 0 and ⇡ such that

ˆ

h(0) = s
0

ẑ, ˆ

h(⇡) = s⇡ẑ, (12)

where s
0

and s⇡ represent the sign of the kinetic energy (mea-
sured relative to the Fermi level) at k = 0 and ⇡, respectively.
Thus as one sweeps k from 0 to ⇡, ˆh(k) begins at one pole of
the unit sphere and either ends up at the same pole (if s

0

= s⇡)
or the opposite pole (if s

0

= �s⇡). These topologically dis-
tinct trajectories, illustrated schematically in Figs. 1(b) and
(c), are distinguished by the Z

2

topological invariant

⌫ = s
0

s⇡, (13)

which can only change sign when the chain’s bulk gap closes
[resulting in ˆ

h(k) being ill-defined somewhere in the Brillouin
zone].58 Physically, ⌫ = +1 if at a given chemical potential
there exists an even number of pairs of Fermi points, while
⌫ = �1 otherwise. From this perspective it is clear that ⌫ =

+1 in the (topologically trivial) strong pairing phase while
⌫ = �1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase
leads to the appearance of Majorana modes in a chain with
open boundary conditions, which we will now consider. The
new physics associated with the ends of the chain can be most
simply accessed by decomposing the spinless fermion opera-
tors cx in the original Hamiltonian of Eq. (2) in terms of two
Majorana fermions via

cx =

e�i�/2

2

(�B,x + i�A,x). (14)

Hamiltonian in k-space:

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r

⇢
 †

✓
�r2

2m
� µ

◆
 

+

�

2

⇥
ei� (@x + i@y) +H.c.

⇤�
, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =
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2
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(2⇡)2
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(k)H(k) (k),

H(k) =

✓
✏(k) ˜

�(k)
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�(k) �✏(k)
◆

(21)

with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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† (k)†]|0i

'
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✓
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◆
, (24)

where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly

6

will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r

⇢
 †

✓
�r2

2m
� µ
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+
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2

⇥
ei� (@x + i@y) +H.c.
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, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2

Z
d2k

(2⇡)2
 

†
(k)H(k) (k),

H(k) =

✓
✏(k) ˜

�(k)
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
d2r

⇢
 †

✓
�r2

2m
� µ

◆
 

+

�

2

⇥
ei� (@x + i@y) +H.c.

⇤�
, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1

2

Z
d2k

(2⇡)2
 

†
(k)H(k) (k),

H(k) =
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✏(k) ˜
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(21)

with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
d2k

(2⇡)2
E

bulk

(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,

H =

Z
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⇢
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⇥
ei� (@x + i@y) +H.c.
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, (20)

where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =

1
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with ✏(k) =

k2

2m � µ and ˜

�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
v(k) †

(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads

H =

Z
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(2⇡)2
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(k)a†(k)a(k). (22)
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10
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e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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will move away from zero energy upon including perturba-
tions such as spin-orbit coupling. (Note that even for a spin-
less chain it is in principle possible for multiple nearby Majo-
rana modes to coexist at zero energy if certain symmetries are
present; see Refs. 59–61 for examples. Time-reversal sym-
metry can also protect pairs of Majorana end-states in ‘class
DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-
tally realize Kitaev’s toy model and the Majorana modes it
supports with systems of electrons (which always carry spin).
Rather these considerations only imply that a prerequisite to
observing isolated Majorana zero-modes is lifting Kramer’s
degeneracy such that the electron’s spin degree of freedom be-
comes effectively ‘frozen out’. We will discuss several ways
of achieving this, as well as the requisite p-wave superconduc-
tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-
logical phase supporting Majorana fermions is a spinless 2D
electron gas exhibiting p+ip superconductivity. We will study
the following model for such a system,
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where  †
(r) creates a spinless fermion with effective mass m,

µ is the chemical potential, and� � 0 determines the p-wave
pairing amplitude while � is the corresponding superconduct-
ing phase. For the moment we take the superconducting or-
der parameter to be uniform, though we relax this assumption
later when discussing vortices. To understand the physics of
Eq. (20) we will adopt a similar strategy to that of the previ-
ous section—first identifying signatures of topological order
encoded in bulk properties of the p + ip superconductor, and
then turning to consequences of the nontrivial topology for the
boundaries of the system.

In a system with periodic boundary conditions along x and
y (i.e., a superconductor on a torus with no edges) translation
symmetry allows one to readily diagonalize Eq. (20) by going
to momentum space. Defining (k)† = [ †

(k),  (�k)], one
obtains

H =
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with ✏(k) =
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�(k) = i�ei�(kx + iky). A
canonical transformation of the form a(k) = u(k) (k) +
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(�k) diagonalizes the remaining 2⇥2 matrix. In terms
of these quasiparticle operators the Hamiltonian reads
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as
in Eq. (6), and the bulk excitation energies are similarly given
by

E
bulk

(k) =

q
✏(k)2 + | ˜�(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as

|g.s.i /
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C.p.(k) (�k)

† (k)†]|0i

'
C.p.(k) =
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� ✏
˜

�

◆
, (24)

where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting
p+ ip superconductivity. The pairing opens a bulk gap except when
µ = 0. This gapless point marks the transition between a weak
pairing topological phase at µ > 0 and a trivial strong pairing phase
at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.
(26)] covers the entire unit sphere as one sweeps over all momenta
k. As |k| increases from zero, in the trivial phase ĥ(k) covers the
shaded area in (b) but then ‘uncovers’ the same area, resulting in
Chern number C = 0, whereas in the topological phase the map
covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.
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For any µ > 0 the bulk is fully gapped since here the pairing
field ˜

�(k) is non-zero everywhere along the Fermi surface.
As one depletes the band the bulk gap decreases and eventu-
ally closes at µ = 0, where the Fermi level resides precisely
at the bottom of the band as shown in Fig. 3(a). (The gap
closure here arises because Pauli exclusion prohibits p-wave
pairing at k = 0.) Further reducing µ reopens the gap, which
remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0

gapped regimes can be quantitatively distinguished by exam-
ining the ground-state wavefunction10, which can be written
as
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where |0i is a state with no  (k) fermions present with non-
zero momentum. The ‘Cooper pair wavefunction’ '

C.p.(k)

again encodes a key difference between the µ > 0 and µ < 0

regimes. In real space one finds the asymptotic forms10

|'
C.p.(r)| ⇠

⇢
e�|r|/⇣ , µ < 0 (strong pairing)

|r|�1, µ > 0 (weak pairing).
(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong
pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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paired condensate forms from Cooper pairs loosely bound in
space.

Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =

Z
d2k

4⇡
[

ˆ

h · (@k
x

ˆ

h⇥ @k
y

ˆ

h)]. (27)

The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[

˜

�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as

H
edge

=

Z
d2r

⇢
� µ(r) † 

+


�

2

ei�ei✓ 

✓
@r +

i@✓
r

◆
 +H.c.

��
. (28)

Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes

H
edge

=

1

2

Z
d2r 0†

(r)H(r) 

0
(r),

H(r) =

✓ �µ(r) �e�i�
(�@r + i@

✓

r )

�ei�(@r +
i@

✓

r ) µ(r)

◆
.(29)

To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
✓

e�i�/2
[f(r) + ig(r)]

ei�/2[f(r)� ig(r)]

◆
, (30)

where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are

E
out

=

n�

R
out

, (32)

while the corresponding wavefunctions follow from f = 0

and [µ(r)��@r]g = 0. The latter equations yield

�out

n (r) = ein✓e
1

�

R
r

R

out

dr0µ(r0)

✓
ie�i�/2

�iei�/2

◆
, (33)

which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by

E
in

= �n�

R
in

(34)

�in

n (r) = ein✓e
� 1

�

R
r

R

in

dr0µ(r0)
✓

e�i�/2

ei�/2

◆
. (35)
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tor ˆh(k) that maps 2D momentum space onto a unit sphere.
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nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)
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the outer edge states are
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while the corresponding wavefunctions follow from f = 0
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
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ial phase forms elsewhere. We will model this geometry by
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energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as

H
edge

=

Z
d2r

⇢
� µ(r) † 

+


�

2

ei�ei✓ 

✓
@r +

i@✓
r

◆
 +H.c.

��
. (28)
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where n is a half-integer angular momentum quantum number
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cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =

Z
d2k

4⇡
[

ˆ

h · (@k
x

ˆ

h⇥ @k
y

ˆ

h)]. (27)

The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[

˜

�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as

H
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=

Z
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2
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are

E
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while the corresponding wavefunctions follow from f = 0

and [µ(r)��@r]g = 0. The latter equations yield
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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paired condensate forms from Cooper pairs loosely bound in
space.

Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as

H
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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e�i�/2
[f(r) + ig(r)]

ei�/2[f(r)� ig(r)]
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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paired condensate forms from Cooper pairs loosely bound in
space.

Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[

˜

�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[
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�(k)], hy(k) = Im[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
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boundary conditions upon encircling the annulus.
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To find the edge state wavefunctions satisfying H(r)�(r) =
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey
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Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
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h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
✓

e�i�/2
[f(r) + ig(r)]

ei�/2[f(r)� ig(r)]

◆
, (30)

where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
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while the corresponding wavefunctions follow from f = 0
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which indeed describes modes exponentially localized around
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Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number
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be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†
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becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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paired condensate forms from Cooper pairs loosely bound in
space.

Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[

˜

�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as

H
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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[f(r) + ig(r)]
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =
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The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[
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�(k)], hy(k) = Im[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes

H
edge

=

1

2

Z
d2r 0†

(r)H(r) 

0
(r),

H(r) =

✓ �µ(r) �e�i�
(�@r + i@

✓

r )

�ei�(@r +
i@

✓

r ) µ(r)

◆
.(29)

To find the edge state wavefunctions satisfying H(r)�(r) =
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
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phases, consider a 2D superconductor described by a Hamil-
tonian of the form65
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with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
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over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
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Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[
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�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ
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therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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[f(r) + ig(r)]

ei�/2[f(r)� ig(r)]
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0

and [µ(r)��@r]g = 0. The latter equations yield
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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paired condensate forms from Cooper pairs loosely bound in
space.

Also as in the 1D case, topology underlies the fact that the
weak and strong pairing regimes constitute distinct phases that
cannot be smoothly connected without closing the bulk gap.
To expose the topological invariant that distinguishes these
phases, consider a 2D superconductor described by a Hamil-
tonian of the form65

H(k) = h(k) · � (26)

with h(k) a smooth function that is non-zero for all momenta
so that the bulk is fully gapped. One can then define a unit vec-
tor ˆh(k) that maps 2D momentum space onto a unit sphere.
Assuming that ˆh(k) tends to a unique vector as |k| ! 1 (in-
dependent of the direction of k), the number of times this map
covers the entire unit sphere defines an integer topological in-
variant given formally by the Chern number

C =

Z
d2k

4⇡
[
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h · (@k
x

ˆ

h⇥ @k
y

ˆ

h)]. (27)

The integrand above determines the solid angle (which can
be positive or negative) that ˆh(k) sweeps on the unit sphere
over an infinitesimal patch of momentum space centered on
k. Performing the integral over all k yields an integer that
remains invariant under smooth deformations of ˆ

h(k). The
Chern number can change only when the gap closes, making
ˆ

h(k) ill-defined at some momentum.
Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[

˜

�(k)], hy(k) = Im[

˜

�(k)], and hz(k) = ✏(k).
Notice that for momenta with fixed |k|, ˆhx and ˆhy always
sweep out a circle on the unit sphere at height ˆhz . As |k|
increases from zero in the µ < 0 strong pairing phase, ˆhz

begins at the north pole, descends towards the equator, and
then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ

h(k) initially sweeps
out the shaded region in the northern hemisphere of Fig. 3(b)
but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ

h(k)

therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
polar coordinates (r, ✓) as
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.

In terms of 0†
(r) = [ 0†

(r),  0
(r)], the edge Hamiltonian

becomes
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To find the edge state wavefunctions satisfying H(r)�(r) =

E�(r), it is useful to parametrize �(r) as

�n(r) = ein✓
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e�i�/2
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0

and [µ(r)��@r]g = 0. The latter equations yield
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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with h(k) a smooth function that is non-zero for all momenta
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increases from zero in the µ < 0 strong pairing phase, ˆhz
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then returns to the north pole as |k| ! 1. Thus in the (topo-
logically trivial) strong pairing phase ˆ
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but then ‘unsweeps’ the same area, resulting in a vanishing
Chern number. In contrast, for the (topologically nontrivial)
µ > 0 weak pairing phase ˆhz transitions from the south pole
at k = 0 to the north pole when |k| ! 1; the map ˆ
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therefore covers the entire unit the sphere exactly one time as
shown schematically in Fig. 3(c), leading to a nontrivial Chern
number C = �1. [Note that other integer Chern numbers are
also possible. For instance, a p � ip superconductor carries a
Chern number C = +1 in the topological phase. An f -wave
superconductor with ˜

�(k) / (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ˆhx and ˆhy trace out a circle on the unit sphere three times,
yielding a Chern number C = �3 in the weak pairing phase
(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-
trivial Chern number uncovered in the topological weak pair-
ing phase. Consider the geometry of Fig. 4(a), where a topo-
logical p+ ip superconductor occupies the annulus and a triv-
ial phase forms elsewhere. We will model this geometry by
H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions
realize topologically distinct phases one generically expects
edge states at their interface, which we would like to now un-
derstand following various authors10,67–69. Focusing on low-
energy edge modes and assuming that µ(r) is slowly varying,
one can discard the �r2/(2m) kinetic term in H . A minimal
Hamiltonian capturing the edge states can then be written in
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Because of the ei✓ factor above, the p + ip pairing field cou-
ples states with orbital angular momentum quantum numbers
of different magnitude. In what follows it will be convenient
to gauge this factor away by defining  = e�i✓/2 0. (Note
that i@✓ ! i@✓ + 1/2 under this change of variables, though
the constant shift vanishes in the pairing term by Fermi statis-
tics.) Crucially, the new field  0 must exhibit anti-periodic
boundary conditions upon encircling the annulus.
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To find the edge state wavefunctions satisfying H(r)�(r) =
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where n is a half-integer angular momentum quantum number
to ensure the proper anti-periodic boundary conditions. The
functions f and g obey

(E + n�/r)f = �i[µ(r)��@r]g
(E � n�/r)g = i[µ(r) +�@r]f. (31)

For modes well-localized at the inner/outer annulus edges, it
suffices to replace r ! R

in/out on the left-hand side of Eqs.
(31). Within this approximation one finds that the energies of
the outer edge states are
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while the corresponding wavefunctions follow from f = 0

and [µ(r)��@r]g = 0. The latter equations yield
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which indeed describes modes exponentially localized around
the outer edge. Similarly, the inner-edge energies and wave-
functions are given by
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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FIG. 4. !Color online" Boundary states for a topological super-
conductor !TSC". !a" A 1D superconductor with bound states
at its ends. The end state spectrum for !b" an ordinary 1D
superconductor and !c" a 1D topological superconductor. !d" A
topological 2D superconductor with !e" a chiral Majorana edge
mode. !c" A vortex with flux '=h /2e is associated with a zero
mode.
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
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Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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FIG. 4. !Color online" Boundary states for a topological super-
conductor !TSC". !a" A 1D superconductor with bound states
at its ends. The end state spectrum for !b" an ordinary 1D
superconductor and !c" a 1D topological superconductor. !d" A
topological 2D superconductor with !e" a chiral Majorana edge
mode. !c" A vortex with flux '=h /2e is associated with a zero
mode.
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  Physical realization:  Artificial topological superconductor 
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Similar to the spinless p + ip superconductor
and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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FIG. 4. !Color online" Boundary states for a topological super-
conductor !TSC". !a" A 1D superconductor with bound states
at its ends. The end state spectrum for !b" an ordinary 1D
superconductor and !c" a 1D topological superconductor. !d" A
topological 2D superconductor with !e" a chiral Majorana edge
mode. !c" A vortex with flux '=h /2e is associated with a zero
mode.
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and ! the Schrödinger equation associated with HBdG is
known as the Bogoliubov–de Gennes !BdG" equation.

