Revisiting Cosmic No-Hair Theorem for Inflationary Settings

A. Malek-Nejad & M. M. Sheikh-Jabbari based on arXiv:1203.0219

 Our Universe today, looks Homogeneous and Isotropic at cosmological scales.

Cosmic evolution m a <u>generic</u> initial conditiv

s there any Dynamical explanation is the Isotropic & Homogeneous Unian attractor of the cosmic evolution?

- Our Universe today, looks Homogeneous and Isotropic at cosmological scales.
- Cosmic evolution may start from a generic initial condition

- Our Universe today, looks Homogeneous and Isotropic at cosmological scales.
- Cosmic evolution may start from a <u>generic</u> initial condition

 Is there any Dynamical explanation ?
 Is the Isotropic & Homogeneous Universe an attractor of the cosmic evolution?

- Our Universe today, looks Homogeneous and Isotropic at cosmological scales.
- Cosmic evolution may start from a <u>generic</u> initial condition

 Is there any Dynamical explanation ?
 Is the Isotropic & Homogeneous Universe an attractor of the cosmic evolution?

Cosmic No-Hair Conjecture ?

(by Gibbons & Hawking 1977, Hawking & Moss 1982)

all expanding-universe models with a **positive cosmological constant** (**^>0**) asymptotically approach the **de-Sitter** solution.

(by Gibbons & Hawking 1977, Hawking & Moss 1982)

(by Gibbons & Hawking 1977, Hawking & Moss 1982)

The 1st attempt to formulate that made by Wald 1983.

(by Gibbons & Hawking 1977, Hawking & Moss 1982)

Cosmic No-Hair Theorem

(by R. Wald 1983)

Wald's Cosmic No-Hair Theorem

(by R. Wald 1983)

@ Theorem: In the General Relativity, consider Initially expanding Bianchi-type (homogeneous but anisotropic) models, with the total energy-momentum tensor as $T_{\mu\nu} = -\Lambda_0 g_{\mu\nu} + \tilde{T}_{\mu\nu}, \text{ where}$ $\Lambda_0 > 0 \quad \text{is a positive cosmological constant &} \\\tilde{T}_{\mu\nu} \text{ satisfies } \text{Strong & Dominant energy conditions.}$ This system will approach **de-Sitter** space exponentially fast, with the time-scale $\sqrt{3/\Lambda_0}$.

Bianchi-type models

(Homogenous But Anisotropic space) $ds^{2} = -dt^{2} + a^{2}(t)e^{\beta_{ij}(t)}e^{i} \otimes e^{j}$ $\operatorname{tr}\beta_{ii}=0$

FRW (Homogeneous and Isotropic Space) $ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}e^{i} \otimes e^{j}$

(Homogeneous and Isotropic Space) FRW $ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}e^{i} \otimes e^{j}$

Bianchi *(Homogeneous But Anisotropic Space)*
$$ds^2 = -dt^2 + a^2(t)e^{\beta_{ij}(t)}e^i \otimes e^j$$

 $\operatorname{tr}\beta_{ij}=0$

Bianchi (Homogeneous But Anisotropic Space) $ds^{2} = -dt^{2} + a^{2}(t)e^{\beta_{ij}(t)}e^{i} \otimes e^{j}$ $\operatorname{tr}\beta_{ii}=0$

Energy Conditions

• Strong Energy Condition (SEC):

 $(T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T)t^{\mu}t^{\nu} \ge 0 \qquad \text{for all time-like } t^{\mu}$

Energy Conditions

• Strong Energy Condition (SEC):

 $(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T) t^{\mu} t^{\nu} \ge 0 \qquad \text{for all time-like } t^{\mu}$

• Dominant Energy Conditions (DEC):

 $T_{\mu\nu}t^{\mu}t^{\nu} \ge 0$ for all time-like t^{μ} and t^{μ}

Energy Conditions

• Strong Energy Condition (SEC):

 $(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T) t^{\mu} t^{\nu} \ge 0 \qquad \text{for all time-like } t^{\mu}$

Operation of the second sec

 $T_{\mu\nu}t^{\mu}t^{\nu} \ge 0$ for all time-like t^{μ} and t^{μ}

Weak Energy Condition (WEC):

 $T_{\mu\nu}t^{\mu}t^{\nu} \ge 0$ for all time-like t^{μ}

Wald's Cosmic No-Hair Theorem

(by R. Wald 1983)

@ Theorem: In the General Relativity, consider Initially expanding Bianchi-type (homogeneous but anisotropic) models, with the total energy-momentum tensor as $T_{\mu\nu} = -\Lambda_0 g_{\mu\nu} + \tilde{T}_{\mu\nu}, \text{ where}$ $\Lambda_0 > 0 \quad \text{is a positive cosmological constant &} \\\tilde{T}_{\mu\nu} \text{ satisfies } \text{Strong & Dominant energy conditions.}$ This system will approach **de-Sitter** space exponentially fast, with the time-scale $\sqrt{3/\Lambda_0}$.

- Regardless of the enlargement of the initial anisotropy, system exponentially approaches the isotropic solution.
- Inflation never ends in these systems

Inflationary models do **not** satisfy in Wald's theorem!

(by Gibbons & Hawking 1977, Hawking & Moss 1982)

Cosmic No-Hair Theorem

(by R. Wald 1983)

We need to extend Wald's theorem for inflationary settings.

