Workshop on |
High Performance Computing (HPCO08)

School of Physics, IPM

February 16-21, 2008

Introduction to HPC

Stefano Cozzini
CNR/INFM Democritos and
SISSA/elLab 82 s &

;)
. =
A

1™ F N

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

in search of E-science

« What is meant by e-Science? In the future, e-

Science will refer to the large scale science
that will increasingly be carried out through
distributed global collaborations enabled by
the Internet [from

http://www.nesc.ac.uk/nesc/define.html]

e The term e-Science (or eScience) is used to
describe computationally intensive science
that is carried out in highly distributed
network environments

http://www.nesc.ac.uk/nesc/define.html

e-science is a buzzword

Buzzwords are typically intended to
Impress one's audience with the pretense
of knowledge.

2006: tools for computational physics:
« 200 application 1000 Euro sponsors
2007: HPC tools for e-Science:

* 400 applications

« 6000 Euro + hardware from sponsors +
books donation...

e-science=computationally intensive

saence
Science is becoming increasingly digital and needs to
deal with increasing amounts of data and computmg

power

« Simulations get ever more detailed

- Nanotechnology - design of new materials from
the molecular scale

- Modelling and predicting complex systems .il\
(weather forecasting, river floods, earthquake) :

- Decoding the human genome

« Experimental Science uses ever more sophisticated
sensors to make precise measurements

Need high statistics

Huge amounts of data

Serves user communities around the world

e-science= new approach to do science

e New tools&methods

— distribute collaborations

- pooling of resources geographically
distributed (GRID Computing)

- powerful and modern hardware/software
(High Performance Computing)

- IT- skilled computational scientists

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

High Performance Computing (HPC)

« performance is everything (well, almost
everything):
| want ...
 my calculation run faster and faster...

« it ranges from your laptop to the cutting-
edge supercomputers

« it is not only on hardware but involves
software and people as well

How to run application faster ?
 There are 3 ways to improve performance:

- Work Harder
- Work Smarter
- Get Help

« Computer Analogy

- Using faster hardware

- Optimized algorithms and techniques used to

solve computational tasks .
see optimization lecture

- Multiple computers to solve a particular task

See MPI tutorial

Units of High Performance Computing:
 Processor speed:

- Mega flops / Gigaflops / Teraflops / Petaflops
 Network speed:

10Mbit/100Mbit/1000Mbit=1Gbit and now also
10GDb

 Size unit: byte
- kbyte/Mbyte ----> caches/RAM
- Gigabite = --—--- > RAM/hard disks
- Terabyte ----- > Disks/SAN ...
- Petabyte ------ > SAN

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

defining parallel computing

 Parallel computing is the simultaneous
execution of the same task (split up and
specially adapted) on multiple processors in
order to obtain results faster.

« The process of solving a problem usually
can be divided into smaller tasks, which
may be carried out simultaneously with
some coordination.

[from wikipedia]

high performance problem example:

plcture from http //www f1 nutter CO. uk/tech/pltstop php

analysis of the parallel solution:

FUNCTIONAL PARTITIONING
different people arehexecuting different tasks

__,

Dy
":r ;15:’ T j._:u }?;H"L—'-- il

il l|- -;—:'-..___

o '¢.|||II:|'-j'°'“-! T ’%,“

DOMAIN DECOMPOSITION

different people are
solving the same global
task but on smaller subset

Parallel computing techniques

Atmospheric Model

(I

Hydrology
Model

v

Land Surface Model e

Ocenn
Model

« FUNCTIONAL

1-D 2-D 3-D
« DOMAIN
DECOMPOSITION

PARTITIONING <+

EFFICIENT SOLUTION TO THE PROBLEM

picture from the on-line book:

http://www-unix.mcs.anl.gov/dbpp/

Principles of Parallel Computing

« Speedup, efficiency, and Amdahl’s Law
» Finding and exploiting parallelism
 Finding and exploiting data locality

e Load balancing
Coordination and synchronization
Performance modeling

All of these things make parallel programming
more difficult than sequential programming.

Speedup
 The speedup of a parallel application is
Speedup(p) = Time(1)/Time(p)
 Where
- Time(1l) = execution time for a single processor

- Time(p) = execution time using p parallel
processors

« If Speedup(p) = p we have perfect speedup (also
called linear scaling)

« speedup compares an application with itself on one
and on p processors
« more useful to compare

- The execution time of the best serial application on 1
processor

vVersus
- The execution time of best parallel algorithm on p

Processors

Efficiency

 The parallel efficiency of an application is
defined as

Efficiency(p) = Speedup(p)/p
Efficiency(p) <=1
For perfect speedup Efficiency (p) =1

« We will rarely have perfect speedup.