Since Eq. !13" has c and c† on both sides there is an
inherent redundancy built into the BdG Hamiltonian.
For !=0, HBdG includes two copies of H0 with opposite
sign. More generally, HBdG has an intrinsic particle-hole
symmetry expressed by

"HBdG!k""−1 = − HBdG!− k" , !15"

where the particle-hole operator "=#xK satisfies "2

=+1. Equation !15" follows from H0!−k"=H0!k"! and
the odd parity of the real !!k". It follows that every
eigenstate of HBdG with energy E has a partner at −E.
These two states are redundant because the Bogoliubov
quasiparticle operators associated with them satisfy $E

†

=$−E. Thus, creating a quasiparticle in state E has the
same effect as removing one from state −E.

The particle-hole symmetry constraint !15" has a simi-
lar structure to the time-reversal constraint in Eq. !8", so
it is natural to consider the classes of BdG Hamiltonians
that can be continuously deformed into one another
without closing the energy gap. In the simplest case,
spinless fermions, the classification can be shown to be
Z2 in one dimension and Z in two dimensions. As in Sec.
II.C, this can be most easily understood by appealing to
the bulk-boundary correspondence.

2. Majorana fermion boundary states

At the end of a 1D superconductor !Kitaev, 2000"
there may or may not be discrete states within the en-
ergy gap that are bound to the end #Figs. 4!a"–4!c"$. If
they are present, then every state at +E has a partner at
−E. Such finite-energy pairs are not topologically pro-
tected because they can simply be pushed out of the
energy gap. However, a single unpaired bound state at
E=0 is protected because it cannot move away from E
=0. The presence or absence of such a zero mode is
determined by the Z2 topological class of the bulk 1D
superconductor.

The Bogoliubov quasiparticle states associated with
the zero modes are fascinating objects !Kitaev, 2000;

Read and Green, 2000; Ivanov, 2001; Stern, von Oppen,
and Mariani, 2004; Nayak et al., 2008". Due to the
particle-hole redundancy the quasiparticle operators sat-
isfy $0=$0

†. Thus, a quasiparticle is its own antiparticle—
the defining feature of a Majorana fermion. A Majorana
fermion is essentially half of an ordinary Dirac fermion.
Due to the particle-hole redundancy, a single fermionic
state is associated with each pair of ±E energy levels.
The presence or absence of a fermion in this state de-
fines a two-level system with energy splitting E. Majo-
rana zero modes must always come in pairs !for in-
stance, a 1D superconductor has two ends", and a well
separated pair defines a degenerate two-level system,
whose quantum state is stored nonlocally. This has pro-
found implications, which we return to in Sec. V.B when
discussing the proposal of Kitaev !2003" to use these
properties for quantum information processing.

In two dimensions the integer classification Z gives the
number of chiral Majorana edge modes #Figs. 4!d" and
4!e"$, which resemble chiral modes in the quantum Hall
effect but for the particle-hole redundancy. A spinless
superconductor with px+ ipy symmetry is the simplest
model 2D topological superconductor. Such supercon-
ductors will also exhibit Majorana bound states at the
core of vortices !Caroli, de Gennes, and Matricon, 1964;
Volovik, 1999; Read and Green, 2000". This may be un-
derstood by considering the vortex to be a hole in the
superconductor circled by an edge mode #Fig. 4!d"$.
When the flux in the hole is h /2e the edge modes are
quantized such that one state is exactly at E=0.

Majorana fermions have been studied in particle phys-
ics for decades but have not been definitively observed
!Majorana, 1937; Wilczek, 2009". A neutrino might be a
Majorana fermion. Efforts to observe certain lepton
number violating neutrinoless double % decay processes
may resolve that issue !Avignone, Elliott, and Engel,
2008". In condensed-matter physics, Majorana fermions
can arise due to a paired condensate that allows a pair of
fermionic quasiparticles to “disappear” into the conden-
sate. They have been predicted in a number of physical
systems related to the spinless px+ ipy superconductor,
including the Moore-Read state of the &=5/2 quantum
Hall effect !Moore and Read, 1991; Greiter, Wen, and
Wilczek, 1992; Read and Green, 2000", Sr2RuO4 !Das
Sarma, Nayak, and Tewari, 2006", cold fermionic atoms
near a Feshbach resonance !Gurarie, Radzihovsky, and
Andreev, 2005; Tewari et al., 2007", and 2D structures
that combine superconductivity, magnetism, and strong
spin-orbit coupling !Lee, 2009; Sato and Fujimoto, 2009;
Sau et al., 2010". In Sec. V.B we discuss the prospect for
creating Majorana fermion states at interfaces between
topological insulators and ordinary superconductors !Fu
and Kane, 2008".

3. Periodic Table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above !Schnyder et al., 2008; Kitaev, 2009;
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at its ends. The end state spectrum for !b" an ordinary 1D
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topological 2D superconductor with !e" a chiral Majorana edge
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exercise 3

2

of a chiral p-wave superconductor goes back two decades
[6, 7, 8, 9, 10, 11] (with even earlier traces in the particle
physics literature [12]). Recent developments in topolog-
ical states of matter have brought this program closer to
realization [13, 14].

The electron and hole excitations of the superconduc-
tor play the role of particle and antiparticle. Electrons
(filled states at energy E above the Fermi level) and holes
(empty states at �E below the Fermi level) have opposite
charge, but the charge di↵erence of 2e can be absorbed as
a Cooper pair in the superconducting condensate. At the
Fermi level (E = 0, in the middle of the superconducting
gap), the eigenstates are charge neutral superpositions of
electrons and holes.

That the midgap excitations of a superconductor are
Majorana fermions follows from electron-hole symmetry:
The creation and annihilation operators �†(E), �(E) for
an excitation at energy E are related by

�(E) = �†(�E). (1)

At the Fermi level �(0) ⌘ � = �†, so particle and antipar-
ticle coincide. The anticommutation relation for Majo-
rana fermion operators has the unusual form

�
n

�
m

+ �
m

�
n

= 2�
nm

. (2)

The operators of two Majoranas anticommute, as for any
pair of fermions, but the product �2

n

= 1 does not vanish.
Like in the particle physics context, these are just for-

mal manipulations if the state is degenerate — since a
Dirac fermion operator a = 1

2

(�
1

+ i�
2

) is fully equiv-
alent to a pair of Majorana operators. Spin degener-
acy, in particular, needs to be broken in order to real-
ize an unpaired Majorana fermion. The early proposals
[6, 7, 8, 9, 10, 11] were based on an unconventional form
of superconductivity, in which only a single spin band
is involved. Such spin-triplet, p-wave pairing is fragile,
easily destroyed by disorder. Much of the recent excite-
ment followed after Liang Fu and Charles Kane showed
that conventional spin-singlet, s-wave superconductivity
could be used, in combination with the strong spin-orbit
coupling of a topological insulator [15].

The basic mechanism is illustrated in Fig. 1. A three-
dimensional (3D) topological insulator has an insulating
bulk and a metallic surface [13, 14]. The 2D surface
electrons are massless Dirac fermions, very much like in
graphene — but without the spin and valley degeneracies
of graphene. A superconductor deposited on the surface
opens an excitation gap, which can be closed locally by
a magnetic field. The magnetic field penetrates as an
Abrikosov vortex, with subgap states E

n

= (n + ↵)�,
n = 0,±1,±2, . . ., bound to the vortex core [16]. (The
level spacing � ' �2/E

F

is is determined by the super-
conducting gap � and the Fermi energy E

F

.) Electron-
hole symmetry restricts ↵ to the values 0 or 1/2. For
↵ = 0 the zero-mode E

0

= 0 would be a Majorana

FIG. 1 Profile of the superconducting pair potential �(r) in
an Abrikosov vortex (solid curve) and bound electron-hole
states in the vortex core (dashed lines). The left graph shows
the usual sequence of levels in an s-wave superconductor, ar-
ranged symmetrically around zero energy. The right graph
shows the level sequence when superconductivity is induced
on the surface of a 3D topological insulator, with a nonde-
generate state at E = 0. This midgap state is a Majorana
fermion.

fermion in view of Eq. (1), but one would expect zero-
point motion to enforce ↵ = 1/2.
While ↵ = 1/2 indeed holds for the usual massive elec-

trons and holes, 2D massless Dirac fermions have ↵ = 0
— as discovered by Roman Jackiw and Paolo Rossi [12].
The reader familiar with graphene may recall the appear-
ance of a Landau level at zero energy, signifying quanti-
zation of cyclotron motion without the usual 1

2

~!
c

o↵set
from zero-point motion [17]. The absence of a 1

2

� o↵-
set in an Abrikosov vortex has the same origin. Massless
Dirac fermions have their spin pointing in the direction of
motion. A closed orbit produces a phase shift of ⇡ from
the 360� rotation of the spin. This Berry phase adds to
the phase shift of ⇡ in the Bohr-Sommerfeld quantiza-
tion rule, converting destructive interference at E = 0
into constructive interference and shifting the o↵set ↵
from 1/2 to 0.

C. Their potential for quantum computing

The idea to store quantum information in Majorana
fermions originates from Alexei Kitaev [10]. We illustrate
the basic idea in Fig. 2 in the context of a 2D topologi-
cal insulator [18, 19], one dimension lower than in Fig. 1.
The massless Dirac fermions now propagate along a 1D
edge state, again with the spin pointing in the direction
of motion. (This is the helical edge state responsible for
the quantum spin Hall e↵ect [20].) A Majorana fermion
appears as a zero-mode at the interface between a super-
conductor (S) and a magnetic insulator (I).
Fig. 2 shows two zero-modes coupled by tunneling in an

SIS junction, forming a two-level system (a qubit). The
two states |1i and |0i of the qubit are distinguished by

3

FIG. 2 Top view of a 2D topological insulator, contacted
at the edge by two superconducting electrodes separated by
a magnetic tunnel junction. A pair of Majorana fermions
is bound by the superconducting and magnetic gaps. The
tunnel splitting of the bound states depends / cos(�/2) on
the superconducting phase di↵erence �, as indicated in the
plot. The crossing of the levels at � = ⇡ is protected by
quasiparticle parity conservation.

the presence or absence of an unpaired quasiparticle. For
well-separated Majoranas, with an exponentially small
tunnel splitting, this is a nonlocal encoding of quantum
information: Each zero-mode by itself contains no infor-
mation on the quasiparticle parity.

Dephasing of the qubit is avoided by hiding the phase
in much the same way that one would hide the phase
of a complex number by separately storing the real and
imaginary parts. The complex Dirac fermion operator
a = 1

2

(�
1

+ i�
2

) of the qubit is split into two real Ma-
jorana fermion operators �

1

and �
2

. The quasiparticle
parity a†a = 1

2

(1 + i�
1

�
2

) is only accessible by a joint
measurement on the two Majoranas.

While two Majoranas encode one qubit, 2n Majo-
ranas encode the quantum information of n qubits in 2n

nearly degenerate states. Without these degeneracies,
the adiabatic evolution of a state  along a closed loop
in parameter space would simply amount to multiplica-
tion by a phase factor,  7! ei↵ , but now the oper-
ation may result in multiplication by a unitary matrix,
 7! U . Because matrix multiplications do not com-
mute, the order of the operations matters. This produces
the non-Abelian statistics discovered by Gregory Moore
and Nicholas Read [21], in the context of the fractional
quantum Hall e↵ect, and by Read and Dmitry Green [9],
in the context of p-wave superconductors.

The adiabatic interchange (braiding) of two Majorana
bound states is a non-Abelian unitary transformation of
the form

 7! exp
⇣
i
⇡

4
�
z

⌘
 , (3)

with �
z

a Pauli matrix acting on the qubit formed by the
two interchanging Majoranas [22, 23]. Two interchanges

FIG. 3 Illustration of the Shockley mechanism for the for-
mation of bound states at the end points of an atomic chain.
The lower panel shows the potential profile along the chain
and the upper panel shows the corresponding energy levels
as a function of the atomic separation a. The end states ap-
pear upon the closing and reopening of the band gap. Figure
adapted from Ref. 53.

return the Majoranas to their starting position, but the
final state i�

z

 is in general not equivalent to the initial
state  .
An operation of the form (3) is called topological, be-

cause it is fully determined by the topology of the braid-
ing; in particular, the coe�cient in the exponent is pre-
cisely ⇡/4. This could be useful for a quantum computer,
even though not all unitary operations can be performed
by the braiding of Majoranas [24, 25].

II. HOW TO MAKE THEM

The route to Majorana fermions in superconductors
can follow a great variety of pathways. The growing list
of proposals includes Refs. 6, 7, 8, 9, 10, 11, 15, 18, 19, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, and 50. There are so many ways
to make Majorana fermions because the requirements are
so generic: Take a superconductor, remove degeneracies
by breaking spin-rotation and time-reversal symmetries,
and then close and reopen the excitation gap. As the gap
goes through zero, Majorana fermions emerge as zero-
modes bound to magnetic or electrostatic defects [51, 52].

