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the vacuum 
landscape

a generic feature of string theory?

Text



• The cosmological constant problem

• Inflation

• Beginning of the Universe

Introduction: Why study vacua?



• The cosmological constant problem: various experiments (supernovae, WMAP) 
observe acceleration.

• However, the density of this cosmological constant is nowhere near the 
vacuum energy of the standard model constituents:

• Any ultimate theory must explain why this density is small, positive, and very 
nearly constant.

• Two main approaches: dynamical and anthropic.
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Dynamical relaxation

• Bousso-Polchinski: neutralize cosmological constant via four-form field 
strength: 

• Turok-Steinhardt: field moves through potential of the form 

• In a cyclic universe there is no “empty Universe” problem.
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We examine the effects of bubble nucleation on a stationary observer. First, by using a new method
relying on the bubble wall equation of motion, we show how purely gravitational effects reproduce
the semiclassical results predicted by Coleman and DeLuccia using alternate methods. We discuss
how causality considerations can be used to rule out certain classes of tensions on the domain wall
separating false vacuum from true. Finally, we show that an observer inside a Minkowski space
bubble located within a larger false vacuum observes a redshift consistent with an open Universe,
while an observer inside a bubble of pure de Sitter space inside a space with larger cosmological
constant observes an effective cosmological constant only in special cases.

INTRODUCTION

The cosmological constant problem [16] is one of the most intractable in modern physics. No one has yet been able
to put forth a convincing explanation for why the observed vacuum density is 120 orders of magnitude less than the
predicted zero-point energy of the standard model components, nor for why it has come to dominate the Universe
so recently. It is clear that any theory of the Universe must account for the existence of a small, positive, and very
nearly constant vacuum density [5].

A tantalizing possibility is that the cosmological vacuum density is not constant, but changes in accordance with
some more fundamental theory. One of the first attempts to make the ”constant” dynamical was proposed by Abbot
[1], who proposed that dark energy might be driven by a scalar field in a potential with an infinite set of equally
spaced metastable local minima. If the field starts high on the potential, it will roll down until it reaches a point
where the barrier between minima becomes significant. After this point the field may proceed toward the potential
absolute minimum by tunnelling between metastable states, a process investigated in detail by Coleman and DeLuccia
[7]. The cosmological constant is therefore relaxed as the field jumps slowly down the potential.

Another dynamical scenario, first proposed by Brown and Teitelboim [4], involves a mechanism based on the
spontaneous creation of membranes within a de Sitter background. Each membrane, described by an appropriate
instanton solution, raises or lowers the observed value of the cosmological constant by an integer multiple of some
fundamental energy.

These proposals, however, both suffer from serious problems that must be dealt with in any dynamical dark energy
model. First, with a changing cosmological constant, it is impossible to populate the Universe with some form of
matter or radiation. Every time the Universe settles into some new potential minimum, the resulting de Sitter phase
will inflate away any matter and radiation, diluting any perturbations that could have created galaxies and clusters.
This ”empty Universe” problem means that by the time the cosmological constant reaches the observed value, all
matter and radiation will have been inflated away. Second, these models require an energy spacing δλ infinitesimal
compared with all known scales of physics- the so-called ”gap problem”.

Several authors have attempted to resolve the gap problem by modifying the Brown-Teitelboim proposal [3], [8].
In these scenarios, the cosmological constant is dynamically neutralized by a four-form field strength produced by
wrapping compact dimensions with flux. These field strengths are quantized in integer multiples of some basic unit,
giving rise to a nonzero energy density. The measured cosmological constant is then

