
1

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Democritos/ICTP advanced school on
HPC tools for e-Science

Luca Heltai - SISSA
luca.heltai@sissa.it

 Fast Prototyping with
Parallel Libraries

2

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material

MPI_Send(b, nc, t, dst, tag, comm, ierr)

Send a message named tag containing nc elements of type t taken
from the buffer b to the process identified by the rank dst in the
communication environment comm. In case of error, store the
error number in ierr.

Same for c, with the exception that a pointer to b is used, and
the error is the return value.

3

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material

MPI_Recv(b, nc, t, src, tag, comm, status, ierr)

Receive a message named tag which is AT MOST as big as
 nc elements of type t and store the result in the buffer b.
The message is accepted only by the process identified by the
rank src in the communication environment comm.
Once the message is received, the vector status contains
informations about the number of received objects, and in
case of error, store the error number in ierr.
src can be MPI_ANYSOURCE and tag can be MPI_ANYTAG.

Same for c, with the exception that a pointer to b is used, and
the error is the return value.

4

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material

MPI_Bcast(b, nc, t, dst, root, comm, ierr)

Send a message containing nc elements of type t taken
from the buffer b on the process identified by the rank root in the
communication environment comm to all other processes in the
same communication environment. In case of error, store the
error number in ierr.

Same for c, with the exception that a pointer to b is used, and
the error is the return value.

5

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material
MPI_Scatter(s, ns, ts, d, nd, td, root, comm, ierr)

Subdivide the buffer s on the root process into npes (number of
processes) sub-messages containing each ns elements of type ts
and send each one of these sub-messages to all the processes
in the communication environment comm (including root!)
where it will be stored in the buffer d, which is made of AT
MOST nd elements of type td.
 In case of error, store the error number in ierr.

Same for c, with the exception that a pointer to b is used, and
the error is the return value.

6

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material
MPI_Gather(s, ns, ts, d, nd, td, root, comm, ierr)

Each process in the communication environment comm
(including root!) sends ns elements of type ts to the root process
which stores them in the buffer d, made of npes*nd elements of
type td. It is required that nd >= ns, and there will be a gap
of (nd-ns) elements between the messages received.

 In case of error, store the error number in ierr.

7

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Review of MPI Material
MPI_Reduce(s, d, n, t, op, root, comm, ierr)

Each process in the communication environment comm
(including root!) sends n elements of type t taken from the buffer s
to the root process, which performs the operation op between
each corresponding element of the messages received from the
various processors, and stores the results in the buffer d.

 In case of error, store the error number in ierr.

8

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

An Example of Real Life
Parallel Programming

The mathematical background

The tools (C++, Deal.II, PETSc, Metis...)

Analysis of an example

Conclusions

9

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Today's Example:
Quasi Static Elastic Deformation

-div (C grad u) = 0 in B
u = g(t) on Gd
C grad u = 0 on Gn

B

Gd

Gn Gn

Gd

10

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Variational Formulation
Vd = {v square integrable in B, with first derivative
 square integrable in B, such that v on Gd = 0}

Find u such that u on Gd = g(t) for t in [0,T] and such that

(C grad u, grad v) = 0 for each v in Vd

B

Gd

Gn Gn

Gd

11

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Finite Element Formulation
Vh = {v in Vd such that for each i, v on Ti is
 a bilinear function, and v is continuous on B}

Find uh such that uh on Gd = g(t) and that
(C grad uh, grad v) = 0 for each v in Vh

Gd

Gn Gn

Gd

T1 T2

T3 T3

12

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Vh = span { vi }, i=1,...,N
uh = ui vi (sum convention)

U = [u1, u2, ..., uN]'
FEM solve A U = F

Aij = (C grad vj, grad vi)

vi: piecewise bi-linear,
1 on node i, zero everywhere else...