A. Shockley mechanism

From this general perspective, Majorana bound states
can be understood as superconducting counterparts of
the Shockley states from surface physics [53, 54]. The
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  Physical realization: Nanowire with Rashba Spin-orbit
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Majorana Fermions in Semiconductor-Superconductor
Heterostructures (Artificial topological superconductors)

Nanowire on top of a superconductor
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with a minus sign in the brackets, � � B. They corre-

spond to a simple harmonic oscillator Hamiltonian with

ground-state wave function '(y) = (b/(u⇡)

1/4
)e�by

2
/(2u)

and energies E2
n

= 2ub(n + 1/2) ± ub, n = 0, 1, 2, . . ..
For b > 0, the minus sign yields a zero-energy state with

Bogoliubov operator

�†
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/

p
2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
b

(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)

�
d

= �†
d

= (�1 � �2) /
p

2.

y

B
∆

µ

b)

a)

B

∆

µ

y

c)

 −∆
µ

B

d) ∆

µ=0
-B

y e)B

FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we

assume that µ jumps abruptly at y = 0 between µ
�

for

y < 0, and µ
r

at y > 0. The condition for the Majorana

state to form is:

µ2
�

< B2 ��2, µ2
r

> B2 ��2
(7)

We match the wave function at y = 0, using the ansatz

 
r

/ e�kry

for y > 0 and  
l

/ ekly
for y < 0. The

Hamiltonian becomes:
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r

��(�y)k
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)iu⌧
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+B�
x
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(8)

where uk
r,(l)± = �±

�
B2 � µ2

(l)r and the eigenvectors

 r

± = e�(+)kr(l)±y

�
1, e±i✓r(l) , i, �ie±i✓r(l)

�
T

/2 (9)

with ei✓r(l)
= µ

r(l)/B + i
�

1 � µ2
r(l)/B2

. It is straightfor-
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
cm/sec and m = ~2/�2
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0.015m
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, with m
e

the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where

B2 � (µ2
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BSO$

S%wave
$superc

onduct
or$

Nanowire$

Bext$

Kitaev Phys. Usp. ’01 ; Oreg et al., PRL ’10

Introduction Majorana Dot Results Conclusions

Majorana Fermions in Semiconductor-Superconductor
Heterostructures (Artificial topological superconductors)

Nanowire on top of a superconductor

H =

R
dy †

(y)H (y)  

†
= ( †

", 
†
#, #, � ")

H = [p2/2m � µ(y)]⌧
z

+ ↵(y)p�
z

⌧
z

+ B(y)�
x

+�(y)⌧
x

E0 = E(p = 0) = |B �
p
�

2
+ µ2| QPT at: B2

= �

2
+ µ2

3

with a minus sign in the brackets, � � B. They corre-

spond to a simple harmonic oscillator Hamiltonian with

ground-state wave function '(y) = (b/(u⇡)

1/4
)e�by

2
/(2u)

and energies E2
n

= 2ub(n + 1/2) ± ub, n = 0, 1, 2, . . ..
For b > 0, the minus sign yields a zero-energy state with

Bogoliubov operator

�†
b

= �
b

=

1p
2

(�1 � �2) =

1

2

�
 " � i # + i †

# +  †
"

�

�1 = 1/
p

2

�
 †

" +  "

�
; �2 = 1/(

p
2i)

�
 †

# �  #

�
. (6)

The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/

p
2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
b

(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].
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port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-
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sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale
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6
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, with m
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the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/
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2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
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(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we

assume that µ jumps abruptly at y = 0 between µ
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for

y < 0, and µ
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at y > 0. The condition for the Majorana

state to form is:
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
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SO2� =

0.015m
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, with m
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the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/
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2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of
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renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.
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the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
cm/sec and m = ~2/�2

SO2� =

0.015m
e

, with m
e

the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/

p
2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
b

(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)

�
d

= �†
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we

assume that µ jumps abruptly at y = 0 between µ
�

for

y < 0, and µ
r

at y > 0. The condition for the Majorana

state to form is:

µ2
�

< B2 ��2, µ2
r

> B2 ��2
(7)

We match the wave function at y = 0, using the ansatz
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ward to verify that  
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
cm/sec and m = ~2/�2

SO2� =

0.015m
e

, with m
e

the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where

B2 � (µ2
+ �

2
) = 0. A varying chemical potential, as
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stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
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wire. Each crossing with � = 0 hosts two Majorana states.
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spin-orbit interaction exist. In carbon nanotubes, spin-
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the direction of propagation, requiring that the tube is
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± = B2 +�2 + ⇠2p + (↵p)2 ± 2
q

B2(�2 + ⇠2p) + (↵p)2⇠2p

2

The emerging spectrum for constant µ, u, ∆, and B,
is conveniently obtained by squaring the Hamiltonian
twice. This straightforwardly yields the expression:

E2
± = B2+∆2+ ξ2p +(up)2±2

√

B2∆2 +B2ξ2p + (up)2ξ2p
(2)

where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
Fermi momenta corresponding to ξp ± up = 0. We will
denote these gaps as E0 and E1, respectively.
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√

B2
−∆2 =

√

21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
√

∆2 + µ2|. (3)

For B2 > ∆2 + µ2, E0 is a spin gap due to the Zeeman
field (or strong interaction), while for B2 < ∆2 + µ2 it
is a superconducting gap, thus when B2 = ∆2 + µ2 a
quantum phase transition occurs. At the same time the
gap E1 near p2 = 2µm is always a superconducting gap,
as we require ∆ to always remain finite.
The phase transition evident in E0 allows the forma-

tion of Majorana states. Indeed, the dependence of E0

on B, ∆, and µ enables us to construct zero-energy Ma-
jorana states in various ways. As in edge states of 2D
topological insulators [4], a Majorana bound state will
form when B changes in space and crosses ∆, e.g. at
y = 0 (cf. Fig 2b), or when ∆ varies in space and crosses
B (cf. Fig 2d).
Here we emphasize, however, a third possibility: vary-

ing the chemical potential, µ. Let us assume that B > ∆
so that for µ = 0 we have a spin gap E0. But when
µ >

√
B2 −∆2, the gap E0, Eq. (3), is clearly supercon-

ducting. Thus, we can form a Majorana state by tuning
µ between these two values (cf. Fig 2c). We note that
changes in µ do not significantly influence the gap E1, so
that the electronic states near ±kF do not play a role.
The one-dimensional geometry allows for a simple

demonstration of how to form Majorana states where
their wave functions can be obtained essentially exactly.
Let us consider these examples in a long ring with one
conducting channel, in proximity to a superconductor
and a Zeeman field, as illustrated in Fig. 2a. Since the
relevant momenta are near p = 0, in the treatment below
we use the Hamiltonian linearized in that region:

H = up σzτz − µ(y)τz +B(y)σx +∆(y)τx (4)

Spatially varying B. Assume ∆ > 0 is constant,
µ = 0, and that B > ∆ for y > 0 and B < ∆ for y < 0
(Fig. 2b; note that the periodic boundary conditions re-
quire another point where B = ∆). Near the crossing
point y = 0, we write B(y) = ∆ + by. Due to particle-
hole symmetry, it is useful to square the Hamiltonian
Eq. (4) to diagonalize it. In addition to the square of
each term and the mixed B∆ term, we obtain a term
{upσzτz , Bσx} = iσyτzu[p,B] = σyτzub which arises be-
cause B depends on space and does not anticommute
with the spin-orbit coupling. Collecting all terms, we
have

H2
b = (up)2 +B(y)2 +∆2 + ubσyτz + 2∆B(y)σxτx (5)

Rotating H2
b by U †

b = 1/2 (τz − iτx − iσxτz + σxτx), we

find that Ub · H2
b · U †

b is diagonal with components

(up)2 + (∆± B)2 ± ub. The interesting modes are those
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where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
Fermi momenta corresponding to ξp ± up = 0. We will
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√

B2
−∆2 =
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21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
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∆2 + µ2|. (3)
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field (or strong interaction), while for B2 < ∆2 + µ2 it
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/

p
2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
b

(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)

�
d

= �†
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we

assume that µ jumps abruptly at y = 0 between µ
�

for

y < 0, and µ
r

at y > 0. The condition for the Majorana

state to form is:

µ2
�

< B2 ��2, µ2
r

> B2 ��2
(7)

We match the wave function at y = 0, using the ansatz
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
cm/sec and m = ~2/�2

SO2� =

0.015m
e

, with m
e

the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where

B2 � (µ2
+ �

2
) = 0. A varying chemical potential, as
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.
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it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is
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The emerging spectrum for constant µ, u, ∆, and B,
is conveniently obtained by squaring the Hamiltonian
twice. This straightforwardly yields the expression:

E2
± = B2+∆2+ ξ2p +(up)2±2

√

B2∆2 +B2ξ2p + (up)2ξ2p
(2)

where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
Fermi momenta corresponding to ξp ± up = 0. We will
denote these gaps as E0 and E1, respectively.
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√

B2
−∆2 =

√

21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
√

∆2 + µ2|. (3)

For B2 > ∆2 + µ2, E0 is a spin gap due to the Zeeman
field (or strong interaction), while for B2 < ∆2 + µ2 it
is a superconducting gap, thus when B2 = ∆2 + µ2 a
quantum phase transition occurs. At the same time the
gap E1 near p2 = 2µm is always a superconducting gap,
as we require ∆ to always remain finite.
The phase transition evident in E0 allows the forma-

tion of Majorana states. Indeed, the dependence of E0

on B, ∆, and µ enables us to construct zero-energy Ma-
jorana states in various ways. As in edge states of 2D
topological insulators [4], a Majorana bound state will
form when B changes in space and crosses ∆, e.g. at
y = 0 (cf. Fig 2b), or when ∆ varies in space and crosses
B (cf. Fig 2d).
Here we emphasize, however, a third possibility: vary-

ing the chemical potential, µ. Let us assume that B > ∆
so that for µ = 0 we have a spin gap E0. But when
µ >

√
B2 −∆2, the gap E0, Eq. (3), is clearly supercon-

ducting. Thus, we can form a Majorana state by tuning
µ between these two values (cf. Fig 2c). We note that
changes in µ do not significantly influence the gap E1, so
that the electronic states near ±kF do not play a role.
The one-dimensional geometry allows for a simple

demonstration of how to form Majorana states where
their wave functions can be obtained essentially exactly.
Let us consider these examples in a long ring with one
conducting channel, in proximity to a superconductor
and a Zeeman field, as illustrated in Fig. 2a. Since the
relevant momenta are near p = 0, in the treatment below
we use the Hamiltonian linearized in that region:

H = up σzτz − µ(y)τz +B(y)σx +∆(y)τx (4)

Spatially varying B. Assume ∆ > 0 is constant,
µ = 0, and that B > ∆ for y > 0 and B < ∆ for y < 0
(Fig. 2b; note that the periodic boundary conditions re-
quire another point where B = ∆). Near the crossing
point y = 0, we write B(y) = ∆ + by. Due to particle-
hole symmetry, it is useful to square the Hamiltonian
Eq. (4) to diagonalize it. In addition to the square of
each term and the mixed B∆ term, we obtain a term
{upσzτz , Bσx} = iσyτzu[p,B] = σyτzub which arises be-
cause B depends on space and does not anticommute
with the spin-orbit coupling. Collecting all terms, we
have

H2
b = (up)2 +B(y)2 +∆2 + ubσyτz + 2∆B(y)σxτx (5)

Rotating H2
b by U †

b = 1/2 (τz − iτx − iσxτz + σxτx), we

find that Ub · H2
b · U †

b is diagonal with components

(up)2 + (∆± B)2 ± ub. The interesting modes are those

2
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B2∆2 +B2ξ2p + (up)2ξ2p
(2)

where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
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denote these gaps as E0 and E1, respectively.
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√
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−∆2 =
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21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
√

∆2 + µ2|. (3)

For B2 > ∆2 + µ2, E0 is a spin gap due to the Zeeman
field (or strong interaction), while for B2 < ∆2 + µ2 it
is a superconducting gap, thus when B2 = ∆2 + µ2 a
quantum phase transition occurs. At the same time the
gap E1 near p2 = 2µm is always a superconducting gap,
as we require ∆ to always remain finite.
The phase transition evident in E0 allows the forma-
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with a minus sign in the brackets, � � B. They corre-

spond to a simple harmonic oscillator Hamiltonian with

ground-state wave function '(y) = (b/(u⇡)
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and energies E2
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= 2ub(n + 1/2) ± ub, n = 0, 1, 2, . . ..
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The Majorana state at the second crossing point along

the ring follows by b ! �b. Thus, this zero-energy state

is E+
0 = 0 with Majorana operator �i/

p
2(�1 + �2).

Spatially varying �. For the case where � depends

on y, we assume �(y) = B + dy, µ = 0, and a constant

B (Fig.2c). The Hamiltonian here is similar to that in

the y-dependent B case, if we exchange ⌧ and � in Eqs.

(4) and (5). Therefore, the Majorana states emerge in

this case in exactly the same way as above, except with

the diagonalizing matrices being U †
d

= U †
b

(⌧ � �), and

with b and � exchanged with d and B respectively in

the resulting wave function. This yields (for positive d)
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.

Spatially varying µ. If B > � in the entire wire,

then at the interface between spin-gap regions with µ2 <
B2 ��2

and pairing gap regions with |µ|2 > B2 ��2
, a

Majorana state will also form (Fig.2d). In this case, we

assume that µ jumps abruptly at y = 0 between µ
�

for

y < 0, and µ
r

at y > 0. The condition for the Majorana

state to form is:

µ2
�

< B2 ��2, µ2
r

> B2 ��2
(7)

We match the wave function at y = 0, using the ansatz
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ward to verify that  
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operators, with  a simple c-number. Thus, we find that

the wave function  (y) of the Majorana state is
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which exhausts all possibilities for isolated majorana

states.

Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for

positive p and spin-down electrons for negative p, remi-

niscent of a one-dimensional p-wave superconductor [10].

Recalling that vortices of a p-wave superconductor sup-

port a zero-energy bound state [2, 6, 11], we expect the

formation of Majorana states when � changes sign (Fig.

2e). Due to the broken azimuthal symmetry, however,

two inseparable Majorana states form where � vanishes.

Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a su�-

ciently strong spin-orbit interaction. Spin-orbit coupling

in wires adiabatically connected to reservoirs was con-

sidered long ago, both without electron-electron interac-

tions [12] and with interactions [13] in the framework of

Luttinger-liquid theory. Recently, this problem attracted

renewed theoretical [14] and experimental [15] interest,

both with and without external magnetic field.

Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-

orbit coupling arises due to curvature e�ects [16]. Here

it is preferable to have a strong spin-orbit coupling along

the direction of propagation, requiring that the tube is

bent along its axis. Alternatively, one could introduce

a strong electric field perpendicular to the axis. Per-

haps a more promising candidate is a wire of InAs in the

wurtzite structure which is known to have strong spin-

orbit coupling [17]. The velocity u in the Hamiltonian Eq.

(1) is related to the experimentally measured length scale

�S0 = 100nm = mu and �SO = 250µV = mu2/2 via

u ⇠ ~2�SO�SO � 7.6�10

6
cm/sec and m = ~2/�2

SO2� =

0.015m
e

, with m
e

the free electron mass. Similar num-

bers (with � = 280µV ) describe newly fabricated InSb

wires, except with a large g-factor of ⇠ 50, compared to

g ⇠ 8 in InAs, requiring only a small, relatively innocu-

ous to the SC, magnetic field[18].

The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-

induced superconductivity, or, most importantly, the

chemical potential, and will form near points where

B2 � (µ2
+ �

2
) = 0. A varying chemical potential, as
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when � varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when �
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with � = 0 hosts two Majorana states.
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The emerging spectrum for constant µ, u, ∆, and B,
is conveniently obtained by squaring the Hamiltonian
twice. This straightforwardly yields the expression:

E2
± = B2+∆2+ ξ2p +(up)2±2

√

B2∆2 +B2ξ2p + (up)2ξ2p
(2)

where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
Fermi momenta corresponding to ξp ± up = 0. We will
denote these gaps as E0 and E1, respectively.
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√

B2
−∆2 =

√

21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
√

∆2 + µ2|. (3)

For B2 > ∆2 + µ2, E0 is a spin gap due to the Zeeman
field (or strong interaction), while for B2 < ∆2 + µ2 it
is a superconducting gap, thus when B2 = ∆2 + µ2 a
quantum phase transition occurs. At the same time the
gap E1 near p2 = 2µm is always a superconducting gap,
as we require ∆ to always remain finite.
The phase transition evident in E0 allows the forma-

tion of Majorana states. Indeed, the dependence of E0

on B, ∆, and µ enables us to construct zero-energy Ma-
jorana states in various ways. As in edge states of 2D
topological insulators [4], a Majorana bound state will
form when B changes in space and crosses ∆, e.g. at
y = 0 (cf. Fig 2b), or when ∆ varies in space and crosses
B (cf. Fig 2d).
Here we emphasize, however, a third possibility: vary-

ing the chemical potential, µ. Let us assume that B > ∆
so that for µ = 0 we have a spin gap E0. But when
µ >

√
B2 −∆2, the gap E0, Eq. (3), is clearly supercon-

ducting. Thus, we can form a Majorana state by tuning
µ between these two values (cf. Fig 2c). We note that
changes in µ do not significantly influence the gap E1, so
that the electronic states near ±kF do not play a role.
The one-dimensional geometry allows for a simple

demonstration of how to form Majorana states where
their wave functions can be obtained essentially exactly.
Let us consider these examples in a long ring with one
conducting channel, in proximity to a superconductor
and a Zeeman field, as illustrated in Fig. 2a. Since the
relevant momenta are near p = 0, in the treatment below
we use the Hamiltonian linearized in that region:

H = up σzτz − µ(y)τz +B(y)σx +∆(y)τx (4)

Spatially varying B. Assume ∆ > 0 is constant,
µ = 0, and that B > ∆ for y > 0 and B < ∆ for y < 0
(Fig. 2b; note that the periodic boundary conditions re-
quire another point where B = ∆). Near the crossing
point y = 0, we write B(y) = ∆ + by. Due to particle-
hole symmetry, it is useful to square the Hamiltonian
Eq. (4) to diagonalize it. In addition to the square of
each term and the mixed B∆ term, we obtain a term
{upσzτz , Bσx} = iσyτzu[p,B] = σyτzub which arises be-
cause B depends on space and does not anticommute
with the spin-orbit coupling. Collecting all terms, we
have

H2
b = (up)2 +B(y)2 +∆2 + ubσyτz + 2∆B(y)σxτx (5)

Rotating H2
b by U †

b = 1/2 (τz − iτx − iσxτz + σxτx), we

find that Ub · H2
b · U †

b is diagonal with components

(up)2 + (∆± B)2 ± ub. The interesting modes are those
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the spin-orbit coupling strength. (b) Excitation spectrum of
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Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
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B = 1/4,∆ = .1, µ =
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As hinted above, it is the zero-momentum gap, E0,
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Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
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with a minus sign in the brackets, ∆ − B. They corre-
spond to a simple harmonic oscillator Hamiltonian with
ground-state wave function ϕ(y) = (b/(uπ)1/4)e−by2/(2u)

and energies E2
n = 2ub(n + 1/2) ± ub, n = 0, 1, 2, . . ..