Lack of perfect parallelism in the application or algorithm

Imperfect load balancing (some processors have more
work)

Cost of communication
Cost of contention for resources, e.g., memory bus, |/O
Synchronization time

 Understanding why an application is not scaling
linearly will help finding ways improving the
applications performance on parallel computers.

Superlinear Speedup

Question: can we find “superlinear” speedup,
that is

Speedup(p) >p ?
« Choosing a bad “baseline” for T(1)

 Old serial code has not been updated with optimizations
 Avoid this, and always specify what your baseline is

 Shrinking the problem size per processor
« May allow it to fit in small fast memory (cache)

 Application is not deterministic
« Amount of work varies depending on execution order
« Search algorithms have this characteristic

Amdahl’'s Law

« Suppose only part of an application runs in
parallel
« Amdahl’s law

- Let s be the fraction of work done serially,
- So (1-s) is fraction done in parallel
- What is the maximum speedup for P processors?

Speedup(p) = T(1)/T(p) assumes
/ perfect
T(p) = (1-s)*T(1)/p +s*T(1) speedup for
parallel part

=T(1)*((1-s) + p*s)/p

Speedup(p) = p/(1 + (p-1)"s)
Even if the parallel part speeds up perfectly, we may
be limited by the sequential portion of code.

Amdahl’s law(2)

« Which fraction of serial code is it allowed ?

191 348 5.93 1255 1542 18.62 19.28 19.63
194 3.67 6.61 16.598 22.15 29.60 31.35 32.31

199 3.88 7.48 2443 39.29 7211 83.80 91.18

What about Scalability 2?7

Problem scaling..
« Amdahl’s Law is relevant only if serial fraction is
iIndipendent of problem size, which is rarely true

 Fortunately “The proportion of the computations that
are sequential (non parallel) normally decreases as
the problem size increases ” (a.k.a. Gustafon’s Law)

35

25+ —lineare
o 20 + 64
,3 192
& 15 320

10 1 — 512

0 5 10 15 20 25 30 35

Processors

21/02/08 23

Scaled Speedup

 Speedup improves as the problem size grows
- Among other things, the Amdahl effect is smaller

« Consider

- scaling the problem size with the number of
processors (add problem size parameter, n)

- for problem in which running time scales linearly with
the problem size: T(1,n) = T(1)*n

- let n=p (problem size on p processors increases by

)
P ScaledSpeedup(p,n) = T(1,n)/T(p,n) |assumes

serial work

T(p,n) = (1-s)"n"T(1,1)/p +s™T(1,1) does not
= (1-s)T(1,1) + $T(1,1)=T(1,1) 2T

ScaledSpeedup(p,n)=n=p

Scaled Efficiency

* Previous definition of parallel efficiency was

Efficiency(p) = Speedup(p)/p

 We often want to scale problem size with the
number of processors, but scaled speedup can be
tricky

- Previous definition depended on a linear work
In problem size

 May use alternate definition of efficiency that
depends on a notion of throughput or rate, R(p):

- Floating point operations per second
- Transactions per second
- Strings matches per second
 Then
Efficiency(p) = R(p)/(R(1)*p)
May use a different problem size for R(1) and R(p)

Three Definitions of Efficiency: Summary

 People use the word “efficiency” in many ways

e Performance relative to advertised machine
neak

Flop/s in application / Max Flops/s on the machine

 Integer, string, logical or other operations could be
used, but they should be a machine-level
instruction

« Efficiency of a fixed problem size
Efficiency(p) = Speedup(p)/p

« Efficiency of a scaled problem size
Efficiency(p) = R(p)/(R(1)*p)

« All of these may be useful in some context

 Always make it clear what you are measuring

Overhead of Parallelism

Given enough parallel work, this is the most
significant barrier to getting desired speedup.
Parallelism overheads include:

- cost of starting a thread or process

- cost of communicating shared data

- cost of synchronizing

- extra (redundant) computation

Each of these can be in the range of
milliseconds (= millions of arithmetic ops) on
some systems

Tradeoff: Algorithm needs sufficiently large
units of work to run fast in parallel (i.e. large
granularity), but not so large that there is not
enough parallel work.

Locality and Parallelism

Proc

Proc

/4

Proc
Cache
L2 Cache
Conventional
Storage |3 Cach
Hierarchy | &> ©ache
Memory

Cache Cache
L2 Cache L2 Cache
¢ B)
L3 Cache L3 Cache
¢
Memory Memory

\V\

~

¢

B)

« Large memories are slower; fast memories are small.

