
Workshop on Workshop on
High Performance Computing (HPC08)High Performance Computing (HPC08)
School of Physics, IPMSchool of Physics, IPM
February 16-21, 2008February 16-21, 2008

 Introduction to HPC

Stefano CozziniStefano Cozzini
CNR/INFM Democritos and CNR/INFM Democritos and
SISSA/eLab SISSA/eLab

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

in search of E-science in search of E-science

● What is meant by e-Science? In the future, e-
Science will refer to the large scale science
that will increasingly be carried out through
distributed global collaborations enabled by
the Internet [from
http://www.nesc.ac.uk/nesc/define.html]

● The term e-Science (or eScience) is used to
describe computationally intensive science
that is carried out in highly distributed
network environments
 [from wikipedia]

http://www.nesc.ac.uk/nesc/define.html

e-science is a buzzworde-science is a buzzword

● Buzzwords are typically intended to
impress one's audience with the pretense
of knowledge.

● 2006: tools for computational physics:
● 200 application 1000 Euro sponsors

● 2007: HPC tools for e-Science:
● 400 applications
● 6000 Euro + hardware from sponsors +

books donation...

e-science=computationally intensive e-science=computationally intensive
science science

● Science is becoming increasingly digital and needs to
deal with increasing amounts of data and computing
power

● Simulations get ever more detailed

– Nanotechnology – design of new materials from
the molecular scale

– Modelling and predicting complex systems
(weather forecasting, river floods, earthquake)

– Decoding the human genome

● Experimental Science uses ever more sophisticated
sensors to make precise measurements

 Need high statistics

 Huge amounts of data

 Serves user communities around the world

e-science= new approach to do sciencee-science= new approach to do science

● New tools&methods

– distribute collaborations

– pooling of resources geographically
distributed (GRID Computing)

– powerful and modern hardware/software
(High Performance Computing)

– IT- skilled computational scientists

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

High Performance Computing (HPC)High Performance Computing (HPC)

● performance is everything (well, almost
everything):

● I want ...
● my calculation run faster and faster...

● it ranges from your laptop to the cutting-
edge supercomputers

● it is not only on hardware but involves
software and people as well

How to run application faster ? How to run application faster ?
● There are 3 ways to improve performance:

– Work Harder

– Work Smarter

– Get Help

● Computer Analogy

– Using faster hardware

– Optimized algorithms and techniques used to
solve computational tasks

– Multiple computers to solve a particular task

See MPI tutorial

 see optimization lecture

Units of High Performance Computing:Units of High Performance Computing:
● Processor speed:

 Floats: floating point operation/ second

– Mega flops / Gigaflops / Teraflops / Petaflops

● Network speed:

 bits : bit /second transmitted
10Mbit/100Mbit/1000Mbit=1Gbit and now also
10Gb

● Size unit: byte
– kbyte/Mbyte ----> caches/RAM

– Gigabite -----> RAM/hard disks

– Terabyte -----> Disks/SAN ...

– Petabyte ------> SAN

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

defining parallel computing defining parallel computing

● Parallel computing is the simultaneous
execution of the same task (split up and
specially adapted) on multiple processors in
order to obtain results faster.

● The process of solving a problem usually
can be divided into smaller tasks, which
may be carried out simultaneously with
some coordination.
[from wikipedia]

high performance problem example:high performance problem example:

A PARALLEL SOLUTION!

picture from http://www.f1nutter.co.uk/tech/pitstop.php

analysis of the parallel solution:analysis of the parallel solution:
FUNCTIONAL PARTITIONING

different people are executing different tasks

DOMAIN DECOMPOSITION
different people are
solving the same global
task but on smaller subset

Parallel computing techniquesParallel computing techniques

● FUNCTIONAL
PARTITIONING

EFFICIENT SOLUTION TO THE PROBLEM

picture from the on-line book:
http://www-unix.mcs.anl.gov/dbpp/

● DOMAIN
DECOMPOSITION

Principles of Parallel ComputingPrinciples of Parallel Computing

● Speedup, efficiency, and Amdahl’s Law
● Finding and exploiting parallelism
● Finding and exploiting data locality
● Load balancing
● Coordination and synchronization
● Performance modeling

All of these things make parallel programming
more difficult than sequential programming.

