
Workshop on Workshop on
High Performance Computing (HPC08)High Performance Computing (HPC08)
School of Physics, IPMSchool of Physics, IPM
February 16-21, 2008February 16-21, 2008

 HPC tools: an overview

Stefano CozziniStefano Cozzini
CNR/INFM Democritos and CNR/INFM Democritos and
SISSA/eLabSISSA/eLab
cozzini@democritos.itcozzini@democritos.it

mailto:cozzini@democritos.it

21/02/08

AgendaAgenda
● Tools for HPC

– Debugging and Debuggers & compiler

– Libraries

● How to use them efficiently:

– A working example: the usage of optimized
libraries on SMP platform (see exercise #7
and #12 on the wiki)

Compilers for Linux Compilers for Linux

● Free/Open Source:
● GNU http://www.gnu.org/ (Fortran 77, C, C++, ...)

● Commercial:
– PGI (Fortran 77, Fortran 90, C, C++) http://www.pgroup.com/
– Intel (Fortran 77/95, C/C++) (individual Linux license free of charge)
– PathScale (Fortran 77, Fortran 90, C, C++)

http://www.pathscale.com (x86_64)
– NAG http://www.nag.co.uk
– Lahey http://www.lahey.com/
– Absoft http://www.absoft.com/

● Almost all allow you a 15 day evaluation license

http://www.nag.co.uk/
http://www.lahey.com/
http://www.absoft.com/

How to choose a compiler for HPC? How to choose a compiler for HPC?
● Efficiency/ Parallelism

– Does it produce efficient code? Does it produce correct code?

– Is it able to exploit the hardware?

– Does it support common language extensions or OpenMP
directives?

● Availability/Cost

– How much does it differ from the GNU compilers?

● Interoperability

– Does it operate with other tools/compiler/languages?

● Utilities / Tools

– Does it have a Debugger/ Profiler / other utilities?

● Diagnostic Capabilities

– Is it able to detected errors/bugs in programs?

● Documentation/ support /training..

Debugging and debuggers..Debugging and debuggers..

● Identifying the cause of an error and correcting it
● Once you have identified defects, you need to:

– find and understand the cause
– remove the defect from your code

● Statistics show 60% of bug 'fixes' are not correct,

 ----> remove the symptom, but not the cause
● Improve productivity by getting it right the first time
● A lot of programmers don't know how to debug!
● Debugging needs practice and experience:

 ----> understand the science and the tools

Debugging (2)Debugging (2)

● Debugging is a last resort:

– Doesn't add functionality

– Doesn't improve the science

● The best debugging is to avoid bugs:

– Good program design

– Follow good programming practices

– Always consider maintainability and readability
of code over getting results fast

– Maximize modularity and code re-use

Errors are opportunities..Errors are opportunities..
● Learn from the program you're working on:

– Errors mean you didn't understand the
program. If you knew it perfectly, it wouldn't
have an error. You would have fixed it already

● Learn about the kind of mistakes you make:

– If you wrote the program, you inserted the
error

– Once you find a mistake, ask youself:
● Why did you make it?
● How could you have found it more quickly?
● How could you have prevented it? Are there

other similar mistakes in the code?

 ---> Better to correct them now!

Debugging ToolsDebugging Tools
● Source code comparator

– helps you find where you changed the code

– look at diff, vimdiff, tkdiff, emacs/ediff program on UNIX

● Compiler warning messages
• Set the compiler warning level to the highest level, and

fix the code so that it doesn't produce any warnings!

• Treat warnings as errors

• Compile and check warnings issued by a different compiler
as well !

● Execution Profiler
• Programmer errors can cause bad performance as well as

bad output

• Identify routines that take up a disproportionate amount of
execution time

• Debuggers: gdb, dbx, idb, pdbg, ddd (GUI)

•

Why a debugger ? Why a debugger ?
● Better than print statements

● Allows to stop/start/single step execution

● Look at data and modify it

● 'Post mortem' analysis from core dumps

● Prove / disprove hypotheses

● Easier to use with modular code

● No substitute for good thinking

● But, sometimes good thinking is not a
substitute for a good debugger!

Using a debuggerUsing a debugger

● When compiling use -g option to include
debug info in object (.o) and executable

● 1:1 mapping of execution and source code
only with disabled optimization

---> problem when optimization uncovers bug

● GNU compilers allow -g with optimization

--> not always correct line numbers

--> variables/code can be 'optimized away'

GdbGdb
● A GNU source level debugger

– portable
– efficient
– it has some GUI (ddd)

● usage:
This is the GNU debugger. Usage:
 gdb [options] [executable-file [core-file or process-id]]
Options:
 --batch Exit after processing options.
 --cd=DIR Change current directory to DIR.
 --command=FILE Execute GDB commands from FILE.
 --core=COREFILE Analyze the core dump COREFILE.
 --directory=DIR Search for source files in DIR.
 --exec=EXECFILE Use EXECFILE as the executable.
 --fullname Output information used by emacs-GDB interface.
 --mapped Use mapped symbol files if supported on this system.
 --nw Do not use a window interface.
 --nx Do not read .gdbinit file.
 --readnow Fully read symbol files on first access.
 --se=FILE Use FILE as symbol file and executable file.
 --symbols=SYMFILE Read symbols from SYMFILE.
 --version Print version information and then exit.
For more information, type "help" from within GDB, or consult the GDB manual (available as

on-line info or a printed manual).Report bugs to "bug-gdb@prep.ai.mit.edu".gdbh]