For b > 0, the minus sign yields a zero-energy state with
Bogoliubov operator

γ†b = γb =
1√
2
(η1 − η2) =

1

2

(

ψ↑ − iψ↓ + iψ†
↓ + ψ†

↑

)

η1 = 1/
√
2
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ψ†
↑ + ψ↑

)
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√
2i)

(

ψ†
↓ − ψ↓

)

. (6)

The Majorana state at the second crossing point along
the ring follows by b → −b. Thus, this zero-energy state
is E+

0 = 0 with Majorana operator −i/
√
2(η1 + η2).

Spatially varying ∆. For the case where ∆ depends
on y, we assume ∆(y) = B + dy, µ = 0, and a constant
B (Fig.2c). The Hamiltonian here is similar to that in
the y-dependent B case, if we exchange τ and σ in Eqs.
(4) and (5). Therefore, the Majorana states emerge in
this case in exactly the same way as above, except with
the diagonalizing matrices being U †

d = U †
b (τ ↔ σ), and

with b and ∆ exchanged with d and B respectively in
the resulting wave function. This yields (for positive d)
γd = γ†d = (η1 − η2) /

√
2.
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when ∆ varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when ∆
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with ∆ = 0 hosts two Majorana states.

Spatially varying µ. If B > ∆ in the entire wire,
then at the interface between spin-gap regions with µ2 <
B2 −∆2 and pairing gap regions with |µ|2 > B2 −∆2, a
Majorana state will also form (Fig.2d). In this case, we
assume that µ jumps abruptly at y = 0 between µ! for
y < 0, and µr at y > 0. The condition for the Majorana
state to form is:

µ2
! < B2 −∆2, µ2

r > B2 −∆2 (7)

We match the wave function at y = 0, using the ansatz
ψr ∝ e−kry for y > 0 and ψl ∝ ekly for y < 0. The
Hamiltonian becomes:

H = −(Θ(y)kr−Θ(−y)kl)iuτzσz −µτz +Bσx+∆τx = 0
(8)

where ukr,(l)± = ∆±
√

B2 − µ2
(l)r and the eigenvectors

ψr
± = e−(+)kr(l)±y

(

1, e±iθr(l) , i,−ie±iθr(l)
)T

/2 (9)

with eiθr(l) = µr(l)/B+ i
√

1− µ2
r(l)/B

2. It is straightfor-

ward to verify that ψr(l) · Ψ = (ψr(l) ·Ψ)† are Majorana
operators, with ψ a simple c-number. Thus, we find that
the wave function ψ(y) of the Majorana state is

{

2i sin θr · ψ(0)!
− y < 0

(e−iθl − e−iθr)ψ(0)r
+ + (eiθr − e−iθl)ψ(0)r

− y > 0
,

(10)
which exhausts all possibilities for isolated majorana
states.
Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for
positive p and spin-down electrons for negative p, remi-
niscent of a one-dimensional p-wave superconductor [10].
Recalling that vortices of a p-wave superconductor sup-
port a zero-energy bound state [2, 6, 11], we expect the
formation of Majorana states when ∆ changes sign (Fig.
2e). Due to the broken azimuthal symmetry, however,
two inseparable Majorana states form where ∆ vanishes.
Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a suffi-
ciently strong spin-orbit interaction. Spin-orbit coupling
in wires adiabatically connected to reservoirs was con-
sidered long ago, both without electron-electron interac-
tions [12] and with interactions [13] in the framework of
Luttinger-liquid theory. Recently, this problem attracted
renewed theoretical [14] and experimental [15] interest,
both with and without external magnetic field.
Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-
orbit coupling arises due to curvature effects [16]. Here
it is preferable to have a strong spin-orbit coupling along
the direction of propagation, requiring that the tube is
bent along its axis. Alternatively, one could introduce
a strong electric field perpendicular to the axis. Per-
haps a more promising candidate is a wire of InAs in the
wurtzite structure which is known to have strong spin-
orbit coupling [17]. The velocity u in the Hamiltonian Eq.
(1) is related to the experimentally measured length scale
λS0 = 100nm = mu and ∆SO = 250µV = mu2/2 via
u ∼ !2∆SOλSO ≈ 7.6×106cm/sec and m = !2/λ2SO2∆ =
0.015me, with me the free electron mass. Similar num-
bers (with ∆ = 280µV ) describe newly fabricated InSb
wires, except with a large g-factor of ∼ 50, compared to
g ∼ 8 in InAs, requiring only a small, relatively innocu-
ous to the SC, magnetic field[18].
The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-
induced superconductivity, or, most importantly, the
chemical potential, and will form near points where
B2 − (µ2 + ∆2) = 0. A varying chemical potential, as
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B (Fig.2c). The Hamiltonian here is similar to that in
the y-dependent B case, if we exchange τ and σ in Eqs.
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this case in exactly the same way as above, except with
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when ∆ varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when ∆
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with ∆ = 0 hosts two Majorana states.

Spatially varying µ. If B > ∆ in the entire wire,
then at the interface between spin-gap regions with µ2 <
B2 −∆2 and pairing gap regions with |µ|2 > B2 −∆2, a
Majorana state will also form (Fig.2d). In this case, we
assume that µ jumps abruptly at y = 0 between µ! for
y < 0, and µr at y > 0. The condition for the Majorana
state to form is:

µ2
! < B2 −∆2, µ2

r > B2 −∆2 (7)

We match the wave function at y = 0, using the ansatz
ψr ∝ e−kry for y > 0 and ψl ∝ ekly for y < 0. The
Hamiltonian becomes:

H = −(Θ(y)kr−Θ(−y)kl)iuτzσz −µτz +Bσx+∆τx = 0
(8)

where ukr,(l)± = ∆±
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(l)r and the eigenvectors
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± = e−(+)kr(l)±y
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)T

/2 (9)

with eiθr(l) = µr(l)/B+ i
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2. It is straightfor-

ward to verify that ψr(l) · Ψ = (ψr(l) ·Ψ)† are Majorana
operators, with ψ a simple c-number. Thus, we find that
the wave function ψ(y) of the Majorana state is
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2i sin θr · ψ(0)!
− y < 0

(e−iθl − e−iθr)ψ(0)r
+ + (eiθr − e−iθl)ψ(0)r

− y > 0
,

(10)
which exhausts all possibilities for isolated majorana
states.
Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for
positive p and spin-down electrons for negative p, remi-
niscent of a one-dimensional p-wave superconductor [10].
Recalling that vortices of a p-wave superconductor sup-
port a zero-energy bound state [2, 6, 11], we expect the
formation of Majorana states when ∆ changes sign (Fig.
2e). Due to the broken azimuthal symmetry, however,
two inseparable Majorana states form where ∆ vanishes.
Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a suffi-
ciently strong spin-orbit interaction. Spin-orbit coupling
in wires adiabatically connected to reservoirs was con-
sidered long ago, both without electron-electron interac-
tions [12] and with interactions [13] in the framework of
Luttinger-liquid theory. Recently, this problem attracted
renewed theoretical [14] and experimental [15] interest,
both with and without external magnetic field.
Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-
orbit coupling arises due to curvature effects [16]. Here
it is preferable to have a strong spin-orbit coupling along
the direction of propagation, requiring that the tube is
bent along its axis. Alternatively, one could introduce
a strong electric field perpendicular to the axis. Per-
haps a more promising candidate is a wire of InAs in the
wurtzite structure which is known to have strong spin-
orbit coupling [17]. The velocity u in the Hamiltonian Eq.
(1) is related to the experimentally measured length scale
λS0 = 100nm = mu and ∆SO = 250µV = mu2/2 via
u ∼ !2∆SOλSO ≈ 7.6×106cm/sec and m = !2/λ2SO2∆ =
0.015me, with me the free electron mass. Similar num-
bers (with ∆ = 280µV ) describe newly fabricated InSb
wires, except with a large g-factor of ∼ 50, compared to
g ∼ 8 in InAs, requiring only a small, relatively innocu-
ous to the SC, magnetic field[18].
The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-
induced superconductivity, or, most importantly, the
chemical potential, and will form near points where
B2 − (µ2 + ∆2) = 0. A varying chemical potential, as
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The emerging spectrum for constant µ, u, ∆, and B,
is conveniently obtained by squaring the Hamiltonian
twice. This straightforwardly yields the expression:

E2
± = B2+∆2+ ξ2p +(up)2±2

√

B2∆2 +B2ξ2p + (up)2ξ2p
(2)

where ξp = p2/2m− µ. Fig. 1 displays the spectrum for
several values of B, ∆, and µ. As these parameters vary
(while B and ∆ remain nonzero), a gap closing and re-
opening indicates a topological phase transition. Gener-
ically, we expect gaps appearing near p = 0 and near the
Fermi momenta corresponding to ξp ± up = 0. We will
denote these gaps as E0 and E1, respectively.
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FIG. 1. (a) Single-particle spectrum for µ = B = ∆ = 0.
(The two colors denote the different spin components). The
energy (momentum) scale is set by mu2/2 (by mu), with u
the spin-orbit coupling strength. (b) Excitation spectrum of
adding or removing an electron for µ = B = ∆ = 0. (c)
Excitation spectrum for B = 1/4, ∆ = µ = 0 where a spin
gap opens near p = 0. (d) B = 2.5,∆ = 1/2, µ = 0 with a
superconducting gap in the wings and a spin gap near the
origin. This situation is analogous to a p-wave supercon-
ductor. We refer to this phase as the ”spin gap phase” (e)
B = 1/4 = ∆ = 1/4, µ = 0. The gap near p = 0 closes,
the gap at finite p persists. At this critical point a quan-
tum phase transition occurs. (f) B = 1/4,∆ = 0.3, µ = 0.
All gaps in the excitation spectrum are controlled by ∆. (g)
B = 1/4,∆ = .1, µ =

√

B2
−∆2 =

√

21/20. The gap at
p = 0 closes due to the shift in chemical potentia l. (h)
A superconducting gap opens up in the entire spectrum due
to the shift of the chemical potential above its critical value
∆ = 1/10, B = 1/4, µ = 0.3.

As hinted above, it is the zero-momentum gap, E0,
which is crucial for our understanding of the emerging
Majorana states. Examining E− at p = 0 we notice that

E0 = E(p = 0) = |B −
√

∆2 + µ2|. (3)

For B2 > ∆2 + µ2, E0 is a spin gap due to the Zeeman
field (or strong interaction), while for B2 < ∆2 + µ2 it
is a superconducting gap, thus when B2 = ∆2 + µ2 a
quantum phase transition occurs. At the same time the
gap E1 near p2 = 2µm is always a superconducting gap,
as we require ∆ to always remain finite.
The phase transition evident in E0 allows the forma-

tion of Majorana states. Indeed, the dependence of E0

on B, ∆, and µ enables us to construct zero-energy Ma-
jorana states in various ways. As in edge states of 2D
topological insulators [4], a Majorana bound state will
form when B changes in space and crosses ∆, e.g. at
y = 0 (cf. Fig 2b), or when ∆ varies in space and crosses
B (cf. Fig 2d).
Here we emphasize, however, a third possibility: vary-

ing the chemical potential, µ. Let us assume that B > ∆
so that for µ = 0 we have a spin gap E0. But when
µ >

√
B2 −∆2, the gap E0, Eq. (3), is clearly supercon-

ducting. Thus, we can form a Majorana state by tuning
µ between these two values (cf. Fig 2c). We note that
changes in µ do not significantly influence the gap E1, so
that the electronic states near ±kF do not play a role.
The one-dimensional geometry allows for a simple

demonstration of how to form Majorana states where
their wave functions can be obtained essentially exactly.
Let us consider these examples in a long ring with one
conducting channel, in proximity to a superconductor
and a Zeeman field, as illustrated in Fig. 2a. Since the
relevant momenta are near p = 0, in the treatment below
we use the Hamiltonian linearized in that region:

H = up σzτz − µ(y)τz +B(y)σx +∆(y)τx (4)

Spatially varying B. Assume ∆ > 0 is constant,
µ = 0, and that B > ∆ for y > 0 and B < ∆ for y < 0
(Fig. 2b; note that the periodic boundary conditions re-
quire another point where B = ∆). Near the crossing
point y = 0, we write B(y) = ∆ + by. Due to particle-
hole symmetry, it is useful to square the Hamiltonian
Eq. (4) to diagonalize it. In addition to the square of
each term and the mixed B∆ term, we obtain a term
{upσzτz , Bσx} = iσyτzu[p,B] = σyτzub which arises be-
cause B depends on space and does not anticommute
with the spin-orbit coupling. Collecting all terms, we
have

H2
b = (up)2 +B(y)2 +∆2 + ubσyτz + 2∆B(y)σxτx (5)

Rotating H2
b by U †

b = 1/2 (τz − iτx − iσxτz + σxτx), we

find that Ub · H2
b · U †

b is diagonal with components

(up)2 + (∆± B)2 ± ub. The interesting modes are those

3

with a minus sign in the brackets, ∆ − B. They corre-
spond to a simple harmonic oscillator Hamiltonian with
ground-state wave function ϕ(y) = (b/(uπ)1/4)e−by2/(2u)

and energies E2
n = 2ub(n + 1/2) ± ub, n = 0, 1, 2, . . ..

For b > 0, the minus sign yields a zero-energy state with
Bogoliubov operator

γ†b = γb =
1√
2
(η1 − η2) =

1

2

(

ψ↑ − iψ↓ + iψ†
↓ + ψ†

↑
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η1 = 1/
√
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↑ + ψ↑

)

; η2 = 1/(
√
2i)

(
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↓ − ψ↓

)

. (6)

The Majorana state at the second crossing point along
the ring follows by b → −b. Thus, this zero-energy state
is E+

0 = 0 with Majorana operator −i/
√
2(η1 + η2).