SpeedupSpeedup
● The speedup of a parallel application is

Speedup(p) = Time(1)/Time(p)
● Where

– Time(1) = execution time for a single processor
– Time(p) = execution time using p parallel

processors
● If Speedup(p) = p we have perfect speedup (also

called linear scaling)
● speedup compares an application with itself on one

and on p processors
● more useful to compare

– The execution time of the best serial application on 1
processor

 versus
– The execution time of best parallel algorithm on p

processors

EfficiencyEfficiency
● The parallel efficiency of an application is

defined as
Efficiency(p) = Speedup(p)/p

– Efficiency(p) <= 1
– For perfect speedup Efficiency (p) = 1

● We will rarely have perfect speedup.
– Lack of perfect parallelism in the application or algorithm
– Imperfect load balancing (some processors have more

work)
– Cost of communication
– Cost of contention for resources, e.g., memory bus, I/O
– Synchronization time

● Understanding why an application is not scaling
linearly will help finding ways improving the
applications performance on parallel computers.

Superlinear SpeedupSuperlinear Speedup

Question: can we find “superlinear” speedup,
that is

Speedup(p) > p ?

• Choosing a bad “baseline” for T(1)
• Old serial code has not been updated with optimizations
• Avoid this, and always specify what your baseline is

• Shrinking the problem size per processor
• May allow it to fit in small fast memory (cache)

• Application is not deterministic
• Amount of work varies depending on execution order
• Search algorithms have this characteristic

Amdahl’s LawAmdahl’s Law
● Suppose only part of an application runs in

parallel
• Amdahl’s law

– Let s be the fraction of work done serially,
– So (1-s) is fraction done in parallel
– What is the maximum speedup for P processors?

Speedup(p) = T(1)/T(p)

T(p) = (1-s)*T(1)/p +s*T(1)

 = T(1)*((1-s) + p*s)/p

Even if the parallel part speeds up perfectly, we may
be limited by the sequential portion of code.

Speedup(p) = p/(1 + (p-1)*s)

assumes
perfect
speedup for
parallel part

Amdahl’s law(2)Amdahl’s law(2)

● Which fraction of serial code is it allowed ?

> 2 4 8 32 64 256 512 1024
5% 1.91 3.48 5.93 12.55 15.42 18.62 19.28 19.63
2% 1.94 3.67 6.61 16.58 22.15 29.60 31.35 32.31
1% 1.99 3.88 7.48 24.43 39.29 72.11 83.80 91.18

What about Scalability ???

21/02/08 23

Problem scaling.. Problem scaling..
● Amdahl’s Law is relevant only if serial fraction is

indipendent of problem size, which is rarely true
● Fortunately “The proportion of the computations that

are sequential (non parallel) normally decreases as
the problem size increases ” (a.k.a. Gustafon’s Law)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Processors

Sp
ee

d-
up

lineare
64
192
320
512

Scaled SpeedupScaled Speedup
● Speedup improves as the problem size grows

– Among other things, the Amdahl effect is smaller
● Consider

– scaling the problem size with the number of
processors (add problem size parameter, n)

– for problem in which running time scales linearly with
the problem size: T(1,n) = T(1)*n

– let n=p (problem size on p processors increases by
p)

ScaledSpeedup(p,n) = T(1,n)/T(p,n)

T(p,n) = (1-s)*n*T(1,1)/p +s*T(1,1)

 = (1-s)*T(1,1) + s*T(1,1)=T(1,1)

ScaledSpeedup(p,n) = n = p

assumes
serial work
does not
grow with n

Scaled EfficiencyScaled Efficiency
● Previous definition of parallel efficiency was

Efficiency(p) = Speedup(p)/p
● We often want to scale problem size with the

number of processors, but scaled speedup can be
tricky
– Previous definition depended on a linear work

in problem size
● May use alternate definition of efficiency that

depends on a notion of throughput or rate, R(p):
– Floating point operations per second
– Transactions per second
– Strings matches per second

● Then
Efficiency(p) = R(p)/(R(1)*p)

● May use a different problem size for R(1) and R(p)

Three Definitions of Efficiency: SummaryThree Definitions of Efficiency: Summary

● People use the word “efficiency” in many ways
● Performance relative to advertised machine

peak
Flop/s in application / Max Flops/s on the machine

● Integer, string, logical or other operations could be
used, but they should be a machine-level
instruction