« Storage hierarchies are designed to fast on average.

« Parallel processors, collectively, have large, fast
memories -- the slow accesses to “remote” data we call

“communication”.

« Algorithm should do most work on local data.

S)}O9UU0dJdjUul

jennuajod

Load Imbalance

 Load imbalance is the time that some
processors in the system are idle due to

- insufficient parallelism (during that phase).
- unequal size tasks.

 Examples of the latter
- adapting to “interesting parts of a domain”.
- tree-structured computations.
- fundamentally unstructured problems.

» Algorithm needs to balance load

- but techniques the balance load often reduce
locality

Ildealized Uniprocessor Model

Processor names bytes, words, etc. In its
address space

- These represent integers, floats, pointers, arrays, etc.
- Exist in the program stack, static region, or heap

Operations include
- Read and write (given an address/pointer)
- Arithmetic and other logical operations

Order specified by program
- Read returns the most recently written data

- Compiler and architecture translate high level
expressions into “obvious” lower level instructions

- Hardware executes instructions in order specified by
compiler
Cost

- Each operations has roughly the same cost
(read, write, add, multiply, etc.)

Uniprocessors in the Real World

 Real processors have

- registers and caches
 small amounts of fast memory
« store values of recently used or nearby data
« different memory ops can have very different costs

- parallelism

 multiple “functional units” that can run in parallel

e different orders, instruction mixes have different
costs

- pipelining
« a form of parallelism, like an assembly line in a
factory

 Why is this your problem?
In theory, compilers understand all of this and can
optimize your program; in practice they don’t.

X W0 Q9 4

S 0 oY Q

What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min)

6 PM\ 7 8 9 * In this example:

I > « Sequential execution
Time takes 4 *90min =6

 Pipelined execution
55 % = 40 40 40 20 takes 30+4*40+20 =

3.3 hours

' « Pipelining helps
° throughput, but not
‘ ‘ ol 17 latency

« Pipeline rate limited by
=/ ° slowest pipeline stage
55 ﬁD 3 « Potential speedup =
iy = = I Number pipe stages
5;6 ﬁo ;= Time to “fill” pipeline
' | and time to “drain” it
reduces speedup

Limits to Instruction Level Parallellsrh
(ILP)

« Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle
 Structural hazards: HW cannot support this

combination of instructions (single person to fold and
put clothes away)

- Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

« Control hazards: Caused by delay between the
fetching of instructions and decisions about changes in
control flow (branches and jumps).

 The hardware and compiler will try to reduce these:

- Reordering instructions, multiple issue, dynamic
branch prediction, speculative execution...

 You can also enable parallelism by careful coding

Lessons

« Actual performance of a simple program can
be a complicated function of the
architecture

- Slight changes in the architecture or program
change the performance significantly

- To write fast programs, need to consider
architecture

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

Parallel computers

 Tons of different machines !

 Flynn Taxonomy (1966): helps (?) us in
classifying them:
- Data Stream
- Instruction Stream

Name [Instruction Data stream
stream

SISD Single Single
SIMD Single Multiple
M IM D Multiple Multiple

MISD Multiple Single

Flynn Taxonomy (graphical view)

Data
— OP —
Instruction
SISD Data
(Single instruction stream 9 c I)“ L >
single data stream)
— CPU | —
— GPU | —
SIND Instruction
(Single instruction stream
multipe data stream)
Data
— > —>
—>
CPU —
MIMD

(Multipe instruction stream
mingle data stream)

Another important question:

« MEMORY: The simplest and most useful way
to classify modern parallel computers is by

their memory model:
- SHARED MEMORY

- DISTRIBUTED MEMORY

Shared vs Distributed ?

each
processor has it's own local
memory. Must do message passing
to exchange data between

processors

. CPU
multicomputers
- single address space. All - Mermory -
processors have access to a
pool of shared memory.
CPU

Multiprocessors (MPs)

Shared Memory: UMA vs NUMA

 Uniform memory access
(UMA): Each processor has !!!F!!
uniform access to memory. .
Also known as symmetric |
multiprocessors (SMP)

 Non-uniform memory

access (NUMA): Time gor FEFEE HEDE
memory access depends on ! S]
location of data. Local

access is faster than non-

local access.

Distributed memory architecture:
Clusters !

* Subject: Re: [Beowulf] about concept of Beowulf clusters
Date: Thu, 24 Feb 2005 19:41:22 -0500 (EST) From:
Donald Becker <becker@scyld.com>

CLUSTER: independent machines combined into a unified
system through software and networking

Inter-processor connection mechanism.