Cosmic No-Hair Theorem

Extended Cosmic No-Hair Theorem for Inflation

(by A. Malek-Nejad & M. M. Sheikh-Jabbari 2012)

(by A. Malek-Nejad & M. M. Sheikh-Jabbari 2012)

Chearem: In the GR, assume Inflation in Bianchi-type models with the total energy-momentum tensor as

$$\begin{aligned} \mathbf{T}_{\mu\nu} &= -\Lambda(t) \, \mathbf{g}_{\mu\nu} + \mathbf{T}_{\mu\nu} & \text{where } \Lambda(t) \geq 0 & \& & \Lambda(t) \leq 0 \\ \mathbf{T}_{\mu\nu} & \text{satisfies Strong \& Weak energy conditions.} \end{aligned}$$

- In principle, anisotropies can grow (in contrast to the cosmic no-hair conjecture) ////
- however, there is an upper-bound on the growth of anisotropies of the order of the slow-roll parameter.

@ It is always possible to: describe the energymomentum tensor of any inflationary system as

 $\mathbf{T}_{\mu\nu} = -\Lambda(t) \,\mathbf{g}_{\mu\nu} + \mathbf{F}_{\mu\nu}$

where $\Lambda(t) \ge 0$ &

 $\mathbf{T}_{\mu\nu}$ satisfies **Strong & Weak Energy Conditions**.

A. M-N and M. M. S-J arXiv:1203.0219v2

@ General form for the energy-momentum tensor:

$T_{\mu\nu} = (\rho(t) + P(t))u_{\mu}u_{\nu} + P(t)g_{\mu\nu} + \Pi_{\mu\nu}(t)$

 $\Pi_{\mu\nu}(t)$ anisotropic stress tensor

$$T_{ij}(t) \quad i \neq j$$

@ General form for the energy-momentum tensor:

$$T_{\mu\nu} = (\rho(t) + P(t))u_{\mu}u_{\nu} + P(t)g_{\mu\nu} + \Pi_{\mu\nu}(t)$$

 $\Pi_{\mu\nu}(t)$ anisotropic stress tensor

$$T_{ij}(t) \quad i \neq j$$

is the source of anisotropy dynamics!

A. M-N and M. M. S-J arXiv:1203.0219v2

Scalar driven inflationary models

- Ordinary multi-scalar filed models
- K-inflation
- DBI inflation
- Models of inflation involving vector gauge fields
 - Gauge-flation
 - Inflationary universe with anisotropic hair

Scalar driven inflationary models

- Ordinary multi-scalar filed models
- K-inflation
- DBI inflation

In all of the above cases T_{ij} , $i \neq j$ is identically zero. So, anisotropy damps out exponentially fast in few Hubble times.

Models of inflation involving vector gauge fields
 Gauge-flation:

Models of inflation involving vector gauge fields
 Gauge-flation:
 (non-Abelian, gauge field inflation)

(non-Abelian gauge field inflation) is a novel inflationary scenario in which inflation is driven by su(2) non-Abelian gauge field minimally coupled to Einstein gravity.

A. Maleknejad & M.M. Sheikh-Jabbari Phys. Rev. D 84 (2011)
A. Maleknejad & M.M. Sheikh-Jabbari arXiv:1102.1513

Models of inflation involving vector gauge fields
 Gauge-flation:

Due to its vector nature

Stability of Isotropic background?

(non-Abelian gauge field inflation) is a novel inflationary scenario in which inflation is driven by su(2) non-Abelian gauge field minimally coupled to Einstein gravity.

A. Maleknejad & M.M. Sheikh-Jabbari Phys. Rev. D 84 (2011)
A. Maleknejad & M.M. Sheikh-Jabbari arXiv:1102.1513

A. Maleknejad, M.M. Sheikh-Jabbari and Jiro Soda, JCAP 1201,016 (2012)

Anisotropy in Gauge-flation

A. Maleknejad, M.M. Sheikh-Jabbari and Jiro Soda, JCAP 1201,016 (2012)

Models of inflation involving vector gauge fields Inflationary universe with anisotropic hair

M. Watanabe, S. kanno and J. Soda

has introduced an inflationary model with **anisotropic hair**. Their model includes **a scalar field** as **inflation** coupled to a mass-less **U(1) gaugefield**.

M. Watanabe, S. kanno and J. Soda, Phys. Rev. Lett. 102, 191302 (2009)

Anisotropic Inflation in this Model

M. Watanabe, S. kanno and J. Soda, Phys. Rev. Lett. 102, 191302 (2009)

Hubble-normalized shear $\frac{h}{H} := \frac{\dot{\sigma}}{H}$ during inflation when c = 2 and $= \varphi_i = 11 M_{Pl}$. B. Himmetoglu, JCAP 1003, 023 (2010)

- we Extended cosmic no-hair theorem for general inflationary setups.
- We find, the behavior of **anisotropies** are governed by the **anisotropic stress tensor** (anisotropic part of $T_{\mu\nu}$)
- It is shown that Anisotropies can grow during inflation, but
- There is an upper-bound value on their enlargement (assuming slow-roll, its equal to $\frac{8}{3}(\varepsilon_0 - \eta_0)$)