● Efficiency of a fixed problem size
Efficiency(p) = Speedup(p)/p

● Efficiency of a scaled problem size
Efficiency(p) = R(p)/(R(1)*p)

● All of these may be useful in some context
● Always make it clear what you are measuring

Overhead of ParallelismOverhead of Parallelism
● Given enough parallel work, this is the most

significant barrier to getting desired speedup.
● Parallelism overheads include:

– cost of starting a thread or process
– cost of communicating shared data
– cost of synchronizing
– extra (redundant) computation

● Each of these can be in the range of
milliseconds (= millions of arithmetic ops) on
some systems

● Tradeoff: Algorithm needs sufficiently large
units of work to run fast in parallel (i.e. large
granularity), but not so large that there is not
enough parallel work.

Locality and ParallelismLocality and Parallelism

● Large memories are slower; fast memories are small.
● Storage hierarchies are designed to fast on average.
● Parallel processors, collectively, have large, fast

memories -- the slow accesses to “remote” data we call
“communication”.

● Algorithm should do most work on local data.

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

Load ImbalanceLoad Imbalance

● Load imbalance is the time that some
processors in the system are idle due to
– insufficient parallelism (during that phase).
– unequal size tasks.

● Examples of the latter
– adapting to “interesting parts of a domain”.
– tree-structured computations.
– fundamentally unstructured problems.

● Algorithm needs to balance load
– but techniques the balance load often reduce

locality

Idealized Uniprocessor ModelIdealized Uniprocessor Model
● Processor names bytes, words, etc. in its

address space
– These represent integers, floats, pointers, arrays, etc.
– Exist in the program stack, static region, or heap

● Operations include
– Read and write (given an address/pointer)
– Arithmetic and other logical operations

● Order specified by program
– Read returns the most recently written data
– Compiler and architecture translate high level

expressions into “obvious” lower level instructions
– Hardware executes instructions in order specified by

compiler
● Cost

– Each operations has roughly the same cost
(read, write, add, multiply, etc.)

Uniprocessors in the Real WorldUniprocessors in the Real World
● Real processors have

– registers and caches
● small amounts of fast memory
● store values of recently used or nearby data
● different memory ops can have very different costs

– parallelism
● multiple “functional units” that can run in parallel
● different orders, instruction mixes have different

costs
– pipelining

● a form of parallelism, like an assembly line in a
factory

● Why is this your problem?
In theory, compilers understand all of this and can

optimize your program; in practice they don’t.

What is Pipelining? What is Pipelining?

• In this example:
• Sequential execution

takes 4 * 90min = 6
hours

• Pipelined execution
takes 30+4*40+20 =
3.3 hours

• Pipelining helps
throughput, but not
latency

• Pipeline rate limited by
slowest pipeline stage

• Potential speedup =
Number pipe stages

• Time to “fill” pipeline
and time to “drain” it
reduces speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)

Limits to Instruction Level Parallelism Limits to Instruction Level Parallelism
(ILP)(ILP)
● Limits to pipelining: Hazards prevent next instruction

from executing during its designated clock cycle
• Structural hazards: HW cannot support this

combination of instructions (single person to fold and
put clothes away)

• Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

• Control hazards: Caused by delay between the
fetching of instructions and decisions about changes in
control flow (branches and jumps).

● The hardware and compiler will try to reduce these:
– Reordering instructions, multiple issue, dynamic

branch prediction, speculative execution…
● You can also enable parallelism by careful coding

LessonsLessons

● Actual performance of a simple program can
be a complicated function of the
architecture
– Slight changes in the architecture or program

change the performance significantly
– To write fast programs, need to consider

architecture

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

Parallel computersParallel computers

● Tons of different machines !
● Flynn Taxonomy (1966): helps (?) us in

classifying them:
– Data Stream
– Instruction Stream

N a m e I n s t r u c t i o n
s t r e a m

D a t a s t r e a m

S I S D Single Single

S I M D Single Multiple

M I M D Multiple Multiple

M I S D Multiple Single

Flynn Taxonomy (graphical view)Flynn Taxonomy (graphical view)

Another important question:Another important question:

● MEMORY: The simplest and most useful way
to classify modern parallel computers is by
their memory model:
– SHARED MEMORY

– DISTRIBUTED MEMORY

Shared vs Distributed ?Shared vs Distributed ?