Spatially varying ∆. For the case where ∆ depends
on y, we assume ∆(y) = B + dy, µ = 0, and a constant
B (Fig.2c). The Hamiltonian here is similar to that in
the y-dependent B case, if we exchange τ and σ in Eqs.
(4) and (5). Therefore, the Majorana states emerge in
this case in exactly the same way as above, except with
the diagonalizing matrices being U †

d = U †
b (τ ↔ σ), and

with b and ∆ exchanged with d and B respectively in
the resulting wave function. This yields (for positive d)
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FIG. 2. (a) Wire in a ring geometry. Both halves have con-
stant parameters and are joined by short junctions with a
linearly varying parameter. Majorana states (marked by cir-
cles) are formed at the junctions. (b) Majorana state in the
sector p = 0 when B varies. The gap in the finite-p sector
remains finite in the entire wire. (c) Majorana state in the
sector p = 0 when ∆ varies. (d) Majorana state in the sector
p = 0 when µ varies. (e) “p-wave” Majorana state when ∆
changes sign. The sector p = 0 remains gapped in the entire
wire. Each crossing with ∆ = 0 hosts two Majorana states.

Spatially varying µ. If B > ∆ in the entire wire,
then at the interface between spin-gap regions with µ2 <
B2 −∆2 and pairing gap regions with |µ|2 > B2 −∆2, a
Majorana state will also form (Fig.2d). In this case, we
assume that µ jumps abruptly at y = 0 between µ! for
y < 0, and µr at y > 0. The condition for the Majorana
state to form is:

µ2
! < B2 −∆2, µ2

r > B2 −∆2 (7)

We match the wave function at y = 0, using the ansatz
ψr ∝ e−kry for y > 0 and ψl ∝ ekly for y < 0. The
Hamiltonian becomes:

H = −(Θ(y)kr−Θ(−y)kl)iuτzσz −µτz +Bσx+∆τx = 0
(8)

where ukr,(l)± = ∆±
√

B2 − µ2
(l)r and the eigenvectors

ψr
± = e−(+)kr(l)±y

(

1, e±iθr(l) , i,−ie±iθr(l)
)T

/2 (9)

with eiθr(l) = µr(l)/B+ i
√

1− µ2
r(l)/B

2. It is straightfor-

ward to verify that ψr(l) · Ψ = (ψr(l) ·Ψ)† are Majorana
operators, with ψ a simple c-number. Thus, we find that
the wave function ψ(y) of the Majorana state is

{

2i sin θr · ψ(0)!
− y < 0

(e−iθl − e−iθr)ψ(0)r
+ + (eiθr − e−iθl)ψ(0)r

− y > 0
,

(10)
which exhausts all possibilities for isolated majorana
states.
Indeed we must note that when E0 is a spin gap, the

gap E1 is due to pairing between spin-up electrons for
positive p and spin-down electrons for negative p, remi-
niscent of a one-dimensional p-wave superconductor [10].
Recalling that vortices of a p-wave superconductor sup-
port a zero-energy bound state [2, 6, 11], we expect the
formation of Majorana states when ∆ changes sign (Fig.
2e). Due to the broken azimuthal symmetry, however,
two inseparable Majorana states form where ∆ vanishes.
Next we discuss experimental realizations. The main

requirement for our proposal to be feasible is a suffi-
ciently strong spin-orbit interaction. Spin-orbit coupling
in wires adiabatically connected to reservoirs was con-
sidered long ago, both without electron-electron interac-
tions [12] and with interactions [13] in the framework of
Luttinger-liquid theory. Recently, this problem attracted
renewed theoretical [14] and experimental [15] interest,
both with and without external magnetic field.
Several candidate systems for quantum wires with

spin-orbit interaction exist. In carbon nanotubes, spin-
orbit coupling arises due to curvature effects [16]. Here
it is preferable to have a strong spin-orbit coupling along
the direction of propagation, requiring that the tube is
bent along its axis. Alternatively, one could introduce
a strong electric field perpendicular to the axis. Per-
haps a more promising candidate is a wire of InAs in the
wurtzite structure which is known to have strong spin-
orbit coupling [17]. The velocity u in the Hamiltonian Eq.
(1) is related to the experimentally measured length scale
λS0 = 100nm = mu and ∆SO = 250µV = mu2/2 via
u ∼ !2∆SOλSO ≈ 7.6×106cm/sec and m = !2/λ2SO2∆ =
0.015me, with me the free electron mass. Similar num-
bers (with ∆ = 280µV ) describe newly fabricated InSb
wires, except with a large g-factor of ∼ 50, compared to
g ∼ 8 in InAs, requiring only a small, relatively innocu-
ous to the SC, magnetic field[18].
The wire-Majorana states we envision, can be formed

by spatial variations of the Zeeman field, the proximity-
induced superconductivity, or, most importantly, the
chemical potential, and will form near points where
B2 − (µ2 + ∆2) = 0. A varying chemical potential, as
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Figure�S1:�NͲNWͲS�device�fabrication
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device�crossͲsection.
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Signatures�of�Majorana�fermions�in�hybrid�superconductorͲsemiconductor�nanowire�devices
V.�Mourik,�K.�Zuo,�S.M.�Frolov,�S.R.�Plissard,�E.P.A.M.�Bakkers,�L.P.�Kouwenhoven

Nanowire�growth�details. InSb nanowires�are�grown�by�metalorganic vapor�phase�epitaxy
from�gold�catalysts,�as�described�in�Ref.�(15).�The�wires�in�this�work�are�grown�on�Si�
substrates.�First,�stems�that�consists�of�InP�and�InAs�segments�are�grown.�Then�a�stackingͲ
fault�and�dislocationͲfree�zincblende InSb segment�of�high�mobility�(104Ͳ5ͼ104cm2/(Vs)�is�
grown�in�the�111�crystal�direction.�A�single�batch�of�wires�is�used�for�all�NͲNWͲS�devices�in�
this�paper.

NͲNWͲS�device�fabrication�procedure
1)�pͲdoped�silicon�substrates�are�covered�by�285�nm�of�thermal�oxide. Due�to�screening�from�
local�gates�substrates�are�ineffective�as�back�gates.
2)�A�periodic�pattern�of�15�micron�long�and�300�nm�wide�Ti/Au�gates�(5�nm/10nm)�is�defined�
by�100�kV�electron�beam�lithography�and�electron�beam�evaporation.
3)�Bottom�gate�layer�is�covered�by�40�nm�of�lithographically�defined�and�d.c.�sputtered�Si3N4

dielectric.�Areas�for�contacts�to�gates�are�left�free�of�dielectric.
4)�A�second�layer�of�finer�gates�(50�nm�wide,�50�nm�spacing)�is�defined�using�the�same�
method.�Fine�gates�are�fabricated�in�a�separate�step�to�reduce�proximity�exposure.
5)�A�second�layer�of�Si3N4 covers�both�fine�and�wide�gates.�Thus,�wide�gates�are�covered�by�
80�nm�of�dielectric,�fine�gates�are�covered�by�40�nm�of�dielectric.
6)�InSb nanowires�of�80Ͳ120�nm�diameter�are�transferred�onto�the�substrate�containing�gate�
patterns.�Nanowires�land�randomly,�some�are�selected�for�contacting.
7)�Superconducting�contacts�are�defined�by�sputtering�NbTiN (75�nm)�from�a�Nb/Ti�target�
(70/30�at.�%)�with�thin�film�critical�temperature�TC ~�7�K.�Sputtering�done�in�the�group�of�T.M.�
Klapwijk with�assistance�of�D.J.�Thoen.�A�window�in�the�200�nm�thick�PMMA�950k�resist�has�a�
boundary�along�the�center�of�the�nanowire�with�alignment�accuracy�of�20Ͳ30�nm.�Prior�to�
sputtering�nanowires�are�etched�in�Argon�plasma.
8)�Normal�Ti/Au�contacts�(20�nm�Ti/125�nm�Au)�are�made�to�the�nanowires�and�to�the�gates.�
Prior�to�the�deposition�of�Ti/Au�the�nanowires�are�passivated in�ammonium�sulfide.

NbTiNTi/Au
InSb nanowire

silicon�oxide

silicon�nitridewide�gates
fine�gates

B BB(T�I)
A

B

rather than by microtubule reorganization. Thus,
polarization of the DVaxis is independent of the
formation of the microtubule array that defines
the AP axis, as previously proposed.
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Signatures of Majorana Fermions in
Hybrid Superconductor-Semiconductor
Nanowire Devices
V. Mourik,1* K. Zuo,1* S. M. Frolov,1 S. R. Plissard,2 E. P. A. M. Bakkers,1,2 L. P. Kouwenhoven1†

Majorana fermions are particles identical to their own antiparticles. They have been theoretically
predicted to exist in topological superconductors. Here, we report electrical measurements on
indium antimonide nanowires contacted with one normal (gold) and one superconducting
(niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel
barrier between normal and superconducting contacts. In the presence of magnetic fields on the
order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states
remain fixed to zero bias, even when magnetic fields and gate voltages are changed over
considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires
coupled to superconductors.

All elementary particles have an anti-
particle of opposite charge (for example,
an electron and a positron); the meet-

ing of a particle with its antiparticle results in
the annihilation of both. A special class of par-
ticles, called Majorana fermions, are predicted
to exist that are identical to their own anti-
particle (1). They may appear naturally as ele-

mentary particles or emerge as charge-neutral
and zero-energy quasi-particles in a supercon-
ductor (2, 3). Particularly interesting for the
realization of qubits in quantum computing are
pairs of localized Majoranas separated from each
other by a superconducting region in a topolog-
ical phase (4–11).

On the basis of earlier and later semiconductor-
based proposals (6, 7), Lutchyn et al. (8) and
Oreg et al. (9) have outlined the necessary in-
gredients for engineering a nanowire device that
should accommodate pairs of Majoranas. The
starting point is a one-dimensional (1D) nano-
wire made of semiconducting material with
strong spin-orbit interaction (Fig. 1A). In the
presence of a magnetic field B along the axis

of the nanowire (i.e., a Zeeman field), a gap is
opened at the crossing between the two spin-
orbit bands. If the Fermi energy m is inside this
gap, the degeneracy is twofold, whereas outside
the gap it is fourfold. The next ingredient is to
connect the semiconducting nanowire to an
ordinary s-wave superconductor (Fig. 1A). The
proximity of the superconductor induces pairing
in the nanowire between electron states of oppo-
site momentum and opposite spins and induces
a gap, D. Combining this twofold degeneracy
with an induced gap creates a topological super-
conductor (4–11). The condition for a topolog-
ical phase is EZ > (D2 + m2)1/2, with the Zeeman
energy EZ = gmBB/2 (g is the Landé g factor, mB
is the Bohr magneton). Near the ends of the
wire, the electron density is reduced to zero, and
subsequently, m will drop below the subband
energies such that m2 becomes large. At the points
in space where EZ = (D2 + m2)1/2, Majoranas arise
as zero-energy (i.e., midgap) bound states—one
at each end of the wire (4, 8–11).

Despite their zero charge and energy, Ma-
joranas can be detected in electrical measure-
ments. Tunneling spectroscopy from a normal
conductor into the end of the wire should re-
veal a state at zero energy (12–14). Here, we
report the observation of such zero-energy peaks
and show that they rigidly stick to zero energy
while changing B and gate voltages over large
ranges. Furthermore, we show that this zero-
bias peak (ZBP) is absent if we take out any
of the necessary ingredients of the Majorana
proposals; that is, the rigid ZBP disappears for
zero magnetic field, for a magnetic field par-
allel to the spin-orbit field, or when we take
out the superconductivity.
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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Fig. 3.Gate-voltage dependence. (A) A 2D color plot of dI/dV versus V and voltage on gate 2 at 175 mT
and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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Fig. 3.Gate-voltage dependence. (A) A 2D color plot of dI/dV versus V and voltage on gate 2 at 175 mT
and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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  Physical realization: Experiment
states that change with energy when changing
gate voltage (highlighted with yellow dotted
lines); these are the same resonances as shown
in Fig. 2B and analyzed in (20). The second
observation is that the ZBP from Fig. 2, which
we take at 175 mT, remains stuck to zero bias
while changing the gate voltage over a range
of several volts. Clearly, our gates work be-
cause they change the Andreev bound states by
~0.2 meV per volt on the gate. Panels (B) and
(C) in Fig. 3 underscore this observation with
voltage sweeps on a different gate, number 4.
Fig. 3B shows that, at zero magnetic field, no
ZBP is observed. At 200 mT, the ZBP becomes
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and in two different setups. Our general obser-
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the voltage on any of our gates over large
ranges; (iii) the ZBP comes and goes with the
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Fig. 4. Magnetic-field ori-
entation dependence. dI/dV
versus V and varying the an-
gle of B at fixed magnitude.
Data fromdevice 2 aremea-
sured in a different setup
at ~150 mK; zero angle is
along the nanowire for both
panels. (A) Rotation of |B| =
200 mT in the plane of the
substrate. The ZBP is at a
maximum when B is parallel
and is absent when B is per-
pendicular to the wire. (B)
Rotation of |B| = 150mT in
the plane perpendicular to
Bso. The ZBP is now present
for all angles. The panels on
top show linecuts at angles
with corresponding colors in
(A) and (B). Panels on the
right side illustrate, from top
to bottom: (i) For B perpen-
dicular to Bso a gap opens
lifting fermion doubling, as
is required for Majoranas.
(ii) For B parallel to Bso, the
two spin bands from Fig. 1A
shift vertically by 2EZ. In this
configuration, a zero-energy
Majorana is not expected.
(iii) Panel of rotation of B for data in (A) is shown. (iv) Panel of rotation of B for data in (B) is shown.
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FIG. 2 Top view of a 2D topological insulator, contacted
at the edge by two superconducting electrodes separated by
a magnetic tunnel junction. A pair of Majorana fermions
is bound by the superconducting and magnetic gaps. The
tunnel splitting of the bound states depends / cos(�/2) on
the superconducting phase di↵erence �, as indicated in the
plot. The crossing of the levels at � = ⇡ is protected by
quasiparticle parity conservation.

the presence or absence of an unpaired quasiparticle. For
well-separated Majoranas, with an exponentially small
tunnel splitting, this is a nonlocal encoding of quantum
information: Each zero-mode by itself contains no infor-
mation on the quasiparticle parity.

Dephasing of the qubit is avoided by hiding the phase
in much the same way that one would hide the phase
of a complex number by separately storing the real and
imaginary parts. The complex Dirac fermion operator
a = 1

2

(�
1

+ i�
2

) of the qubit is split into two real Ma-
jorana fermion operators �

1

and �
2

. The quasiparticle
parity a†a = 1

2

(1 + i�
1

�
2

) is only accessible by a joint
measurement on the two Majoranas.

While two Majoranas encode one qubit, 2n Majo-
ranas encode the quantum information of n qubits in 2n

nearly degenerate states. Without these degeneracies,
the adiabatic evolution of a state  along a closed loop
in parameter space would simply amount to multiplica-
tion by a phase factor,  7! ei↵ , but now the oper-
ation may result in multiplication by a unitary matrix,
 7! U . Because matrix multiplications do not com-
mute, the order of the operations matters. This produces
the non-Abelian statistics discovered by Gregory Moore
and Nicholas Read [21], in the context of the fractional
quantum Hall e↵ect, and by Read and Dmitry Green [9],
in the context of p-wave superconductors.

