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Brief introduction to magnetism and magnetic exchanges.
Magnetic orders

Magnetic Frustration

Order by disorder

Spin Ice
Magnetic monopoles in spin Ices

Some examples



1. Magnetic moment of electron

Orbital magnetic moment+ Spin magnetic moment
en
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2. Quantum mechanical indistinguishbility

e

(many body wave function should be anti-symmetric)

3. Coulomb interactions between electrons

(example: Hund’s rules for atoms and ions)



79 elements are magnetic in atomic form, however only a few of
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them (16) are magnetic in solid form
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Exchange interactions are due to the coulomb
repulsion of electrons and can be classified as:

Direct exchanges

Indirect exchanges



Exchange of two electrons between two atomic orbitals by
the repulsive coulomb potential.

FM for orthogonal orbitals.
(example : first Hund’s rule for filling the atomic shells )

Could be AF for non-orthogonal overlapping orbitals.
(example : Hydrogen molecule H )



1. Super exchange :

(exchange between to 3d orbitals is mediated by cations like
oxygen ions, short range, FM or AF)

2. RKKY exchange :

(rare earths ,exchange between 4f electrons is mediate by 6s or
5d conduction electrons, long range, oscillating sign)

3. Double exchange :
(FM, mixed valence compounds, Manganites )
4. Itinerant magnetism :
(3d metals such as Fe, Ni, Co )



Fermionic Hubbard Model
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e Superexchange and Antiferromagnetism (P.W. Anderson)
e Itinerant ferromagnetism. Stoner instability (J. Hubbard)

e Incommensurate spin order. Stripes (Schulz, Zaannen,
Emery, Kivelson, White, Scalapino, Sachdev, ...)

» d-wave pairing (Scalapino, Pines,...)

» d-density wave (Affleck, Marston, Chakravarty,Laughlin,...)



In Singlet state virtual hoppings gain kineticzenergy

Second order perturbation : AE, = v

U

b7\
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In Triplet states virtual hoppings are forbidden
then: AR =0
O RO



At half filling, to lowest perturbation order, the effective
Hamiltonian is the nearest neighbor antiferromagnet
Heisenberg model:
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Higher order terms would be the next neighbor AF
Heisenberg interactions as well as terms consisting of
more than two spin interactions (i.e ring exchanges).

Heff =4



Spin-Orbit coupling introduces anisotropic terms to Effective spin
Hamiltonian which leads to non-collinear states:

1- Dzyaloshinsky-Moriya (DM) Interaction:
D.(S; xS;)

2-Single ion anisotropy:

(S;.D)’



Types of Magnetic Orderings
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Long —range magnetic order: lim <S(O).S (r)> # 0

Example: Ferromagnets , Anti-ferromagnets

Quasi long-range order : !iLTJO<S(O),S(r)> o
Example: Critical points, 2D planar spin systems

Short-range order : !@O(S(O)-S("» = exp(—é)
Example : Paramagnets (fluctuating spins),
Spin glasses (spin freezing )



Low dimensionality:

strong fluctuations (thermal or quantum ) in one and two
dimensions suppress the long-range order.

Frustration :

competing exchange interactions or lattice geometry
prevents long-range orderings.

Local interactions and the global energy can not be
minimized simultaneously, which leads to degeneracy in
the classical ground state.



Mermin-Wagner theorem: One and two dimensional
classical Spin systems with short range exchange
interactions do not order at any finite temperature due to
thermal fluctuations. (2D -XY model is an exception)

Quantum Heisenberg chains (exactly solvable):
S =1/2 chain : quasi long-range ordering, no spin gap
S =1 chain: short-range ordering, spin gap



Geometrical frustration:
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% Example: Ising model

\
yé \, \
N, — — ’ \
/ AN p— . . j— / \\
/7 N I ] ] —_— / \
7 \ 4 \
/ \ /

7 N = = /
/I \\ I 0 J ,,/
/ e
a4 / N N /
A, \ B
W
[

Competing interactions:
H = Zss +3,Y'ss;, "

[i.i]
J1>O,J2>O



The ground state of classical AF Ising model on triangular lattice is
six-fold degenerate.