1202/21/08

Some Standard Mathematical librariesSome Standard Mathematical libraries
● Vendor’s library

– ESSL Engineering and scientific subroutine library (IBM)
– MKL (Intel)
– ACML (AMD)

● ISV
– IMSL International Mathematical and Statistical Libraries
– NAG Numerical Algorithm group (UK labs)

● Free
– NETLIB a WWW metalibrary of free math software
– SLATEC comprehensive Mathematical and statistical Package
– LAPACK/BLAS Linear algebra package
– CERN European center for nuclear research
– Petsc: ODE/PDE parallel solvers
– FFTW: fft library

Why use libraries ? Why use libraries ?
● Efficiency:

– Better to use routines written by professionals.
Math libraries are designed to use the “tricks of coding”
to use the CPU in the most efficient way not
necessarily the most straight forward..

● Parallelism for free:

– On modern multicore SMP machine vendors
provide multi threaded version of same libraries.

● Portability:

– Use of standardized libraries improves
portability to other platforms

1402/21/08

LAPACK: LAPACK: LLinear inear AAlgebra lgebra PPackackageage

● 1992: Dongarra et al.
● Supersedes and extends Eispack and

Linpack packages...
– Eispack Linpack: well-tuned for old machine

● It has been designed to be efficient on a
wide range of modern high performance
computer:

● vector processing
● risc workstations
● shared memory multiprocessors

● It uses very efficient KERNELS : BLAS library

1502/21/08

BLAS: BLAS: BBasic asic LLinear inear AAlgebra lgebra
SSubprogramsubprograms

● IDEA: create a standard to identify the
basic set of operations involved in linear
algebra problems;

● Objectives:
– Accuracy;
– Efficiency;
– Portability;
– Maintainability;

● Dates: 70’s; ===> vector
programming
Fortran programming

1702/21/08

Efficiency: q parameterEfficiency: q parameter

The parameter q is the ratio of flops to memory references.
Generally:

1.Larger values of q maximize useful work to time
spent moving data.

2.The higher the level of the BLAS, the larger q.

1802/21/08

It follows…It follows…
● BLAS1 are memory bounded ! (for each

computation a memory transfer is required)

● BLAS2 are not so memory bounded (can
have good performance on super-scalar
architecture)

● BLAS3 can be very efficient on super-scalar
computers because not memory bounded

 OPTIMIZATION TRICK:
Write your vector-matrix operations as matrix-

matrix operation if possibile

1902/21/08

Optimized librariesOptimized libraries
● Standard BLAS and LAPACK (not machine specific)

– Still better then naïve code..

● Intel Math Kernel Library (MKL): INTEL

– BLAS, LAPACK,FFT and many other (scaLAPACK...)

– Current version 10.0.x

● AMD Math Core Library (ACML): AMD

– BLAS LAPACK FFT and many others

– Current version 4.0

● Automatically Tuned Linear Algebra Software (ATLAS):

– BLAS and some LAPACK routines that can be compiled on
PC based machines to obtain better maximum
performance by tuning machine specific parameters.

– Current version 3.8.0 (http://math-atlas.sourceforge.net/)

2002/21/08

scaLAPACKscaLAPACK
● 1995: Dongarra et. al.version 1.0 of

● Scalable Linear Algebra PACK AGE

– (now version 1.7):

● parallel MP-implementation of LAPACK:

● From FAQ:

 The ScaLAPACK (or Scalable LAPACK) library includes a
subset of LAPACK routines redesigned for distributed
memory MIMD parallel computers. It is currently written
in a Single-Program-Multiple-Data style using explicit
message passing for interprocessor communication.

2102/21/08

2202/21/08

scaLAPACK: components scaLAPACK: components

2302/21/08

How to use libraries...How to use libraries...

● In this exercise I propose to test three
different implementations of the DGEMM
routine blas3

● A small F77 program driver to the DGEMM
routine is provided together with a Makefile.

● You will link this driver against three different
libraries: the original BLAS one, the ATLAS
library and the Intel MKL library.

2402/21/08

Matmul: a driver for DGEMMMatmul: a driver for DGEMM

 tnow = second()
*this is the original dgemm
 call dgemm('No','No',n,n,n,1.0d0,B, \\
 ldm,C,ldm,1.0d0,A,ldm)
 time(nr) = time(nr) + second() - tnow

2502/21/08

Makefile for matmul Makefile for matmul
#simple makefile for the matmul program
CC = gcc
CFLAGS = -O3

FC = g77 <----- gfortran
FFLAGS = -O3

please indicate Blas libraries for matmul1

LIB1 = -L/home/cozzini -latlas_pgi

please indicate Blas libraries for matmul2

LIB2 = -L/usr/local/lib -lgoto_p4_512p-r0.9
-lpthread
LIB2 = -L/opt/intel/mkl/9.0/lib/32 -lmkl_ia32
-lguide -lpthread
default: matmul0 matmul1 matmul2

2602/21/08

conclusionsconclusions

● Use libraries whenever you can:

– Enhanced performance

– Great portability