Distributed Memory each
processor has it’s own local
memory. Must do message passing
to exchange data between
processors

multicomputers multicomputers
Shared Memory

– single address space. All
processors have access to a
pool of shared memory.

Multiprocessors (MPs)Multiprocessors (MPs)

Shared Memory: UMA vs NUMAShared Memory: UMA vs NUMA

S

● Uniform memory access
(UMA): Each processor has
uniform access to memory.
Also known as symmetric
multiprocessors (SMP)

● Non-uniform memory
access (NUMA): Time for
memory access depends on
location of data. Local
access is faster than non-
local access.

 Distributed memory architecture: Distributed memory architecture:
Clusters ! Clusters !

● Subject: Re: [Beowulf] about concept of Beowulf clusters
Date: Thu, 24 Feb 2005 19:41:22 -0500 (EST) From:
Donald Becker <becker@scyld.com>

CLUSTER: independent machines combined into a unified

system through software and networking

 Inter-processor connection mechanism.

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

 Beowulf Clusters ! Beowulf Clusters !
● Subject: Re: [Beowulf] about concept of beowulf clusters

Date: Thu, 24 Feb 2005 19:41:22 -0500 (EST) From:
Donald Becker <becker@scyld.com>

● The Beowulf definition is commodity machines connected by a
private cluster network running an open source software
infrastructure for scalable performance computing

● this means:
 commodity machines: exclude custom built hardware e.g. a single

Altix is not a Beowulf cluster (or even a cluster by the strict
definition)

 connected by a cluster network: These machines are dedicated to
being a cluster, at least temporarily. This excludes cycle scavenging
from NOWs and wide area grids.

 running an open source infrastructure The core elements of the
system are open source and verifiable

 for scalable performance computing The goal is to scale up
performance over many dimensions, rather than simulate a single
more reliable machine e.g. fail-over. Ideally a cluster incrementally
scales both up and down, rather than being a fixed size.

The Cluster revolution in HPC The Cluster revolution in HPC
● The adoption of clusters, virtually exploded

since the introduction of the first Beowulf
cluster in 1994.

● The attraction lies

– in the (potentially) low cost of both hardware
and software

– the control that builders/users have over their
system.

● The problem lies:

– you should be an expert to build and run
efficiently your clusters

– not always the problem you have fit into a
cluster solution (even if this is cheap!)

really a cluster revolution ? really a cluster revolution ?

Let us check the Top500 listLet us check the Top500 list

● Listing of the 500 most powerful Computers in
the World

● Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

● Updated twice a year

– SC‘xy in the States in November

– Meeting in Germany in June

● All data available from www.top500.org

architectures over last 13 years architectures over last 13 years

current snapshot about architecture current snapshot about architecture

Elements of a Beowulf cluster (1)Elements of a Beowulf cluster (1)

 The Beowulf definition is commodity machines connected by a
private cluster network running an open source software infrastructure

 for scalable performance computing

 commodity
machines:

Elements of a Beowulf cluster (2)Elements of a Beowulf cluster (2)
 The Beowulf definition is commodity machines connected by a private
 cluster network running an open source software infrastructure
 for scalable performance computing

Elements of a Beowulf cluster (3)Elements of a Beowulf cluster (3)
 The Beowulf definition is commodity machines connected by a private
 cluster network running an open source software infrastructure
 for scalable performance computing

Elements of an HPC infrastructureElements of an HPC infrastructure

● Hardware

– The basic bricks

● Software

– To make hardware usable

● People

– installers/sys adm. /planners/ users etc..