No lang-range order,
However fluctuations are restricted to
the ground state manifold.

Cooperative paramagnet or
Classical spin liquid.



At high temperatures, DC magnetic susceptibility of local- moment
magnets generally has a Curie-Weiss form : 1

S

0.y is the Curie-Wiess temperature and is a measure of exchange
interactions. For frustrated magnets the freezing temperature is much less
than curie-Weiss temperature:
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classical Spin liquid:

Frustration parameter: 0
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Typical behavior of Susceptibility and Dynamical Structure factor
in frustrated magnets




Examples of Geometrically Frustrated Magnets




Examples of Real Pyrochlore Magnets

* Chromium spinels
ACr,0O, Cr3(d%; $=312)
st
(A=2n,Cd, Hg) b

— ©cw = 390K, 70K, 32K
T, = 12K,7.8K,5.8K
f=23250905.5
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Anti-ferromagnetic Heisenberg model on a single
tetrahedron

J
H:JZSi*szilLli—l—ﬂ
pairs

with

L=5;+5y+4+ 53+ 854

Number of equations=3
wumber of components=8
Total degrees of freedom=5

Internal degrees of freedom=5-3=2




AFM Heisenberg model on the Pyrochlore lattice

HzJZSi-SjE%ZEEF—I—E

honds units

Total number of degrees of freedom:
F =2 x (number of spins)

Constrainis satisfied in ground siate:
K = 3 x (number of units)

Ground state dimension:




Illustration of ground
state degeneracy:

spins on the central
hexagon can be rotated
together by any angel
about the axes defined
by the outer spins




Behavior of a frustrated system at low
temperature

Ground state
manifold

Phase space




Thermal or Quantum fluctuations may limit the
phase space, hence inducing order.



Soft modes

Some states have soft modes Others don’t
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Ground state selection by thermal fluctuations

Thermal fluctuations

_ kT
Probability distribution on f dy e~ /*sT 1/7

ground states

kpT
P(x) x H " (X))
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Thermal fluctuations

kagome — coplanar

pyrochlore — disordered




Linear spin wave theory




The quantum zero point energy

in SW approximation, for a given
configuration X in the ground
State manifold is given by:

|
Heit (X) = 5 Z hwy (X)
I

The ground state is a set of
configurations on which the
above zero point energy is
minimum.
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For the Heisenberg anti-ferromagnets at large S the
selected ground state by quantum fluctuations are:

1) Coplanar on the Kagome lattice,
(A. V. Chubukov, Phys. Rev. Lett. 69, 832 (1992))

i1) Collinear on the pyrochlore lattice.
(C. L. Henley, Phys. Rev. Lett. 96, 47201 (2006))

In both examples 1/3 modes are soft.



Spin Ice
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Residual Entropy in Spin Ices
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Artificial magnetic fields and magnetic monopoles in spin ice




Geometrical frustration generates macroscopic
degeneracies which avoid long-range order.

Thermal or Quantum fluctuations may help the
system to select a definite ground state.

Emergence of novel excitations such as magnetic
monopoles



DM Interaction on Pyrochlore AFM

® FeF3in pyrochlore structure:

* The Magnetic Fe™ ions are in d”° electronic configuration
with a totally symmetric ground state with no net angular
moimentuin.

¢ Anti-ferromagnetic exchange interactions between nearest
neighbors

¢ System is highly frustrated, hence any small amount of
anisotropy will be important in determining the ground
state of the system

* The observed low-temperature phase consists of four
sublattices oriented along four [111] directions (All-in
All-out state)
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D-Vectors

Direct DMI In Direct DM




Direct DM leads to All-in All-out GS




The phase transition from disorder to all-in all-out
ordered state is second order for D/J>0.05.

The phase transition from disorder to all-in all-out
ordered state is second order for D/J<0.05.

Then D/J~0.05 would be a Tri-Critical point.