The adiabatic interchange (braiding) of two Majorana
bound states is a non-Abelian unitary transformation of
the form

 7! exp
⇣
i
⇡

4
�
z

⌘
 , (3)

with �
z

a Pauli matrix acting on the qubit formed by the
two interchanging Majoranas [22, 23]. Two interchanges

FIG. 3 Illustration of the Shockley mechanism for the for-
mation of bound states at the end points of an atomic chain.
The lower panel shows the potential profile along the chain
and the upper panel shows the corresponding energy levels
as a function of the atomic separation a. The end states ap-
pear upon the closing and reopening of the band gap. Figure
adapted from Ref. 53.

return the Majoranas to their starting position, but the
final state i�

z

 is in general not equivalent to the initial
state  .
An operation of the form (3) is called topological, be-

cause it is fully determined by the topology of the braid-
ing; in particular, the coe�cient in the exponent is pre-
cisely ⇡/4. This could be useful for a quantum computer,
even though not all unitary operations can be performed
by the braiding of Majoranas [24, 25].

II. HOW TO MAKE THEM

The route to Majorana fermions in superconductors
can follow a great variety of pathways. The growing list
of proposals includes Refs. 6, 7, 8, 9, 10, 11, 15, 18, 19, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, and 50. There are so many ways
to make Majorana fermions because the requirements are
so generic: Take a superconductor, remove degeneracies
by breaking spin-rotation and time-reversal symmetries,
and then close and reopen the excitation gap. As the gap
goes through zero, Majorana fermions emerge as zero-
modes bound to magnetic or electrostatic defects [51, 52].

A. Shockley mechanism

From this general perspective, Majorana bound states
can be understood as superconducting counterparts of
the Shockley states from surface physics [53, 54]. The
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gap, but it could also be a smaller gap to for example finite-energy vortex- or edge

states). Then adiabatic operations, such as the slow exchange of quasiparticle positions,

can in principle bring the system from one groundstate to another. It is, of course,

not obvious that such a transformation indeed takes place, which will depend on the

details of the system. In the case of MFs in a px ± ipy superconductor, Ivanov [6]

provided a simple and elegant proof of the non-abelian statistics which we sketch here.
(The Supplementary Information of Ref. [41] provides a proof in the case of 1D wires,

where MFs can be moved using closely spaced electronic ”keyboard” gates and particle

exchange is made possible by connecting the 1D wires in T-junctions.)

Imagine that we have two vortices in a two-dimensional topological superconductor,

hosting MFs described by the operators γ1 and γ2 at the vortex cores, see Fig. 2. Each

vortex is associated with a winding of 2π of the superconducting phase φ. We can
choose φ to be single-valued everywhere, except for at branch cuts (red dashed lines in

Fig. 2) emanating from each vortex, such that φ changes by 2π when crossing this line

(the direction of the branch cuts can be chosen arbitrarily). Vortices could perhaps be

moved using the tip of a scanning tunneling microscope, or by local magnetic gates. If

we now exchange vortices one and two in a clockwise manner as indicated in Fig. 2(a),

vortex 1 crosses a branch cut and acquires a 2π phase shift, while vortex 2 does not
acquire a phase. The superconducting phase is the phase of the Cooper pairs in the

Figure 2. Sketch of vortices in a 2D px ± ipy superconductor, hosting MFs described
by the operators γ1 and γ2. Inside the vortex core the superconducting gap vanishes,
∆ → 0, and going around the vortex the phase of the superconducting condensate
(Cooper pairs) increases by 2π. Therefore we introduce branch cuts emanating from
the vortex cores (red dashed lines), where the phase makes a 2π jump. (a) In a
clockwise exchange, vortex one necessarily crosses the branch cut of vortex two. (b)
When bringing vortex one around vortex two, both vortices cross the branch cut of
the other vortex.

condensate. The MF in vortex 1, which is made up from single (rather than products of

two) fermion operators, then acquires a phase of π upon crossing the branch cut. The
result of this exchange operation is thus

γ1 → − γ2, (17)

γ2 → + γ1. (18)

This transformation is described by γi → B12γiB
†
12, where the so-called braid operator
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is given by

B12 =
1√
2
(1 + γ1γ2) . (19)

This choice of operator is made unique by requiring that, in a system with more than two

vortices (and therefore MFs), all the others are unaffected by the exchange of vortices

one and two. Note that an anti-clockwise exchange instead results in γ1 → γ2, γ2 → −γ1,
which is described by the operator B̃12 = (1 − γ1γ2)/

√
2. Of course, if we had chosen

the branch cuts in a different direction the situation could be reversed, but this does
not matter as long as we make a choice and stick with that.

Next, we want to discuss the effect of bringing vortex one around vortex two and

back to its original position. Topologically, this is equivalent to two successive exchanges.

Thus, the associated operator is given by B2
12 = γ1γ2, leading to the transformation

γ1 → (γ1γ2) γ1 (γ1γ2)
† = −γ1, (20)
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In fact, it is natural that the exchange operation cannot change the eigenvalue of

the number operator in a system with only two MFs, since this encodes whether there

are in total an even or odd number of particles in the superconductor, a quantity which

is not changed by particle exchanges. To find non-trivial effects of exchange operations

we must consider a system with at least four MFs, described in terms of the fermionic

number states |n1n2〉. Let us now investigate the effect of exchanging neighboring MFs,
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FIG. 2 Top view of a 2D topological insulator, contacted
at the edge by two superconducting electrodes separated by
a magnetic tunnel junction. A pair of Majorana fermions
is bound by the superconducting and magnetic gaps. The
tunnel splitting of the bound states depends / cos(�/2) on
the superconducting phase di↵erence �, as indicated in the
plot. The crossing of the levels at � = ⇡ is protected by
quasiparticle parity conservation.

the presence or absence of an unpaired quasiparticle. For
well-separated Majoranas, with an exponentially small
tunnel splitting, this is a nonlocal encoding of quantum
information: Each zero-mode by itself contains no infor-
mation on the quasiparticle parity.

Dephasing of the qubit is avoided by hiding the phase
in much the same way that one would hide the phase
of a complex number by separately storing the real and
imaginary parts. The complex Dirac fermion operator
a = 1

2

(�
1

+ i�
2

) of the qubit is split into two real Ma-
jorana fermion operators �

1

and �
2

. The quasiparticle
parity a†a = 1

2

(1 + i�
1

�
2

) is only accessible by a joint
measurement on the two Majoranas.

While two Majoranas encode one qubit, 2n Majo-
ranas encode the quantum information of n qubits in 2n

nearly degenerate states. Without these degeneracies,
the adiabatic evolution of a state  along a closed loop
in parameter space would simply amount to multiplica-
tion by a phase factor,  7! ei↵ , but now the oper-
ation may result in multiplication by a unitary matrix,
 7! U . Because matrix multiplications do not com-
mute, the order of the operations matters. This produces
the non-Abelian statistics discovered by Gregory Moore
and Nicholas Read [21], in the context of the fractional
quantum Hall e↵ect, and by Read and Dmitry Green [9],
in the context of p-wave superconductors.

The adiabatic interchange (braiding) of two Majorana
bound states is a non-Abelian unitary transformation of
the form

 7! exp
⇣
i
⇡

4
�
z

⌘
 , (3)

with �
z

a Pauli matrix acting on the qubit formed by the
two interchanging Majoranas [22, 23]. Two interchanges

FIG. 3 Illustration of the Shockley mechanism for the for-
mation of bound states at the end points of an atomic chain.
The lower panel shows the potential profile along the chain
and the upper panel shows the corresponding energy levels
as a function of the atomic separation a. The end states ap-
pear upon the closing and reopening of the band gap. Figure
adapted from Ref. 53.

return the Majoranas to their starting position, but the
final state i�

z

 is in general not equivalent to the initial
state  .
An operation of the form (3) is called topological, be-

cause it is fully determined by the topology of the braid-
ing; in particular, the coe�cient in the exponent is pre-
cisely ⇡/4. This could be useful for a quantum computer,
even though not all unitary operations can be performed
by the braiding of Majoranas [24, 25].

II. HOW TO MAKE THEM

The route to Majorana fermions in superconductors
can follow a great variety of pathways. The growing list
of proposals includes Refs. 6, 7, 8, 9, 10, 11, 15, 18, 19, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, and 50. There are so many ways
to make Majorana fermions because the requirements are
so generic: Take a superconductor, remove degeneracies
by breaking spin-rotation and time-reversal symmetries,
and then close and reopen the excitation gap. As the gap
goes through zero, Majorana fermions emerge as zero-
modes bound to magnetic or electrostatic defects [51, 52].

A. Shockley mechanism

From this general perspective, Majorana bound states
can be understood as superconducting counterparts of
the Shockley states from surface physics [53, 54]. The
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gap, but it could also be a smaller gap to for example finite-energy vortex- or edge

states). Then adiabatic operations, such as the slow exchange of quasiparticle positions,

can in principle bring the system from one groundstate to another. It is, of course,

not obvious that such a transformation indeed takes place, which will depend on the

details of the system. In the case of MFs in a px ± ipy superconductor, Ivanov [6]

provided a simple and elegant proof of the non-abelian statistics which we sketch here.
(The Supplementary Information of Ref. [41] provides a proof in the case of 1D wires,

where MFs can be moved using closely spaced electronic ”keyboard” gates and particle

exchange is made possible by connecting the 1D wires in T-junctions.)

Imagine that we have two vortices in a two-dimensional topological superconductor,

hosting MFs described by the operators γ1 and γ2 at the vortex cores, see Fig. 2. Each

vortex is associated with a winding of 2π of the superconducting phase φ. We can
choose φ to be single-valued everywhere, except for at branch cuts (red dashed lines in

Fig. 2) emanating from each vortex, such that φ changes by 2π when crossing this line

(the direction of the branch cuts can be chosen arbitrarily). Vortices could perhaps be

moved using the tip of a scanning tunneling microscope, or by local magnetic gates. If

we now exchange vortices one and two in a clockwise manner as indicated in Fig. 2(a),

vortex 1 crosses a branch cut and acquires a 2π phase shift, while vortex 2 does not
acquire a phase. The superconducting phase is the phase of the Cooper pairs in the

Figure 2. Sketch of vortices in a 2D px ± ipy superconductor, hosting MFs described
by the operators γ1 and γ2. Inside the vortex core the superconducting gap vanishes,
∆ → 0, and going around the vortex the phase of the superconducting condensate
(Cooper pairs) increases by 2π. Therefore we introduce branch cuts emanating from
the vortex cores (red dashed lines), where the phase makes a 2π jump. (a) In a
clockwise exchange, vortex one necessarily crosses the branch cut of vortex two. (b)
When bringing vortex one around vortex two, both vortices cross the branch cut of
the other vortex.

condensate. The MF in vortex 1, which is made up from single (rather than products of

two) fermion operators, then acquires a phase of π upon crossing the branch cut. The
result of this exchange operation is thus

γ1 → − γ2, (17)

γ2 → + γ1. (18)

This transformation is described by γi → B12γiB
†
12, where the so-called braid operator
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is given by

B12 =
1√
2
(1 + γ1γ2) . (19)

This choice of operator is made unique by requiring that, in a system with more than two

vortices (and therefore MFs), all the others are unaffected by the exchange of vortices

one and two. Note that an anti-clockwise exchange instead results in γ1 → γ2, γ2 → −γ1,
which is described by the operator B̃12 = (1 − γ1γ2)/

√
2. Of course, if we had chosen

the branch cuts in a different direction the situation could be reversed, but this does
not matter as long as we make a choice and stick with that.

Next, we want to discuss the effect of bringing vortex one around vortex two and

back to its original position. Topologically, this is equivalent to two successive exchanges.

Thus, the associated operator is given by B2
12 = γ1γ2, leading to the transformation

γ1 → (γ1γ2) γ1 (γ1γ2)
† = −γ1, (20)

γ2 → (γ1γ2) γ2 (γ1γ2)
† = −γ2. (21)

Bringing vortex one around vortex two thus has the effect of introducing a minus sign

into each Majorana operator. An alternative way of deriving Eqs. (20)–(21) is sketched

in Fig. 2(b). When bringing vortex one around vortex two, it necessarily crosses the
branch cut of vortex two, but in addition forces vortex two to cross the branch cut of

vortex one. Therefore, each Majorana operator acquires a phase shift of π.

We now go back to the case of vortex exchange. The effect of the braid operator

acting on the number states is

B12|0〉 =
1√
2
(1 + i) |0〉, (22)

B12|1〉 =
1√
2
(1− i) |1〉, (23)

where |1〉 = f †
1 |0〉, with f1 = (γ1 + iγ2)/2 as discussed above. Thus, exchanging the

two MFs has the rather mundane effect of multiplying the number states with a phase

factor.
In fact, it is natural that the exchange operation cannot change the eigenvalue of

the number operator in a system with only two MFs, since this encodes whether there

are in total an even or odd number of particles in the superconductor, a quantity which

is not changed by particle exchanges. To find non-trivial effects of exchange operations

we must consider a system with at least four MFs, described in terms of the fermionic

number states |n1n2〉. Let us now investigate the effect of exchanging neighboring MFs,
described by braid operators Bi,i+1. For simplicity we choose the branch cuts of all MFs

to be in the same direction and number the MFs based on their position orthogonal

to this direction, such that when exchanging MFs i and i + 1 in a clockwise manner,

vortex i crosses only the branch cut of vortex i + 1, and no other vortices cross any

branch cuts (crossing the same branch cut twice in different directions is equivalent to

not crossing any branch cuts at all). Note that MFs which are not neighbors can always
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FIG. 2 Top view of a 2D topological insulator, contacted
at the edge by two superconducting electrodes separated by
a magnetic tunnel junction. A pair of Majorana fermions
is bound by the superconducting and magnetic gaps. The
tunnel splitting of the bound states depends / cos(�/2) on
the superconducting phase di↵erence �, as indicated in the
plot. The crossing of the levels at � = ⇡ is protected by
quasiparticle parity conservation.
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well-separated Majoranas, with an exponentially small
tunnel splitting, this is a nonlocal encoding of quantum
information: Each zero-mode by itself contains no infor-
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is given by

B12 =
1√
2
(1 + γ1γ2) . (19)

This choice of operator is made unique by requiring that, in a system with more than two

vortices (and therefore MFs), all the others are unaffected by the exchange of vortices

one and two. Note that an anti-clockwise exchange instead results in γ1 → γ2, γ2 → −γ1,
which is described by the operator B̃12 = (1 − γ1γ2)/

√
2. Of course, if we had chosen

the branch cuts in a different direction the situation could be reversed, but this does
not matter as long as we make a choice and stick with that.

Next, we want to discuss the effect of bringing vortex one around vortex two and

back to its original position. Topologically, this is equivalent to two successive exchanges.

Thus, the associated operator is given by B2
12 = γ1γ2, leading to the transformation

γ1 → (γ1γ2) γ1 (γ1γ2)
† = −γ1, (20)

γ2 → (γ1γ2) γ2 (γ1γ2)
† = −γ2. (21)

Bringing vortex one around vortex two thus has the effect of introducing a minus sign

into each Majorana operator. An alternative way of deriving Eqs. (20)–(21) is sketched

in Fig. 2(b). When bringing vortex one around vortex two, it necessarily crosses the
branch cut of vortex two, but in addition forces vortex two to cross the branch cut of

vortex one. Therefore, each Majorana operator acquires a phase shift of π.