Processor Processor Processor Processor

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

Beowulf Clusters !

Subject: Re: [Beowulf] about concept of beowulf clusters
Date: Thu, 24 Feb 2005 19:41:22 -0500 (EST) From:
Donald Becker <becker@scyld.com>

The Beowulf definition is commodity machines connected by a
private cluster network running an open source software
infrastructure for scalable performance computing

this means:

exclude custom built hardware e.qg. a single
Altix is not a Beowulf cluster (or even a cluster by the strict
definition)

These machines are dedicated to
being a cluster, at least temporarily. This excludes cycle scavenging
from NOWs and wide area grids.

The core elements of the
system are open source and verifiable

The goal is to scale up
performance over many dimensions, rather than simulate a single
more reliable machine e.qg. fail-over. Ideally a cluster incrementally
scales both up and down, rather than being a fixed size.

The Cluster revolution in HPC

 The adoption of clusters, virtually exploded
since the introduction of the first Beowulf
cluster in 1994,

e The attraction lies

- In the (potentially) low cost of both hardware
and software

- the control that builders/users have over their
system.

« The problem lies:

- you should be an expert to build and run
efficiently your clusters

- not always the problem you have fit into a
cluster solution (even if this is cheap!)

really a cluster revolution ?

Let us check the Top500 list

Listing of the 500 most powerful Computers in
the World

Yardstick: Rmax from LINPACK MPP
Ax=Db, dense problem

Updated twice a year

- SC'xy In the States in November

- Meeting in Germany in June

All data available from www.top500.0rg

architectures over last 13 years

@_EPP' Architectures / Systems

=00

[] Others

B siMD

B Single Processor
[constellations
[Cluster

] smP
0 mrF

4350

400

350

i°

hitp:/www tops00.ong!

current snapshot about architecture

@mﬂ Architectures / Systems (November 2006)
e Movember 2006

MPP (21623

Elements of a Beowulf cluster (1)

The Beowulf definition is cOmmodity machines connected by a
private cluster network running an open source software infrastructure

for scalable performance computing

@_ﬁﬂﬂc Processor Generation / Systems (November 2006)
P Mavember 2006

Opteron (7 4%} | tanium 2 (7.0%)
Opteron Dual Core {(15.2% ————. Heon 51w (Woodcrest' (5.2%)

FowerFC 440 (5.58%.3

FowerPC 8970 (3.6%1

POWERS (3.4%)
POWERS+ (2.4%)
POWERS+ (2.2%)
P4-5700+ (1.6%
P4-5900 {1.6%
_Others {45

Reon EME4T (15.4% 0

120112005 bttty topS00.orgs

Elements of a Beowulf cluster (2)

The Beowulf definition is commodity machines connected by a nrivaie

cluster network running an open source software infrastructure
for scalable performance computing

@_ﬁﬂﬂc Interconnect Family / Systems (November 2006)
s T Movember 2008

Fyrinet (15.6% ~ ————— Infiniband {15.6%)

GF Switch (F.4%)

Quadrics (2.58%)
Crosshar (2,259

Cray Interconnect ¢1.8%

Mized (1.0%)
Others (0.4%3

1201 1/2006 hitp e topS00 org!

Elements of a Beowulf cluster (3)

The Beowulf definition is commodity machines connected by a private

cluster network running an Opcn source software nirastruciure
for scalable performance computing

Operating System / Systems

[] Others
[0 B5D Based
[] Lirmz
B Unix

430

mmmmmmmmmm
mmmmmmmmmmm
(a7} (=7} (a7} L] (a7} (a7] (a7} [} = e

— = . — - = — {a} ol

hitp://'www.top500.omg/

Elements of an HPC infrastructure

Hardware

- The basic bricks

Software

- To make hardware usable

People

- Installers/sys adm. /planners/ users etc..
Problems to be solved

- Any action in building such an infrastructure
should be motivated by real needs

Building your own HPC infrastructure

« HPC infrastructure was extremely expensive a
few years ago

- based on supercomputers

 Open source software + commodity off the
shelf hardware provides now tools to build low
cost HPC infrastructure

- based on clusters

GREAT CHANCE FOR
LOW BUDGET INSTITUTIONS

Cluster Computer Architecture

Par.jllp plicat ?A‘Qq
- S arallel Applications.
Sequential-Applications : ;
Sequentiat Apptications Parallel Programming Environment

Cluster Middleware

(Single System Image and Availability Infrastructure)

PC/Workstation || PC/Workstation || PC/Workstation || PC/Workstation

Network Interface Network Interface Network Interface Network Interface
Hardware Hardware Hardware Hardware

Cluster Interconnection Network/Switch

21/02/08 o4

Hardware bricks for clusters
« Commodity 64 bit CPUs:

- AMD
- INTEL

« Networks

- Standard (commodity)
« Gigabit
- High speed (not really commodities)
 Myrinet
* Qsnet
 Scali/Dolphin
* Infiniband

Processors at 64 bit
« What does it mean 64 bit ?

