
1

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

IPM School of Physics
Workshop on High Performance 

Computing - HPC08

Luca Heltai <luca.heltai@sissa.it>
Stefano Cozzini  <cozzini@democritos.it>
SISSA - Democritos/INFM 

  Shared Memory 
programming paradigm:

openMP    

mailto:cozzini@democritos.it


2

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Recap Basic Shared Memory 
Architecture

P1 P2 Pn

network

$ $ $

memory

Processors all connected to a large shared memory
Local caches for each processor
Cost: much cheaper to cache than main memory



3

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

How to program with shared memory ?
Automatic  (implicit)  parallelization:

compilers do (?) the job for you 

Manual parallelization:
Insert parallel directives  by yourself to help 
compilers
OpenMP  THE standard

Multi threading programming:
more complex but more efficient
use a threads library to create task by yourself



4

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Parallelization  Strategy

How to parallelize a code with automatic parallelization :

1. Perform profiling to find the time consuming parts
2.Use APC with default settings to auto-parallelize these parts

7.If found, go to step 3
8. If not found, implement changes in the code and go to step 2

3.Profile the parallelized code
4.Study the individual behavior of the parallelized parts
5.If the speed-up is not sufficient, check why
6.Try to find options&directives to achieve your goal



5

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Help the Compiler:
Directives and Pragmas 

Special Fortran comments or C pragmas can be inserted in 
application sources directing the compiler to generate the 
appropriate parallel code

Features
powerful and easy to use
enabled by compiler options
code can be still be maintained for portability and serial 
execution
can be mixed with message passing to create hybrid programs

What happens  at compile time ?
Parallel region is converted to a subroutine/function
shared variables are passed as arguments
local/private variables are made local to subroutines/functions 



6

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Which set of directives ? 

The OpenMP Application Program Interface (API) supports multi-
platform shared-memory parallel programming in C/C++ and Fortran 
on all architectures, including Unix platforms and Windows NT 
platforms. Jointly defined by a group of major computer hardware and 
software vendors, OpenMP is a portable, scalable model that gives 
shared-memory parallel programmers a simple and flexible interface 
for developing parallel applications for platforms ranging from the 
desktop to the supercomputer.
                                                    from  WWW.OPENMP.ORG



7

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

OpenMP programming model

 Explicit Parallelism: 
OpenMP is an explicit (not automatic) 
programming model, offering the programmer 
full control over parallelization. 

Fork - Join Model:



8

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Terminology 

OpenMP Team := Master + Workers

A Parallel Region is a block of code executed by all  threads 
simultaneously

The master thread always has thread ID 0
Thread adjustment (if enabled) is only done before 
entering a parallel region
An "if" clause can be used to guard the parallel region; in 
case the condition evaluates to "false", the code is 
executed serially

A work-sharing construct divides the execution of the 
enclosed code region among the members of the team; in 
other words: they split the work



9

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Examples: Assertions

do i=1,n
    A(I+K)=A(I)+B(I)
end do

C$ASSERT NO_DEPENDENCIES
do i=1,n
    A(I+K)=A(I)+B(I)
end do

If K>-1 or less then N no dependencies ! 
Compiler cannot know this... 



10

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Examples: Pragmas

do i=1,n
    A(I+K)=A(I)+B(I)
end do

C$OMP PARALLEL DO
do i=1,n
    A(I+K)=A(I)+B(I)
end do

Make the execution parallel !