● Problems to be solved

– Any action in building such an infrastructure
should be motivated by real needs

Building your own HPC infrastructureBuilding your own HPC infrastructure

● HPC infrastructure was extremely expensive a
few years ago

– based on supercomputers

● Open source software + commodity off the
shelf hardware provides now tools to build low
cost HPC infrastructure

– based on clusters

GREAT CHANCE FOR
LOW BUDGET INSTITUTIONS

21/02/08 54

Cluster Computer ArchitectureCluster Computer Architecture

Sequential Applications

Parallel Applications

Parallel Programming Environment

Cluster Middleware

(Single System Image and Availability Infrastructure)

Cluster Interconnection Network/Switch

PC/Workstation

Network Interface
Hardware

Communications

Software

PC/Workstation

Network Interface
Hardware

Communications

Software

PC/Workstation

Network Interface
Hardware

Communications

Software

PC/Workstation

Network Interface
Hardware

Communications

Software

Sequential Applications
Sequential Applications

Parallel Applications
Parallel Applications

Hardware bricks for clustersHardware bricks for clusters
● Commodity 64 bit CPUs:

– AMD

– INTEL

● Networks

– Standard (commodity)
● Gigabit

– High speed (not really commodities)
● Myrinet
● Qsnet
● Scali/Dolphin
● Infiniband

 Processors at 64 bit Processors at 64 bit
● What does it mean 64 bit ?

– Memory address space and disk files:
 264-1 >> 232-1

– I/O bandwidth: 64 =32 x2 double the size !

– Nothing to do with precision !

AMD/Intel XEON comparisonAMD/Intel XEON comparison

AMD/Intel XEON comparisonAMD/Intel XEON comparison

Which hardware for HPC nodes ? Which hardware for HPC nodes ?

● MULTIPROCESSORS machines
– dual processor quite common/inexpensive
– Quad processor available..

● MULTICORE !
– Quad core for AMD
– quad core for Intel

Multiple, externally visible processors on a single
die where the processors have independent

control-flow, separate internal state and no critical
resource sharing

Perf Perf

Energy Energy

Many-core array
• CMP with 10s-100s low

power cores
• Scalar cores
• Capable of TFLOPS+
• Full System-on-Chip
• Servers, workstations,

embedded…

Dual core
• Symmetric multithreading

Multi-core array
• CMP with ~10 cores

Evolution

Large, Scalar cores for
high single-thread
performance

Scalar plus many core for
highly threaded workloads

Micro2015: Evolving Processor Architecture, Intel® Developer Forum, Mar 2005Micro2015: Evolving Processor Architecture, Intel® Developer Forum, Mar 2005

Evolutionary configurable Evolutionary configurable
architecturearchitecture

Single core vs dual core: Single core vs dual core:

Barcelona quad core architectureBarcelona quad core architecture

single Core VS Multiple core (from single Core VS Multiple core (from
J.Dongarra talk)J.Dongarra talk)

NetworksNetworks

● Standard:

– Fast Ethernet

– Gigabit Ethernet

● High Speed Network

– SCI (Dolphin)

– Qsnet

– Myrinet

– Infiniband

– 10Gigabit

Which networks for your cluster ? Which networks for your cluster ?

● Difficult choice:

– Which kind of cluster (HTC or HPC) ?
– Which kind of application ?

● Serial/Parallel
● Parallel loosely coupled / tightly coupled
● Latency or bandwidth dominated ?

– Budget considerations
– I/O considerations

HPC cluster structureHPC cluster structure

Intranet
Master N.

…
…
…
Worker N.

IPC network

I/O network

Internet

Manag. network

Access N.

…
…
…
Worker N.

Luxury clusters: 3 networksLuxury clusters: 3 networks
● HIGH SPEED NETWORK

– parallel computation
● low latency /high bandwidth
● Usual choiches: Myrinet/SCI/Infiniband...

● I/O NETWORK

– I/O requests (NFS and/or parallel FS)
● latency not fundamental/ good bandwidth
● GIGABIT is ok

● Management network

– management traffic
● any standard network (fast ethernet OK)

Network ConsiderationsNetwork Considerations
● In the past 5 years the speed of the

interconnects commonly found in clusters
has improved by a factor of 20!

● While 1-3 years ago the PCs commonly
available were unable to make full use of
the available bandwidth, today’s systems
are demonstrating some impressive
performance

● There are now several interconnect
technologies that each offer advantages in
certain situations.

high speed network considerations high speed network considerations
● In general the compute/communication

ratio in a parallel program remains fairly
constant.

● So as the computational power increases
the network speed must also be
increased.