- Memory address space and disk files:
264-1 >> 232-1

- 1/0 bandwidth: 64 =32 x2 double the size !
- Nothing to do with precision !

AMD/Intel XEON comparison

AMD Opteron Processor Server Intel Xeon MP Processor Server

HyparTransport™ Teschnol ogry

Buses Enable Glueless HyperTranapan™ Techndlogy Duse

Expansion for up to B-way for Glusless 140 or CPU Expansion Memaory Capacity Marimu of P Proosmes FSE B Barcteideh Shaned Across
Ebriars Seales wy Mumber par Famery Contrallar Hub All Four Processos

HyperTransport
Link Has Amplie
Bandw idth For
10 Darvloes

AMD/Intel XEON comparison

Mamory acces:s on Optaron and Xeon SMP nodes

siream DeEnchmads, (mad operaion; C=deb)

D
e l€.||I.-I|I B ek |
e 1 [e aen BREAT 14
~ 0N~
X
L
-
=L
=
4
-
i —
11

-

i thiesds

Which hardware for HPC nodes ?

« MULTIPROCESSORS machines

- dual processor quite common/inexpensive
- Quad processor available..

Multiple, externally visible processors on a single
die where the processors have independent

N | control-flow, separate internal state and no critical
M U LTICORE] resource sharing
- Quad core for AMD
- quad core for Intel

Evolutionary configurable
architecture

Scalar plus many core for . i
highly threaded workloads [= aeeeems
Large, Scalar cores for any I I..
high single-thread e [= |
performance Many-core array

« CMP with 10s-100s low
power cores

Scalar cores
Capable of TFLOPS+
Full System-on-Chip

Servers, workstations,
mbedded...

Multi-core array
« CMP with ~10 cores

Dual core
« Symmetric multithread

Micro2015: Evolving Processor Architecture, Intel® Developer Forum, Mar 2005

Single core vs

System Request Queue

Crossbar
Integrated r
DDR Memory 3
Controller e
Eg ‘ HyperTransport
b4 GB/s
DDR-400

Figure 1: Single core AMDS4 block diagram

dual core:

system Request Queue

Crossbar

Integrated r
CDR Memory -3 :
Controller =
Er E HyperTransport
e

6.4 GB/s
DDR-400

1

WU
[T

i
£

Figure 2: Dual core AMDES block diagram

Barcelona quad core architecture

Hyper Tramsport™ technology
links provide up to 14 GB/s peak
bandwidth per processor,

10.7GB/s @
DDR1-66T

single Core VS Multiple core (from
J.Dongarra talk)

I:f'—' = : J T W - .
— | P : — T
LOgnge 1S SONnIlimg
- | 1 Core
8 .
= 3
RE = No Free Lunch For Traditional
: | sis Software
= = "E (Without highly concurrent software it won't get any faster!)
E | S8
B E -i'-ﬁ
E @ J " 2 Cores
: |—339 .
i 2o : e
E 22 o E- #
w - -~
.;% = 5% P 4 Cores
c B - -
& S - N o .’ ‘ . _ 8 Cores
W fﬁ-’fw B8t 4 Cona LSk scaa— —
il - i
‘I-I: Eéf‘#-—' :.. -#.— ﬂﬂﬂﬂﬂﬂﬂ
Additicnal operaticns per second if code can take adwantage of concurmency s

Networks

« Standard:

- Fast Ethernet

- Gigabit Ethernet
 High Speed Network

- SCI (Dolphin)

- Qsnet

- Myrinet

- Infiniband

- 10Gigabit

Which networks for your cluster ?

e Difficult choice:

- Which kind of cluster (HTC or HPC) ?

- Which kind of application ?
» Serial/Parallel
» Parallel loosely coupled / tightly coupled
* Latency or bandwidth dominated ?

- Budget considerations

- 1/O considerations

HPC cluster structure

|

IPC network

|

B

Manag. network

I/O network

Master N.

Access N.