11

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Fine-Grained vs. Coarse-grained
Fine-grained parallelism (loop decomposition)

can be implemented incrementally (one loop a time)
does not require a deep knowledge of the code
a lot of loop have to be parallelized to achieve a decent speed-
up
potentially many synchronization points

Coarse-grained parallelism (domain decomposition)
parallelizes larger loops at higher levels, enclosing many 
smaller loops
more code is parallelized 
fewer loop is parallelized, reducing overhead
requires deeper knowledge of the code    



12

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Local and shared data/1

Shared Memory does not mean that all data is actually shared 
There is often a need for “local” data as well
Consider the following example:

Let’s assume we run this on 2 processors:
processor 1 for  I=0,2,4,6,8
processor 2 for  I=1,3,5,7,9

for (i=0; i<10; i++)
a[i]= b[i] + c[i];



13

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Local and shared data/2

Processor 1    Processor 2

For i1=0,2,4,6,8,do:
a[i1]=b[i1]+c[i1];

Read:  b,c   Write:  a

For i2=1,3,5,7,9 do:
a[i2]=b[i2]+c[i2];

Read:  b,c   Write:  a

private area private areashared area

i1 a       b       c i2

P1 P2



14

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

hello world in openMP
#include <omp.h>
int main()  {                                 
  int iam =0, np = 1;     
#pragma omp parallel private(iam, np)
    {
#if defined (_OPENMP) 
      np = omp_get_num_threads(); 
      iam = omp_get_thread_num();
#endif
      printf(“Hello from thread %d out of %d \n”, iam, np);
    }
}



15

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

compile&run the code 

Gnu compiler (only from version 4.3 on):

gcc -fopenmp openMP.c -o hello



16

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Example: Manual Parallelization
 program tests
      implicit none
      integer i,n
      parameter(n=10000000)
      real*8 a(n),s

!$OMP PARALLEL
!$OMP PARALLEL DO SHARED(a,n) PRIVATE(i)
      do i=1,n
      a(i)=dcos(dfloat(i))**2+1.d0
      enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO SHARED(a,n) PRIVATE(i) REDUCTION(+:s)
      do i=1,n
        s= s +a(i)
      end do
!$OMP END PARALLEL DO
!$OMP END PARALLEL
      print*, a(1),a(n),s
      stop
      end



17

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Directives.



18

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

A more “complex” example
int main (int argc, char *argv[]) {

    unsigned int rank = 0, threads = 1;
    #pragma omp parallel private(rank, threads)
    {
      rank    = omp_get_thread_num ();
      threads = omp_get_num_threads();
      #pragma omp master
      {
         cout << "I'm the master: " 

   << rank << endl;
      }
      #pragma omp for
      for(int i=0; i<4; ++i)
        sleep(1);
    }
    return 0;
}



19

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Run time library routines



20

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

openMP env variables
 OpenMP provides four environment variables for controlling the 
execution of parallel code.

All environment variable names are uppercase. 

Most important:  OMP_NUM_THREADS
            Sets the maximum number of threads to use during execution. 

Others: 
OMP_SCHEDULE: Applies only to DO, PARALLEL DO (Fortran) and for, 
parallel for (C/C++) directives which have their schedule clause set to 
RUNTIME. The value of this variable determines how iterations of the loop are 
scheduled on processors. For example:

                                setenv OMP_SCHEDULE "guided, 4"

                                setenv OMP_SCHEDULE "dynamic"

OMP_DYNAMIC: Enables or disables dynamic adjustment of the number of 
threads available for execution of parallel regions. Valid values are TRUE or 
FALSE. 

OMP_NESTED: Enables or disables nested parallelism. Valid values are 
TRUE or FALSE



21

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

OpenMP libraries

Today many vendor provided libraries are 
openMP enabled

OpenMP Parallelism comes for free

OpenMP libraries can be used jointly with MPI 
internodes in a mixed MPI/openMP 
programming model.

Examples for AMD ACML and Intel MKL are 
provided in afternoon sessions



22

    IPM – Workshop on High Performance Computing (HPC08) 

16-21 February 2008

Conclusions
Auto-parallelizing compilers can do a lot but they are 
limited in their capabilities to analyze data 
dependencies.
Manual parallelization with directives is easy to 
implement, however care must be given to treatment of 
shared data
OpenMP is the standard for this approach 
It is important to understand the exact semantic of the 
parallelization directives
To obtain scalable performance it is often necessary to 
parallelize at coarse-grain level  