● Another formulation of our beloved
Ahmdal law…

Network performanceNetwork performance

From: http://www.clustermonkey.net/ (april 2006)

http://www.clustermonkey.net/

Linuux Cluster: the software stacksLinuux Cluster: the software stacks

Linux Cluster: the sys. Adm. stacksLinux Cluster: the sys. Adm. stacks

21/02/08 73

Operating System: Gnu/LinuxOperating System: Gnu/Linux
● Linux Kernel (http://www.kernel.org)

– Open-Source/ freeware
● Features:

– The /proc file system
– Loadable kernel modules
– Virtual consoles
– Package management
– Many distribution to choose

http://www.kernel.org/

Why Linux ? Why Linux ?
● Access to cheap hardware

● Access to Source code is needed to implement
desired features.

● Availability of software

● Access to cheap graduate students

● Access to large community

– response speed from community sometime
much better then vendor/support ones.

● open source/ free software: no license Issues.

● Availability of Scientific Tools/Resources.

75

Middleware Design GoalsMiddleware Design Goals
● Complete Transparency (Manageability):

– Lets the see a single cluster system..
● Single entry point, ftp, ssh, software loading...

● Scalable Performance:
– Easy growth of cluster

● no change of API & automatic load distribution.

● Enhanced Availability:
– Automatic Recovery from failures

● Employ checkpointing & fault tolerant
technologies

– Handle consistency of data when
replicated..

Cluster middleware: beowulf approachCluster middleware: beowulf approach

● Administration software:
– NFS
– user accounts
– NTP

● Resource management and scheduling
software (RMS)
– Process distribution
– Load balance
– Job scheduling of multiple

 tasks

server client

client

client

CLUSTER MANAGEMENTCLUSTER MANAGEMENT
Administration ToolsAdministration Tools

● R e q u i r e m e n t s :

– c l u s t e r -w i d e c o m m a n d e x e c u t i o n

– c l u s t e r -w i d e f i l e d i s t r i b u t i o n a n d
g a t h e r i n g

– p a s s w o r d -l e s s e n v i r o n m e n t

– m u s t b e s i m p l e , e f f i c i e n t , e a s y t o u s e f o r
C L I addicted

Cluster Management Toolkits Cluster Management Toolkits
● Are generally made of an ensemble of already available

software packages thought for specific tasks, but configured
to operate together, plus some add-ons.

● Sometimes limited by rigid and not customizable
configurations, often bound to some specific LINUX
distribution and version. May depend on vendors' hardware.

● Free and Open

– OSCAR (Open Source Cluster Application Resources)

– NPACI Rocks

– xCAT (eXtreme Cluster Administration Toolkit)

– Warewulf

● Commercial

– Scyld Beowulf

– IBM, HP, SUN and other vendors' Management Software...

CLUSTER MANAGEMENTCLUSTER MANAGEMENT
Administration ToolsAdministration Tools

● C3 tools – The Cluster Command and Control tool
suite
– allows configurable clusters and subsets of machines

– concurrently execution of commands

– supplies many utilities

● cexec (parallel execution of standard commands on all cluster nodes)

● cexecs (as the above but serial execution, useful for troubleshooting and
debugging)

● cpush (distribute files or directories to all cluster nodes)

● cget (retrieves files or directory from all cluster nodes)

● ... and many more

● PDSH – Parallel Distributed SHell

– same features as C3 tools, few utilities

● And many others...

CLUSTER MANAGEMENT:CLUSTER MANAGEMENT:
monitoring tools:monitoring tools:
● A d -h o c s c r i p t s (B A S H , P E R L , ...) + c r o n

● G a n g l i a

– excellent graphic tool

– XML data representation

– web-based interface for visualization

– http://ganglia.sourceforge.net/
● N a g i o s

– complex but can interact with other software

– configurable alarms, SNMP, E-mail, SMS, ...

– optional web interface

– http://www.nagios.org/

Ganglia at work..Ganglia at work..

Local Resource Management Systems..Local Resource Management Systems..
● a.k.a “Batch System”

– Some pieces of software control available
resources

– Some other pieces of software decide which
application to execute based on available
resources

– Some other pieces of software are devoted to
actually execute applications

● Please note:

– Batch does not necessarily mean “delayed”

– Batch-interactive sessions are possible

– Time sharing is possible with most systems

Resource Management and Access Resource Management and Access
ControlControl

● The batch system knows who will be allowed
to run applications on which nodes

– some mechanisms can be put in place to allow
access to nodes only to these legitimate users

– Usually batch system’s prologue and epilogue
programs can be used for the purpose.