\ 0000

Luxury clusters: 3 networks
« HIGH SPEED NETWORK

- parallel computation

* low latency /high bandwidth
« Usual choiches: Myrinet/SCl/Infiniband...

* /O NETWORK

- 1/O requests (NFS and/or parallel FS)

 latency not fundamental/ good bandwidth
* GIGABIT is ok

« Management network

- management traffic
« any standard network (fast ethernet OK)

Network Considerations

* |In the past 5 years the speed of the
Interconnects commonly found in clusters
has improved by a factor of 20!

 While 1-3 years ago the PCs commonly
available were unable to make full use of
the available bandwidth, today’s systems
are demonstrating some impressive
performance

e There are now several interconnect
technologies that each offer advantages in
certain situations.

high speed network considerations

* |In general the compute/communication
ratio in a parallel program remains fairly
constant.

S0 as the computational power increases
the network speed must also be
Increased.

« Another formulation of our beloved
Ahmdal law...

Network performance

interconnect Latency (microseconds) | Bandwidth (MBps) [N/2 (Bytes)
Gige ~29-120 ~125 ~3,000
GigE: GAMMA ~9.5 (MPI) ~125 ~9,000
Gigk with Jumbo Frames 29-120 ~125 ~3.000
GigE: Level 5 15 104.7 A
10 Gigk: Chelsio (Copper) 5.6 ~B62 ~100,000+
Infiniband: Mellanox Infinihost (PCI-X) 4.1 760 A12
Infiniand: Mellanox Infinihost 1l EX SDR 2.6 938 480
Infiniband: Mellanox Infinihost 111 EX DDR 225 1502 420
Infinipath: HTX 1.2 d54 214
Infinipath: PCI-Express 1.62 9575 227
Myrinet D (gm) ~7.0 ~493 ~1,000
Myrinet F (gm) ~h2 ~493 ~1,000
Myrinet E (gm) ~5.4 ~493 ~1,000
Myrinet D {mix) 3.5 ~493 ~1,000

From: http://www.clustermonkey.net/ (april 20006)

http://www.clustermonkey.net/

Linuux Cluster: the software stacks

Parallel Environment: MPI/PVM

GRID-enabling software

Linux Cluster: the sys. Adm. stacks

Operating System: Gnu/Linux

e Linux Kernel (http://www.kernel.org)
- Open-Source/ freeware

 Features:
- The /proc file system
- Loadable kernel modules
- Virtual consoles
- Package management
- Many distribution to choose

21/02/08

73

http://www.kernel.org/

Why Linux ?

Access to cheap hardware

Access to Source code is needed to implement
desired features.

Availability of software
Access to cheap graduate students
Access to large community

- response speed from community sometime
much better then vendor/support ones.

open source/ free software: no license Issues.

Availability of Scientific Tools/Resources.

Middleware Design Goals

« Complete Transparency (Manageability):

- Lets the see a single cluster system..
* Single entry point, ftp, ssh, software loading...

e Scalable Performance:

- Easy growth of cluster
* no change of APl & automatic load distribution.

 Enhanced Availability:

- Automatic Recovery from failures

« Employ checkpointing & fault tolerant
technologies

- Handle consistency of data when
replicated..

75

Cluster middleware: beowulf approach

« Administration software:

NFS e client
— user accounts I client
- NTP client

 Resource management and scheduling
software (RMS)

- Process distribution
- Load balance

- Job scheduling of multiple
tasks

CLUSTER MANAGEMENT
Administration Tools

® Requirements:

— cluster-wide com mand execution

— cluster—-wide file distribution and

gathering
—password-less environment

must be simple, efficient, easy to use for

cL! addicted

Cluster Management Toolkits
Are generally made of an ensemble of already available

software packages thought for specific tasks, but configured
to operate together, plus some add-ons.

Sometimes limited by rigid and not customizable
configurations, often bound to some specific LINUX

distribution and version. May depend on vendors' hardware.
Free and Open

- OSCAR (Open Source Cluster Application Resources)
- NPACI Rocks

- XCAT (eXtreme Cluster Administration Toolkit)

- Warewulf

Commercial

- Scyld Beowulf

- IBM, HP, SUN and other vendors' Management Software...

CLUSTER MANAGEMENT
Administration Tools

e C3 tools — The Cluster Command and Control tool
suite

- allows configurable clusters and subsets of machines
- concurrently execution of commands
- supplies many utilities
« cexec (parallel execution of standard commands on all cluster nodes)

« cexecs (as the above but serial execution, useful for troubleshooting and
debugging)

« cpush (distribute files or directories to all cluster nodes)
« cget (retrieves files or directory from all cluster nodes)
e ... and many more

« PDSH - Parallel Distributed SHell

- same features as C3 tools, few utilities
« And many others...