We now go back to the case of vortex exchange. The effect of the braid operator

acting on the number states is

B12|0〉 =
1√
2
(1 + i) |0〉, (22)

B12|1〉 =
1√
2
(1− i) |1〉, (23)

where |1〉 = f †
1 |0〉, with f1 = (γ1 + iγ2)/2 as discussed above. Thus, exchanging the

two MFs has the rather mundane effect of multiplying the number states with a phase

factor.
In fact, it is natural that the exchange operation cannot change the eigenvalue of

the number operator in a system with only two MFs, since this encodes whether there

are in total an even or odd number of particles in the superconductor, a quantity which

is not changed by particle exchanges. To find non-trivial effects of exchange operations

we must consider a system with at least four MFs, described in terms of the fermionic

number states |n1n2〉. Let us now investigate the effect of exchanging neighboring MFs,
described by braid operators Bi,i+1. For simplicity we choose the branch cuts of all MFs

to be in the same direction and number the MFs based on their position orthogonal

to this direction, such that when exchanging MFs i and i + 1 in a clockwise manner,

vortex i crosses only the branch cut of vortex i + 1, and no other vortices cross any

branch cuts (crossing the same branch cut twice in different directions is equivalent to

not crossing any branch cuts at all). Note that MFs which are not neighbors can always
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be exchanged through a sequence of neighbor exchanges. Consider now the effect of

braid operations on the number states

B12|00〉 =
1√
2
(1 + i) |00〉, (24)

B23|00〉 =
1√
2
(|00〉+ i|11〉) , (25)

B34|00〉 =
1√
2
(1 + i) |00〉, (26)

with analogous results for the other number states. Note especially that B23, which

involves MFs from different fermions, produces a superposition state of different number

states. However, the total parity (n1 + n2 being even or odd) of each state in the

superposition must be the same.

With four MFs we can also demonstrate the non-abelian nature of braid operations
(with two MFs there is only one possible exchange operation). In general, two braid

operations commute whenever they do not involve any of the same MFs, [B12, B34] = 0.

This is easy to believe on physical grounds, as there is no reason that the exchange of

MFs three and four should care about whether MFs one and two have been exchanged.

However, whenever two exchanges involve some of the same MFs, the braid operators

do not commute

[Bi−1,i, Bi,i+1] = γi−1γi+1. (27)

Equation (27) expresses the non-abelian exchange statistics of MFs.

At this point the attentive reader might be slightly upset by a simple fact we have

neglected. Namely the question of what exactly qualifies as an exchange operation. If
we define an exchange operation as bringing one vortex exactly to the old position of

another vortex, and vice versa, there is no problem. But clearly this is not possible in

reality and certainly goes against the idea of robust topological quantum information

processing to be discussed below. (In networks of 1D wires it is somewhat easier to

find a satisfying definition of particle exchanges [41].) Mathematically, the exchange

process happens when the branch cut is crossed, but since this is arbitrarily defined,
it is not a good definition either. Physically, the solution to this problem is that there

is no measurable effect of the exchange process, unless it is followed by one of the two

MFs involved in the exchange being joined with a third MF to perform a measurement

of the state of the fermion formed by this pair. This is demonstrated in Fig. 3. In the

upper panel, two neighboring MFs are first exchanged, which is followed by measuring

the fermionic states formed by pairing the nearest neighbor MFs. In the lower panel, on
the other hand, we do not exchange the MFs, but instead measure directly the fermionic

states formed by pairing next-nearest neighboring MFs. Both these operations give the

same result for the measurements of the fermionic states and are therefore equivalent.

Therefore, a ”computation” can be defined either as a set of exchanges, or by defining the

combinations of pairs that are being measured at the end, which removes the ambiguity

in defining an exchange process.
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Figure 3. Sketch demonstrating two equivalent sets of operations. In the upper panel,
MFs 2 and 3 are first exchanged (black arrows), then the nearest neighbor MFs are
brought together (magenta arrows) and the states of the corresponding fermions are
measured. In the lower panel, there is no exchange, but instead we directly measure
the fermions formed by pairing next-nearest neighboring MFs (1 + 3 and 2 + 4).

3.3. Majorana qubits and topological quantum computation

We saw above that parity conservation prevented braiding operations from changing the
state of a system with only two MFs. For this reason, the two-level system spanned

by the number operator n1 is not suitable to use as a qubit. To define a (topological)

Majorana qubit, we should therefore use four MFs, meaning two normal fermions [42],

and consider the case of fixed parity (even or odd) of the total number of fermions. Let

us consider the even parity subspace and define a qubit by |0̄〉 ≡ |00〉, |1̄〉 ≡ |11〉.
In the basis {0̄, 1̄}, the Pauli matrices can be represented in terms of products of

Majorana operators

− iγ1γ2 = −iγ3γ4 = σz, (28)

−iγ2γ3 = σx, (29)

−iγ1γ3 = −iγ2γ4 = σy, (30)

which is seen by calculating the corresponding matrix elements. In the standard

representation with |0̄〉 and |1̄〉 being respectively the north and south poles of the

block sphere, we can then identify the different braids with single-qubit rotations

B12 = B34 = e−
iπ

4
σz , (31)

B23 = e−
iπ

4
σx , (32)

Thus, by braiding operations we can only perform single-qubit rotations by an angle

π/2.

When considering a multi-qubit setup, the most obvious choice is to define each

qubit in terms of four MFs [42]. However, it is not possible to construct a two-qubit
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!L = "!e2/2#h"E · B . !18"

The field ", which is a dynamical variable in the axion
theory, is a constant # in the topological insulator. Im-
portantly, when expressed in terms of the vector poten-
tial E ·B is a total derivative, so a constant " has no
effect on the electrodynamics. However, a gapped inter-
face, across which " changes by !", is associated with a
surface Hall conductivity $xy=!"e2 / !2#h".

As in the axion theory, the action corresponding to
Eq. !18" is invariant under "→"+2#. Physically, this re-
flects the fact that an integer quantum Hall state with
$xy=ne2 /h can exist at the surface without changing the
bulk properties !Essin, Moore, and Vanderbilt, 2009".
This resembles a similar ambiguity in the electric polar-
ization. Qi, Hughes, and Zhang !2008" showed that since
E ·B is odd under T, only "=0 or # are consistent with T
symmetry, so " is quantized. By computing the magne-
toelectric response perturbatively, " can be computed in
a manner similar to the Kubo formula calculation of $xy.
" /# is identical to %0, the invariant characterizing a
strong topological insulator.

Observation of the surface currents associated with
this magnetoelectric effect will be an important comple-
ment to the ARPES experiments. It should be empha-
sized, however, that despite the topologically quantized
status of ", the surface currents are not quantized the
way edge state transport currents are quantized in the
quantum Hall effect. The surface currents are bound
currents, which must be distinguished from other bound
currents that may be present. Nonetheless, it may be
possible to account for such effects, and signatures of "
will be interesting to observe. Qi, Li, et al. !2009" pointed
out that a consequence of a nonzero surface $xy is that
an electric charge outside the surface gives rise to a pat-
tern of surface currents that produces a magnetic field
the same as that of an image magnetic monopole.

B. Superconducting proximity effect

Combining topological insulators with ordinary super-
conductors leads to a correlated interface state that,
such as a topological superconductor, is predicted to
host Majorana fermion excitations. In this section we
begin by reviewing the properties of Majorana fermion
excitations and the proposal by Kitaev !2003" to use
those properties for fault tolerant quantum information
processing. We then describe methods for engineering
Majorana fermions in superconductor-topological insu-
lator devices and prospects for their experimental obser-
vation.

1. Majorana fermions and topological quantum computing

As discussed in Sec. II.D.2, a well-separated pair of
Majorana bound states defines a degenerate two-level
system—a qubit. Importantly, the quantum information
in the qubit is stored nonlocally. The state cannot be
measured with a local measurement on one of the bound
states. This is crucial because the main difficulty with

making a quantum computer is preventing the system
from accidentally measuring itself. The 2N Majorana
bound states define N qubits a quantum memory.

Adiabatically interchanging the vortices or more gen-
erally braiding them leads to the phenomenon of non-
Abelian statistics !Moore and Read, 1991". Such pro-
cesses implement unitary operations on the state vector
#&a$→Uab#&b$ that generalize the usual notion of Fermi
and Bose quantum statistics !Nayak and Wilczek, 1996;
Ivanov, 2001". These operations are precisely what a
quantum computer is supposed to do. A quantum com-
putation will consist of three steps, depicted in Fig. 19.

!i" Create: If a pair i , j of vortices is created, they will
be in the ground state #0ij$ with no extra quasipar-
ticle excitations. Creating N pairs initializes the
system.

!ii" Braid: Adiabatically rearranging the vortices
modifies the state and performs a quantum com-
putation.

!iii" Measure: Bringing vortices i and j back together
allows the quantum state associated with each
pair to be measured. #1ij$ and #0ij$ will be distin-
guished by the presence or absence of an extra
fermionic quasiparticle associated with the pair.

Though the quantum operations allowed by manipu-
lating the Majorana states do not have sufficient struc-
ture to construct a universal quantum computer !Freed-
man, Larsen, and Wang, 2002", the topological
protection of the quantum information makes the ex-
perimental observation of Majorana fermions and non-
Abelian statistics a high priority in condensed-matter
physics !Nayak et al., 2008". Current experimental ef-
forts have focused on the %=5/2 quantum Hall state,
where interferometry experiments !Das Sarma, Freed-
man, and Nayak, 2005; Stern and Halperin, 2006" can, in
principle, detect the non-Abelian statistics predicted for
the quasiparticles. Though recent experiments on the
quantum Hall effect have shown encouraging indirect
evidence for these states !Dolev et al., 2008; Radu et al.,
2008; Willett, Pfeiffer, and West, 2009", definitive obser-
vation of the Majorana states has remained elusive. In
Sec. V.B.2 we describe the possibility of realizing these

Create |012034>

Braid

Measure (|012034>+|112134>)/ 2

t

1 2 3 4

1 2 3 4

FIG. 19. !Color online" A simple operation in which two vor-
tices are exchanged. The vortex pairs 12 and 34 are created in
the vacuum !zero quasiparticle" state. When they are brought
back together they are in an entangled superposition of 0 and
1 quasiparticle states.
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(The frequency !
p

=
p
8E

C

E
J

/~ is the Josephson
plasma frequency.) By varying the flux � through a
split Josephson junction, the Josephson energy E

J

/
cos(e�/~) becomes tunable. In the transmon design of
the Yale group, a variation of E

J

/E
C

over two orders of
magnitude has been realized [97]. The Coulomb coupling
U of the Majorana fermions can therefore be switched on
and o↵ by varying the flux.

C. Braiding

In the two-dimensional geometry of Fig. 1 the Majo-
rana bound states can be exchanged by moving the vor-
tices around [15]. The Majorana fermions in the one-
dimensional geometry of Fig. 11 are separated by insu-
lating regions on a single nanowire, so they cannot be
exchanged. The exchange of Majorana fermions, called
“braiding”, is needed to demonstrate their non-Abelian
statistics [9]. It is also an essential ingredient of a topo-
logically protected quantum computation [24]. In order
to be able to exchange the Majoranas one can use a sec-
ond nanowire, running parallel to the first and connected
to it by side branches [98, 99].

The minimal Hamiltonian that can describe the braid-
ing contains three Majorana fermions �

1

, �
2

, �
3

coupled
to a fourth one �

0

,

H =
3X

k=1

U
k

i�
0

�
k

. (17)

The three parameters U
k

� 0 can describe tunnel cou-
pling [100] (tunable by a gate voltage) or Coulomb cou-
pling [101] (tunable by the flux through a Josephson junc-
tion). A tri-junction of three Cooper pair boxes that is
described by this Hamiltonian is shown in Fig. 12.

The braiding operation consists of three steps, de-
noted O

31

, O
12

, and O
23

. At the beginning and at
the end of each step two of the couplings are o↵ and
one coupling is on. The step O

kk

0 consists of the se-
quence {k,k’ }= {on,o↵ } 7! {on,on} 7! {o↵,on}. The ef-
fect of this sequence is to transfer the uncoupled Majo-
rana �

k

0 7! ��
k

. (The minus sign appears in order to
conserve the quasiparticle parity.) The result after the
three steps shown in Fig. 12 is that the Majoranas at sites
1 and 2 are switched, with a di↵erence in sign, �

2

7! ��
1

,
�
1

7! �
2

. The corresponding adiabatic time evolution op-
erator in the Heisenberg representation �

k

7! U�
k

U† is
given by

U =
1p
2

�
1+�

1

�
2

) = exp
⇣⇡
4
�
1

�
2

⌘
= exp

⇣
i
⇡

4
�
z

⌘
. (18)

This is the operator of Eq. (3), representing a non-
Abelian exchange operation.

FIG. 12 Lower panel: Three Cooper pair boxes connected at
a tri-junction via three overlapping Majorana fermions (which
e↵ectively produce a single zero-mode �

0

= 3�1/2(�0
1

+�0
2

+�0
3

)
at the center). Upper panel: Schematic of the three steps
of the braiding operation. The four Majoranas of the tri-
junction (the three outer Majoranas �

1

, �
2

, �
3

and the e↵ec-
tive central Majorana �

0

) are represented by circles and the
coupling U

k

is represented by lines (solid in the on state,
dashed in the o↵ state). White circles indicate strongly cou-
pled Majoranas, colored circles those with a vanishingly small
coupling. The small diagram above each arrow shows an in-
termediate stage, with one Majorana delocalized over three
coupled sites. The three steps together exchange the Majo-
ranas 1 and 2, which is a non-Abelian braiding operation.
Figure adapted from Ref. 101.

V. OUTLOOK ON THE EXPERIMENTAL PROGRESS

An up-to-date review of ongoing experiments will be
added later, closer to the deadline for submission to the
Annual Reviews.
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The R
n

’s represent the probability for Andreev reflection

in the n-th eigenmode at the Fermi level. The factor of

two is not due to spin (which is included in the sum

over n), but due to the fact that Andreev reflection of an

electron into a hole doubles the current.

There is no time-reversal symmetry, so Kramers de-

generacy does not apply. Still, particle-hole symmetry

requires that any R
n

is twofold degenerate (Béri de-

generacy [65]) — with two exceptions: R
n

= 0 and

R
n

= 1 may be nondegenerate. The nondegenerate

Andreev reflection eigenvalue from a Majorana bound

state is pinned to unity, contributing to the conductance

a quantized amount of 2e2/h. All other fully Andreev

reflected modes are twofold degenerate and contribute

4e2/h. The resulting conductance plateaus therefore ap-

pear at integer or half-integer multiples of 4e2/h, depend-

ing on whether the superconductor is topologically trivial

or not.

The plateaus at (n + 1/2) � 4e2/h are reminiscent of

the quantum Hall plateaus in graphene, and both orig-

inate from a zero mode, but the sensitivity to disorder

is entirely di�erent. The topological quantum number

Q 2 Z for the quantum Hall e�ect, while Q 2 Z2 for a

topological superconductor. The corresponding topolog-

ical protection against disorder extends to all plateaus

for the quantum Hall e�ect, but only to the lowest n = 0

plateau for the topological superconductor.

It may appear paradoxical [66, 67] to have an elec-

trical current flowing through a single Majorana bound

state, since one Majorana fermion operator � represents

only half of an electronic state. However, the Hermitian

operator i(a+a†
)� is a local coupling of Dirac and Majo-

rana operators [60], so electrical conduction can be a fully

local process — involving only one of the two spatially

separated Majorana fermions.

B. Nonlocal tunneling

Nonlocal conduction involving both Majorana

fermions becomes possible if there is a coupling between

them [19, 61, 68, 69, 70, 71, 72]. The coupling term has

the generic form iE
M

�1�2, with eigenvalues ±E
M

. The

energy E
M

may be a tunnel coupling due to overlap of

wave functions, in which case it decays exponentially

/ e�d/�0
with the ratio of the separation d of the

Majoranas and the superconducting coherence length

⇠0. If the superconductor is electrically isolated (not

grounded) and of small capacitance C, then the charging

energy E
M

� e2/C provides a Coulomb coupling even

without overlap of wave functions. (Recall that the two

states of a pair of Majoranas are distinguished by the

presence or absence of an unpaired quasiparticle, see

Section I.C.)