LRMS for Linux ClustersLRMS for Linux Clusters

● Several batch queuing systems available for
Linux-based clusters.

● Most commonly used:

– Condor (http://www.cs.wisc.edu/condor)

– SGE (http://www.sun.com/sge)

– LSF (http://www.platform.com, -- commercial)

– Portable Batch System

● PBSPro (commercial)
● OpenPBS

– Torque (successor of openpbs)

http://www.platform.com/
http://www.platform.com/
http://www.platform.com/
http://www.platform.com/

Cluster Pro&ConsCluster Pro&Cons
● Pro:

– Price/performance when compared with a dedicated
parallel supercomputer

– Great opportunity for low budget institution

– Flexibility: many ad hoc solution for different problems..

– Open Technology

● What you learn in this business can be used
everywhere..

● Cons:

– It is hard to build and operate medium and large cluster

● Large collection of software that are not “talk to each
other”

– Lot of expertise needed (no plug and play yet)

– How to use cluster power efficiently

–

–

Which cluster do I need ? Which cluster do I need ?
● Which applications ?

– Parallel
● Tightly coupled
● Loosely coupled

– Serial
● Memory / I/O requirements

● Which user's community ?
– Large /Small
– Homogeneous /heterogeneous

– Understand your computational problem before
buying/building a cluster !

– Run your own benchmarks before buying/building a cluster !

Which architectures in your Which architectures in your
infrastructure ? infrastructure ?

● Parallel computing:

– single systems with many processors working
on same problem

● Distributed computing:

– many systems loosely coupled by a scheduler
to work on related problems

● Grid Computing:

– many systems tightly coupled by software,
perhaps geographically distributed, to work
together on single problems or on related
problems

Capability vs Capacity ComputingCapability vs Capacity Computing
● Capability computing: the system is employed

for one or a few programs for which no
alternative is readily available in terms of
computational capabilities

– typical cluster usage
● small research groups using a few bunch of

scientific application

● Capacity computing: a system is employed to
the full by using the most of its available cycles
by many, often very demanding, applications
and users.

– typical computer center usage:
● still clusters can be useful: they required much

more work/tuning to fulfill all the requirements

Agenda Agenda
● Introduction: what is e-science ?
● High Performance Computing:

– introduction/ concepts /definitions

● Understanding parallel programming: some ideas
– Speedup: the effectiveness of parallelism
– Limits to parallel performance
– Modern Serial processor and parallelism

● Parallel Machines

● Clusters:

– definition and some other funny things

● Grid and all the rest

● Wrap-up

Why the GRID? Why the GRID?

● Motivation: When communication is close to
free we should not be restricted to local
resources when solving problems.

● A Grid Infrastructure built on the Internet
and the Web to enable and exploit large
scale sharing of resources

● It should provides Scalable Secure Reliable
mechanisms for discovery and for remote
access of resources.

GGrids vs. HPC rids vs. HPC
● Not an “either/or” question

– Each addresses different needs

– Each are part of an integrated solution

● Grid strengths

– Coupling necessarily distributed resources instruments,
software, hardware, archives, and people

– Eliminating time and space barriers

– remote resource access and capacity computing

● Grids are not a cheap substitute for capability

● HPC Highest performance computing strengths
– Supporting foundational computations

– terascale and petascale “nation scale” problems

– Engaging tightly coupled computations and teams
Key is easy access to resources in a transparent way

Different level of parallelismDifferent level of parallelism

● Within the core/cpu

– Instruction level parallelism

● Within the node:

– Threaded libraries/ openMP

● Within the cluster:

– Message passing approach (i.e. MPI)

● Within the GRID

– Message passing/ client/server approach..

Wrap-upWrap-up
● HPC and GRID computing are now

fundamental tools for scientific research

● HPC means parallel computing

● HPC experienced a great change in the last
ten years: from custom machine to Beowulf
clusters

● The challenge is now to build your own HPC
infrastructure driven by real needs.

● HPC and GRID computing are not mutually
exclusive but can be both used to address
computational resources in a transparent
way.

ReferencesReferences

● www.democritos.it/hpc-wiki

● All the material will be made available for this
workshop !

http://www.democritos.it/hpc-wiki