CLUSTER MANAGEMENT:
monitoring tools:

® Ad-hoc scripts (BASH, PERL, ...)+ cron
® Ganglia
- excellent graphic tool
- XML data representation
- web-based interface for visualization
- http://ganglia.sourceforge.net/
®* Nagios
- complex but can interact with other software
- configurable alarms, SNMP, E-mail, SMS, ...
- optional web interface
- http://www.nagios.org/

Ganglia at work..

DEMOCRITOS/SISSA Grid > |--Choose a Source]

Name { Info Load Averages % CPU User, Nice, System, Idle
DEMOUCRITOS/SISS A Grid (4 sources) quee view 124.76 124.33 124.26 45.5 1.3 10 326
Hosts up: 113 = ; E
.] DEMOCRITOS/SISSA Grid MEM last year g
——— : r -
i 200 wr o " ¥ il =
Hosts dowm: 1 2 200 v Y s A r..L—..-: el £ 200 ¢ ..{--:' e _i'_. il
) ¥ i = w@ g2
2 100 ™ .‘¢~.— : e = a
o f ol
; i U
0 Tul fug Sep @ct How Dec Jan Feb Mar fpr Maw Jun Jul AuMg Sep OCt Hou Dec Jan Feb Mar Apr May Jun
e ; W HMemory Used MW Hemory Shared [Hemory Cached
) iimnte feed LI Fpees [JieEs) @0] B Fressssss O Memory Buffered [Memory Swapped [Total In-Core Memory
cerbero qprysical view) 111.72 111.80 112.15 654 2.1 1.5 207
Cluster Localtime: = S
July 2, 2006, 9:19 pm cerbero LOAD last year 2 GRANRLE LA VSt gam E
H 1 F = =
= L & S
. Pt i . e
Hosts up: 70 " 1o R o i B P 27 =
(18% CFUs Total) 5 i || wld F & o0 g S N]
E - 8 . o
Hosts dowm: 0 0 TuT g Gep oct Wou Dec Jan Feb Mar Anr May Jun £ Tul Aug Sep OCT Now Dec Jan Feb Mar Apr May Jun
o q W Memory Used B Hemory Shared E Hemory Cached
O 1-Minute Load @ Hodes [Total CPUs [Running Processes O Merory Euffered B Memory Swapped B Total In—Core Memory
helium gptysica view 4.00 4.00 375 286 0.0 0.0 714
Cluster Localtime: = ; £
Julyl 2006, 9:10 pm helium LOAD 1ast vear E] helium HEM last year g
1 1 Z =
40 7 : — H‘- | ;
Hosts up: 7 i 'er il Pad A = b s -
(16 CPUs Total) . 20 1f Bl e -+ & 5 . befrretreertreimaapd.
;: - =, o e DL ® o)
0 ool o -
Hosts dowm: 0 a Tul Aug sep GLt Nou Dec Tan Feb Mar Apr May Tun t Jul Aug Sep oct How Dec Jan Feb Mar Apr May Tun
_pd . W Memory Used B Hemory Shared E Memory Cached
O 1-Minute Load [Hodes [Total CFUs [Running Frocesses O Merory Buffered B Memory Swapped B Total In-Core Memary
briareo prysical wiew) 8.73 .49 8.35 124 0.0 04 0921
Cluster Localtime: = . =
July 2, 2006, 9:19 pm briareo LOAD last year g APIErED L Tt Senr 3
! 1 E - E
P | ¥ H - i o
i i ik Y W 2 0y i =
Hosts up: 29 5 a0 H" oo o A I Mg s B, ¥ IR
a o LA - 11170 1 - Bl mwl % M - [| - + L o | E N . ™m

Local Resource Management Systems..
« a.k.a “Batch System”

- Some pieces of software control available
resources

- Some other pieces of software decide which
application to execute based on available
resources

- Some other pieces of software are devoted to
actually execute applications

* Please note:
- Batch does not necessarily mean “delayed”

- Batch-interactive sessions are possible
- Time sharing is possible with most systems

Resource Management and Access
Control

 The batch system knows who will be allowed
to run applications on which nodes

- some mechanisms can be put in place to allow
access to nodes only to these legitimate users

- Usually batch system’s prologue and epilogue
programs can be used for the purpose.

LRMS for Linux Clusters

« Several batch gueuing systems available for
Linux-based clusters.