Nonlocal tunneling processes appear if the level split-

ting E
M

is large compared to the level broadening �1, �2.

FIG. 9 Majorana bound states (red) at the edge of a 2D topo-
logical insulator (cf. Fig. 2), split into a pair of levels at ±EM

by a nonzero overlap. The levels are broadened due to a tun-
nel coupling �1, �2 through the magnet to the outside edge
state. An electron incident from the left on the grounded su-
perconductor can be Andreev reflected as a hole, either locally
(to the left) or nonlocally (to the right). Nonlocal Andreev
reflection is equivalent to the splitting of a Cooper pair by the
two Majoranas. For �1, �2 � EM local Andreev reflection is
suppressed. Figure adapted from Ref. 19.

For a grounded superconductor the nonlocality takes the

form of nonlocal Andreev reflection, which amounts to a

splitting of a Cooper pair by the two Majorana bound

states [19] (see Fig. 9). The Cooper pair splitting can

be detected in a noise measurement through a positive

cross-correlation of the currents I1 and I2 to the left and

right of the superconductor.

For an electrically isolated superconducting island any

charge transfer onto the island is forbidden by the charg-

ing energy, so there can be no Andreev reflection. An

electron incident on one side of the island is either re-

flected to the same side or transmitted, still as an elec-

tron, to the other side. The nonlocality [68] now appears

in the ratio of the reflection and transmission probabili-

ties on resonance,

R/T = (�1 � �2)
2/(�1 + �2)

2, (10)

which is independent of the size of the island. No matter

how far the two Majoranas are separated, the charging

energy couples them into a single electronic level. In par-

ticular, for identical tunnel couplings �1 = �2 the elec-

tron is resonantly transmitted through the island with

unit probability .

C. 4�-periodic Josephson e�ect

So far we discussed signatures of Majoranas in the

electrical conduction out of equilibrium, in response to

a voltage di�erence between the superconductor and a

normal-metal electrode. In equilibrium an electrical cur-

rent (supercurrent) can flow between two superconduc-

tors in the absence of any applied voltage. This fa-

miliar dc Josephson e�ect [73] acquires a new twist

[10, 18, 29, 30, 74, 75, 76, 77, 78] if the junction between

6

FIG. 7 Closing and reopening of the band gap in the Hamiltonian (8) of a 2D semiconducting nanowire (width W = lso) on
a superconducting substrate in a parallel magnetic field (� = 10 Eso, EZ = 10.5 Eso). The eight panels show the excitation
energy near the Fermi level (E = 0) as a function of the wave vector k along the nanowire, for di�erent values of the chemical
potential µ � �U (listed in units of the spin-orbit coupling energ Eso). The colors blue or yellow of the panels indicate that the
system is in a topologically trivial or nontrivial phase, respectively. The topological phase transition occurs in the uncolored
panels. The nanowire supports Majorana bound states in the yellow panels. Data supplied by M. Wimmer.

Characteristic length and energy scales are lso =

~2/m↵so and Eso = m↵2
so/~2

. Typical values in InAs

are lso = 100 nm, Eso = 0.1 meV. The Zeeman en-

ergy is E
Z

=

1
2ge�µ

B

B = 1 meV at a magnetic field

B = 1T. A superconducting proximity e�ect with a

type-II superconductor like Nb is quite possible at these

field strengths. The pair potential � induced in the 2D

electron gas then couples electrons and holes via the

Bogoliubov-De Gennes Hamiltonian (6) [now with H0

given by Eq. (8)].

As discovered in Refs. 29 and 30, the resulting band

gap in a nanowire geometry closes and reopens upon vari-

ation of electron density (through a variation of U) or

magnetic field (see Fig. 7). Majorana bound states at

the two ends of the nanowire alternatingly appear and

disappear at each of these topological phase transitions.

III. HOW TO DETECT THEM

A. Half-integer conductance quantization

Tunneling spectroscopy is a direct method of detection

of a Majorana bound state [60, 61]. Resonant tunneling

into the midgap state produces a conductance of 2e2/h,

while without this state the tunneling conductance van-

ishes. This zero-bias anomaly may be obscured by other

resonances at small nonzero bias voltage [62]. A ballis-

tic point contact provides a more distinctive signature of

the topologically nontrivial phase [63], through the half-

integer conductance plateaus shown in Fig. 8.

FIG. 8 Solid curves: conductance of a ballistic NS junction,
with the superconductor in a topologically trivial or non-
trivial phase. The dotted curve is for an entirely normal sys-
tem. The data is calculated from the model Hamiltonian (8).
The point contact width is varied by varying the potential
VQPC inside the constriction at constant Fermi energy EF .
The dotted horizontal lines indicate the shift from integer to
half-integer conductance plateaus upon transition from the
topologically trivial to nontrivial phase. Figure adapted from
Ref. 63.

Both the tunneling and ballistic conductances can be

understood from the general relation [64] between the

conductance G of a normal-metal–superconductor (NS)

junction and the Andreev reflection eigenvalues R
n

,

G =

2e2

h

X

n

R
n

. (9)
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real-space wavefunction for p+ ip-paired composite fermions
in the weak-pairing phase10. Universal topological properties,
such as the existence of chiral Majorana edge states and Majo-
rana zero-modes bound to vortices, are shared by the Moore-
Read state and the 2D spinless p+ip superconductor explored
earlier.10

At ⌫ = 1/2, such a pairing instability does not arise
experimentally—the composite Fermi sea is stable and un-
derlies the formation of an interesting compressible ‘com-
posite Fermi liquid’ phase.165 A compelling body of theoret-
ical evidence12, however, indicates that the Moore-Read state
(or its particle-hole conjugate166,167) provides an energetically
very competitive candidate for the measured plateau in the
half-filled second Landau level. Very likely, either the Moore-
Read state or its particle-hole conjugate emerge as the ground
state over some range of density, quantum well width, mobil-
ity, etc., and a growing set of experiments23–29 indeed support
this possibility. For more details on this interesting subject
we refer readers to Read and Green10 and the comprehensive
review by Nayak et al.12

C. ‘Intrinsic’ p+ ip superconductivity: Sr
2

RuO
4

In rare cases, p + ip superconductivity can emerge ‘in-
trinsically’ through interactions in a material. At present
Sr

2

RuO
4

—a layered compound with a somewhat com-
plex, spin-degenerate Fermi surface deriving from Ru d-
orbitals168,169—constitutes the best experimental candidate for
such a superconductor. While the precise nature of the su-
perconducting state that appears below Tc = 1.5K remains
unsettled (see, e.g., Ref. 170), a variety of experiments sup-
port the onset of spin-triplet Cooper pairing and spontaneous
time-reversal symmetry breaking in this system.79,169,171–174

Recall from Sec. II B that spinful 2D p+ip superconductors
allow for hc

4e half quantum vortices that bind stable Majorana
zero-modes. In this context, the recent experiments of Jang
et al.79 are particularly fascinating. These authors employed
torque magnetometry to measure the magnetization of annu-
lar, mesoscopic Sr

2

RuO
4

samples as a function of an applied
magnetic field B. With the field oriented perpendicular to the
layers, increasing B produced discrete jumps in the magneti-
zation at certain field values associated with nucleation of an
ordinary hc

2e vortex in the sample. Remarkably, repeating the
same experiment in the presence of a fixed in-plane field com-
ponent ‘fractionalized’ these magnetization jumps into steps
half as large—consistent with the entry of half quantum vor-
tices. Precisely why the in-plane field should stabilize these
defects is presently unclear, though Ref. 79 discusses one pos-
sible scenario. (Note that Ref. 75 proposed applying perpen-
dicular fields to stabilize half quantum vortices.)

A few cautionary remarks are in order regarding
Sr

2

RuO
4

—and likely any ‘intrinsic’ p+ ip superconductor—
as a setting for Majorana physics. First, since time-reversal
symmetry is broken spontaneously p+ ip and p� ip pairings
are degenerate, and domains featuring both chiralities will
generally exist in a given crystal (see, e.g., Refs. 175–177).
These domains will complicate the edge-state structure rela-

tive to the toy model discussed in Sec. II B. Second, half quan-
tum vortices need not trap Majorana zero-modes in Sr

2

RuO
4

crystals consisting of N > 1 layers. Consider, for instance,
a half quantum vortex threading a Sr

2

RuO
4

bilayer at T = 0

where phase fluctuations can be neglected. In the artificial
limit where the layers decouple, the vortex binds one Majo-
rana zero-mode in each layer; restoring the interlayer cou-
pling hybridizes these modes and produces an ordinary, finite-
energy state. For larger N a chain of Majorana modes will hy-
bridize and broaden into a gapless ‘band’ in the N ! 1 limit.
Strictly speaking, for any odd N a single Majorana zero-mode
must survive the interlayer coupling but in practice may prove
difficult to disentangle from other low-energy modes. Even
in a single-layer sample Majorana zero-modes are protected
only by a ‘mini-gap’ in the spectrum of vortex bound states
[Eq. (39)], which for Sr

2

RuO
4

falls in the milliKelvin range
since the Fermi energy exceeds the pairing gap by orders of
magnitude.

As an aside, we briefly mention a clever idea proposed in
Ref. 178 for realizing Kitaev’s 1D toy model along an ordi-
nary hc

2e vortex line threading a layered spinful p+ip supercon-
ductor such as Sr

2

RuO
4

. Neglecting spin-orbit interactions
and interlayer coupling, the vortex binds a pair of Majorana
zero-modes in each layer. One can view each pair as com-
prising a single site in Kitaev’s 1D toy model (recall Fig. 2).
When coupling between nearby Majorana zero-modes is re-
stored, Ref. 178 predicts that the topological phase of Kitaev’s
model emerges upon driving a supercurrent perpendicular to
the layers. The small mini-gap associated with the vortex,
however, still poses a challenge for such a setup.

D. 3D topological insulators

In Sec. III D we described how one can engineer a 1D
topological superconductor using 3D topological insulator
nanowires. Here we turn to Fu and Kane’s groundbreaking
proposal for stabilizing 2D ‘spinless’ p+ip superconductivity
using the surface of a macroscopic 3D topological insulator.49

We will continue to focus on materials such as Bi
2

Se
3

51,52,98

whose boundary hosts a single Dirac cone described by Eq.
(71). For a surface located in the (x, y) plane, the Hamilto-
nian reads

H
3DTI

=

Z
d2r †

[�iv(@x�
y � @y�

x
)� µ] . (78)

Equation (78) yields band energies ✏±(k) = ±v|k|�µ which
correspond to the upper and lower branches of the massless
Dirac cone sketched in Fig. 8(a). This band structure is ideal
for forming a 2D topological superconducting phase. First,
accessing a ‘spinless’ regime is trivial here: for any µ that re-
sides within the material’s bulk band gap there exists only a
single Fermi surface as desired (rather than two as ordinarily
arises due to spin degeneracy). Furthermore, since the elec-
trons along this Fermi surface are not spin-polarized, p + ip
pairing can be effectively induced using the proximity effect
with a conventional s-wave superconductor.

3

ited topological quantum information processing,12 the addi-
tional unprotected operations needed for universal quantum
computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the
potential for revolutionary technological applications down
the road.

In the beginning of this introduction we noted that re-
searchers are optimistic that this search may soon come to
fruition. One might reasonably wonder why, given that we
live in three dimensions, electrons carry spin, and p-wave
pairing is scarce in nature. To a large extent this opti-
mism stems from the recent revelation that one can engineer
low-dimensional topological superconductors by judiciously
forming heterostructures with conventional bulk s-wave su-
perconductors. This new line of attack could eventually lead
to ‘designer topological phases’ persisting up to relatively
high temperatures, perhaps measuring in the 10K range or
beyond. The conceptual breakthrough here originated with
the seminal work of Fu and Kane in the context of topologi-
cal insulators,49,50 which paved the way for many subsequent
proposals of a similar spirit. We devote a large fraction of this
review—Secs. III and IV—to discussing these new routes to
Majorana fermions. ‘Classic’ settings such as the ⌫ = 5/2
fractional quantum Hall state and Sr

2

RuO
4

(which of course
remain highly relevant to the field) will also be discussed, but
only briefly. An omission that we regret is a discussion of
Helium-3, where seminal work related to this subject was car-
ried out early on by Volovik and others; see the excellent book
in Ref. 8. Section V explores the key question of how one ex-
perimentally identifies Majorana modes once a suitable topo-
logical phase is fabricated. The long-term objectives of ob-
serving non-Abelian statistics and realizing quantum compu-
tation are taken up in Sec. VI. Finally, we offer some closing
thoughts in Sec. VII. For additional perspectives on this fas-
cinating problem we would like to refer the reader to several
other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL
SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and
2D superconductors that support Majorana fermions. We will
explore the anatomy of the phases realized in these exotic su-
perconductors and elucidate how they give rise to Majorana
modes in some detail. Later parts of this review rely heavily
on the material discussed here. Indeed, our perspective is that
all of the recent experimental proposals highlighted in Secs.
III and IV are, in essence, practical realizations of these toy
models. The ideas developed here will also prove indispens-
able when we discuss experimental detection schemes in Sec.
V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-
duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in
this setting Majorana zero-modes appear in an extremely sim-
ple and intuitive fashion. Following Kitaev, we introduce op-
erators cx describing spinless fermions that hop on an N -site
chain and exhibit long-range-ordered p-wave superconductiv-
ity. The minimal Hamiltonian describing this setup reads

H = �µ
X

x

c†xcx � 1

2

X

x

(tc†xcx+1

+�ei�cxcx+1

+ h.c.),

(2)
where µ is the chemical potential, t � 0 is the nearest-
neighbor hopping strength, � � 0 is the p-wave pairing am-
plitude and � is the corresponding superconducting phase. For
simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-
erties, which can be conveniently studied by imposing peri-
odic boundary conditions on the system (thereby wrapping
the chain into a loop and removing its ends). Upon passing to
momentum space and introducing a two-component operator
C†

k = [c†k, c�k], one can write H in the standard Bogoliubov-
de Gennes form:

H =

1

2

X

k2BZ

C†
kHkCk, Hk =
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⇤
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˜

�k �✏k

◆
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with ✏k = �t cos k � µ the kinetic energy and ˜

�k =

�i�ei� sin k the Fourier-transformed pairing potential. The
Hamiltonian becomes simply

H =

X

k2BZ

E
bulk

(k)a†kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
�k (5)
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E
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, vk =
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uk, (6)

where the bulk excitation energies are given by

E
bulk

(k) =

q
✏2k + | ˜�k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk
excitations only when the chemical potential is fine-tuned to
µ = t or �t, where the Fermi level respectively coincides with
the top and bottom of the conduction band as shown in Fig.
1(a). The gap closure at these isolated µ values reflects the p-
wave nature of the pairing required by Pauli exclusion. More
precisely, since ˜

�k is an odd function of k, Cooper pairing at
k = 0 or k = ±⇡ is prohibited, thereby leaving the system
gapless at the Fermi level when µ = ±t. Note that the phases
that appear at µ < �t and µ > t are related by a particle-
hole transformation; thus to streamline our discussion we will
hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the
gapped regimes with µ < �t and |µ| < t—the former con-
nects smoothly to the trivial vacuum (upon taking µ ! �1)
where no fermions are present, whereas in the latter a partially