FEM: Reduce PDEs to
Linear Systems of Equations

13

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

FEM Requirements

Subdivide the domain B in small “Elements” or
“cells” Ti

Assemble the (Sparse) Matrix A and the right
hand side F(t)

Solve the Linear system A U = F(t) for a
discrete set of times ti

Output the results U(ti) in a suitable format

14

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Parallelization of the Program

The creation of the domain mesh
(not implemented so far)

The domain mesh itself (Metis)

The assembly of the system Matrix (Deal.II)

The solution of the system (PETSc)

The output of the solution (Deal.II)

What can we parallelize?

15

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Domain Decomposition Paradigm

The domain is partitioned using METIS, an
external tool, wrapped into a Deal.II function
call

Each subdomain is taken care of by one
processor and all the data is distributed using
wrappers for PETSc Vectors and Matrices

Each processor only sees a fraction of the
entire problem

Global communication is taken care of by the
PETSc linear algebra pack.

16

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Deal.II Library
A Finite Element Differential Equations
Analysis Library

Deal.II is a C++ program library targeted at the
computational solution of partial differential
equations using adaptive finite elements. It
uses state-of-the-art programming techniques
to offer you a modern interface to the complex
data structures and algorithms required.

http://www.dealii.org/

http://www.dealii.org/

17

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

METIS / ParMETIS:
Family of Multilevel Partitioning Algorithms

METIS is a family of programs for partitioning
unstructured graphs and hypergraphs and
computing fill-reducing orderings of sparse
matrices.

The underlying algorithms used by METIS are
based on the state-of-the-art multilevel
paradigm that has been shown to produce high
quality results and scale to very large
problems.

http://glaros.dtc.umn.edu/gkhome/views/metis/

http://glaros.dtc.umn.edu/gkhome/views/metis/

18

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

PETSc

Portable, Extensible Toolkit for Scientific
Computation

PETSc, pronounced PET-see (the S is silent),
is a suite of data structures and routines for the
scalable (parallel) solution of scientific
applications modeled by partial differential
equations. It employs the MPI standard for all
message-passing communication.

http://www-unix.mcs.anl.gov/petsc/petsc-as

http://www-unix.mcs.anl.gov/petsc/petsc-as

19

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Gluing Things Together...

Deal.II provides wrappers for each of the
mentioned libraries

The user needs only to be aware of the domain
decomposition techniques, and all the “dirty”
MPI messaging is done transparently in the
background

20

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

 Deal.II Wrappers to PETSc and MPI

PETScWrappers::MPI::Vector vector;

PETScWrappers::MPI::SparseMatrix matrix;

• Deal.II has wrappers for various PETSc objects...

vector.reinit(mpi_communicator, n_dofs, n_local_dofs);

matrix.reinit(mpi_communicator,

 n_dofs_n, n_dofs_m,

n_local_dofs_n, n_local_dofs_m);

• ...which need to be instructed on which parts are local and
 which are not...

21

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Wrappers - Hiding MPI

double & PETScWrappers::MPI::Vector::operator[](unsigned int index) {

 if(is_local(index)) {

// this index is actually owned by this processor,

// proceed as usual: Return the index of the local vector

// in which the caller can write directly..

return (local_vector[global_to_local[index]]);

} else {

// Delay the writing, passing the index of a local buffer

// which will be syncronized later with the global vector

out_of_scope_indices[n_out_of_scope_writes] = index;

return (out_of_scope_values[n_out_of_scope_writes++]);

}

}

• Main goal of deal.II wrappers: hide MPI stuff....

Example: Write access to an index of a vector

22

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Example Cont'ed

void PETScWrappers::MPI::Vector::compress() {

 // Send the out of scope write attempts to the root process

// which will distribute them accordingly...

// First the sizes of the indices

MPI_Gather(&n_out_of_scope_values, 1, MPI_UNSIGNED,

 out_of_scope_size_buffer, max_size_buffer,

 MPI_UNSIGNED, 0, mpi_communicator);

// Now send the actual values

MPI_Gather(&out_of_scope_values, value_buffer_size,

 MPI_DOUBLE, &out_of_scope_values_buffer,

 mpi_n_processes*value_buffer_size, MPI_DOUBLE,

 0, mpi_communicator);

// Now do what's needed with this data...