« Most commonly used:

- Condor (http://www.cs.wisc.edu/condor)

- SGE (http://www.sun.com/sge)

- LSF (http://www.platform.com, -- commercial)
- Portable Batch System

« PBSPro (commercial)
 OpenPBS
- Torque (successor of openpbs)

http://www.platform.com/
http://www.platform.com/
http://www.platform.com/
http://www.platform.com/

Cluster Pro&Cons
Pro:

- Price/performance when compared with a dedicated
parallel supercomputer

- Great opportunity for low budget institution
- Flexibility: many ad hoc solution for different problems..
- Open Technology

 What you learn in this business can be used
everywhere..

cons:

- |t is hard to build and operate medium and large cluster

« Large collection of software that are not “talk to each
other”

- Lot of expertise needed (no plug and play yet)
- How to use cluster power efficiently

Which cluster do | need ?
 Which applications ?

- Parallel
* Tightly coupled
* Loosely coupled
- Serial

« Memory / I/O requirements

 Which user's community ?
- Large /Small

- Homogeneous /heterogeneous

- Understand your computational problem before
buying/building a cluster!
- Run your own benchmarks before buying/building a cluster !

Which architectures in your
infrastructure ?

« Parallel computing:

- single systems with many processors working
on same problem

« Distributed computing:

- many systems loosely coupled by a scheduler
to work on related problems

e Grid Computing:

- many systems tightly coupled by software,
perhaps geographically distributed, to work
together on single problems or on related
problems

Capability vs Capacity Computing

« Capability computing: the system is employed
for one or a few programs for which no
alternative is readily available in terms of

computational capabilities

- typical cluster usage

« small research groups using a few bunch of

scientific application
« Capacity computing: a system is em

oloyed to

the full by using the most of its available cycles

by many, often very demanding, app
and users.

- typical computer center usage:

iIcations

o still clusters can be useful: they required much

more work/tuning to fulfill all the requirements

Agenda

Introduction: what is e-science ?

High Performance Computing:
- introduction/ concepts /definitions

Understanding parallel programming: some ideas
- Speedup: the effectiveness of parallelism

- Limits to parallel performance
- Modern Serial processor and parallelism

Parallel Machines
Clusters:

- definition and some other funny things
Grid and all the rest

Wrap-up

Why the GRID?

e Motivation: When communication is close to
free we should not be restricted to local
resources when solving problems.

« A Grid Infrastructure built on the Internet
and the Web to enable and exploit large
scale sharing of resources

It should provides Scalable Secure Reliable
mechanisms for discovery and for remote
access of resources.

HaghWwaARE MNETWORMING
- @ Heterogeneous collection O The hardware and softwane
T h e G r I d af high-performance that permits communication
camputer hardware and among distribufed users
soffware resources and computer resouncas
SOFTWARE MASS STORAGE
:‘I: :::;:“E::l:-n O Software applications A collection of dewices

Scientists and engineers and components. for amd software that allow

wedng camputation computational problems temporary and long-tenm
o accomplish lab misskans archival storage of
infia e altion

o
|

IMTELLIGENT INTERFACE MiDDLEWARE Geip DrEgATING SYSTEM //
& needled ge-based amdronment Loftwane tools that enable The sofrware that coom inates :

that ofters users guldaroe eAEAIon AMONE LSars, e b rpday al ¢ o s Aers. __..-"';r..
oncomplex computing fasks apobicaloal, fnd Syitem meiources nelworkr g and Salbwme #

Grids vs. HPC

 Not an “either/or” question

- Each addresses different needs
- Each are part of an integrated solution

- Coupling necessarily distributed resources instruments,
software, hardware, archives, and people

- Eliminating time and space barriers

- remote resource access and capacity computing

« Grids are not a cheap substitute for capability

- Supporting foundational computations

- terascale and petascale “nation scale” problems

-

- Engaging tightly coupled computations and teams

Key is easy access to resources in a transparent way

Different level of parallelism

Within the core/cpu
- Instruction level parallelism
Within the node:

- Threaded libraries/ openMP
Within the cluster:

- Message passing approach (i.e. MPI)
Within the GRID

- Message passing/ client/server approach..

Wrap-up
HPC and GRID computing are now

fundamental too
HPC means para

HPC experiencec

s for scientific research
lel computing
a great change in the last

ten years: from custom machine to Beowulf

clusters

The challenge is now to build your own HPC
infrastructure driven by real needs.

HPC and GRID computing are not mutually
exclusive but can be both used to address
computational resources in a transparent

way.

References

« www.democritos.it/hpc-wiki

« All the material will be made available for this
workshop !

http://www.democritos.it/hpc-wiki