...

}

• Before we can use the vector, all data must be syncronized

23

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Reference of the Example Program

Example 18 of the Deal.II library generates one
file of output for EACH node and for EACH
time step

Example19 of the Deal.II library glues together
the output files relative to the same time step

http://www.dealii.org/

Now some details...

http://www.dealii.org/

24

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

MPI Initialization and Main Routine

Done through Deal.II wrappers to PETSc - MPI

 int main (int argc, char **argv)

 {

 PetscMPIInitialize(&argc,&argv,0,0);

 {

const dim = 3; // The problem dimension: 1d, 2d or 3d.

 QuasiStaticElasticity::TopLevel<dim> elastic_problem;

 elastic_problem.run ();

 }

 PetscMPIFinalize();

 }

25

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Master Program:
Written Using the Deal.II libraries.

Cycle through the time steps...

 template <int dim>

 void TopLevel<dim>::run ()

 {

 present_time = 0;

 present_timestep = 1;

 end_time = 10;

 timestep_no = 0;

 while (present_time < end_time)

 do_timestep ();

 }

26

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Single Time Step...

 template <int dim>

 void TopLevel<dim>::do_timestep ()

 {

 present_time += present_timestep;

 ++timestep_no;

create_mesh(); // Serial – Divided in subdomains

assemble_system (); // Parallel – Subdomain wise

 solve_linear_system (); // Parallel – Using PETSc

 output_results (); // Parallel - Subdomain wise

 move_mesh (); // Parallel - Subdomain wise

 }

27

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Mesh Creation and Subdivision

 template <int dim>

 void TopLevel<dim>::create_mesh ()

 {

 const double inner_radius = 0.8,

 outer_radius = 1;

 // Internal deal.II function

 GridGenerator::cylinder_shell (triangulation,

 inner_radius, outer_radius);

 // Wrapper to the METIS library

 GridTools::partition_triangulation (n_mpi_processes, triangulation);

 }

28

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Actual Mesh
Generated through Deal.II subroutines...

...and subdivided with METIS

29

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Assembling the System in Parallel...
 template <int dim>

 void TopLevel<dim>::assemble_system ()

 {

...

for (cell = triangulation.begin();

cell != triangulation.end();

++cell)

 if (cell->subdomain_id() == this_mpi_process)

{

// Here we assemble the local contribution of this cell

// and copy it to the Matrix A in the appropriate places

...

}

A.compress(); // Make sure that the data is coherent

 }

• The passage of informations to A is done through MPI_Send
• This passage is transparent to the deal.II library...

30

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Sparsity of the Matrix

The Generated Matrix
is sparse (each node
is coupled only with
its neighbors)

For large N, iterative
solvers are more
efficient

31

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Solution of the Linear System

 template <int dim>

 void TopLevel<dim>::solve_linear_system ()

 {

// Conjugate Gradient solver

PETScWrappers::SolverCG cg (mpi_communicator);

// Additive Schwartz Preconditioner

 PETScWrappers::PreconditionBlockJacobi preconditioner(A);

// Perform the solution – in PARALLEL

 cg.solve (A, soution, rhs, preconditioner);

 }

Done using wrappers to PETSc parallel Krilov Subspace Solvers

32

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Output Routine
Delicate Issue... I/O is not part of MPI standard,

and Data Output may become the bottleneck of

our parallel program (see Example 17 of Deal.II).

How do we do it?

Each processor writes its own subset of the
solution into a separate file

An external program (Deal.II Example 19)
merges the results into the desired format

33

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Output Files

34

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Final Result

35

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Final Result - 2

36

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

The Final Result - 3

37

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

38

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

39

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

40

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

41

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

42

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

43

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

44

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Ex2: Damage in Brittle Materials
Work done by Jonathan Pitt, PSU

45

IPM – Workshop on High Performance Computing (HPC08)

16-21 February 2008

Conclusions

Fast Prototyping PreExisting Libraries

Efficiency Parallel Libraries

Customizability Flexible Libraries