λ = λbare +
N∑

i=1

cin
2
i

where the first term is the bare cosmological constant. In the second term, the charges qi arise from the geometry of
the compactification manifold. Bousso and Polchinski found that the ”gap problem” could be evaded by incorporating
multiple four-forms, perhaps resulting from wrapping seven-forms about three-cycles of the compact space. If there
is more than one non-trivial three-cycle, then naturally more than one type of four-form can arise from the wrapping.
It may then be possible to find some combination of different fluxes that can neutralize the cosmological constant. As
with the BT model, the relaxation of the cosmological constant is achieved by the spontaneous creation of membranes-
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In this report I examine the effects of bubble nucleation on a stationary observer. First, by using
a new method relying on the bubble wall equation of motion, I show how purely gravitational effects
reproduce the semiclassical results predicted by Coleman and DeLuccia using alternate methods. I
show how causality considerations can be used to rule out certain classes of tensions on the domain
wall separating false vacuum from true. Finally, I show that an observer inside a Minkowski space
bubble located within a larger false vacuum observes a redshift consistent with an open Universe,
while an observer inside a bubble of pure de Sitter space inside a space with larger cosmological
constant observes an effective cosmological constant only in special cases.

INTRODUCTION

The cosmological constant problem is one of the most
intractable in modern physics. No one has yet been able
to put forth a convincing explanation for why the ob-
served vacuum density is 120 orders of magnitude less
than the predicted zero-point energy of the standard
model components, nor for why it has come to domi-
nate the Universe so recently. It is clear that any theory
of the Universe must account for the existence of a small,
positive, and very nearly constant vacuum density.

A tantalizing possibility is that the cosmological vac-
uum density is not constant, but changes in accordance
with some more fundamental theory. One of the first at-
tempts to make the ”constant” dynamical was proposed
by Abbot [1]. The Abbot mechanism is simple but suffers
from serious phenomenological flaws. The core idea is to
break the classical symmetry φ→ φ+constant of a scalar
field coupled to hidden non-abelian gauge fields. This is
accomplished by introducing a potential incorporating a
cosine term and a ”tilt” term:

V (φ) = −M4 cos
(

φ

f

)
+ ε

φ

2πf

where f is some characteristic mass scale, M is the scale
where couplings to some hidden gauge fields become
strong, and the tilt parameter ε is constrained to be less
than M4. It is easily seen that such a potential has an
infinite set of equally spaced metastable local minima. If
the field starts high on the potential, it will roll down
until it reaches a point where the barrier between min-
ima becomes significant. After this point the field may
proceed toward the potential absolute minimum by tun-
nelling between metastable states, a process investigated
in detail by Coleman and DeLuccia [8]. The cosmologi-
cal constant is therefore relaxed as the field jumps slowly
down the potential.

It is unclear, however, how to reconcile the Abbott pro-
posal with the need to populate the Universe with some
form of matter and radiation. Every time the Universe
settles into some new potential minimum, the resulting

de Sitter phase will inflate away any matter and radia-
tion, diluting any perturbations that could have created
galaxies and clusters. This ”empty Universe problem”
means that by the time the cosmological constant reaches
the observed value, all matter and radiation will have
been inflated away. Essentially, the Abbott mechanism
is too slow for conventional Big Bang cosmology.

Recently, though, the Abbott proposal has been resur-
rected by Steinhardt and Turok in the context of a cyclic
model [13]. Because matter and radiation in this sce-
nario are created by a collision of two orbifold planes,
the empty Universe problem is solved if the collision
timescale is much shorter than the relaxation time. Ad-
ditionally, since the cyclic model does not require an in-
flationary period to generate a scale-invariant spectrum
of density perturbations, there is no constraint placed on
the relaxation by an inflationary epoch.

A similar scenario, first proposed by Brown and Teitel-
boim [5], involves a mechanism based on the spontaneous
creation of membranes within a de Sitter background.
Each membrane, described by an appropriate instanton
solution, raises or lowers the observed value of the cos-
mological constant by an integer multiple of some fun-
damental energy. This situation, in addition to suffering
from the ”empty Universe” problem described above, re-
quires an energy spacing δλ infinitesimal compared with
all known scales of physics- the so-called ”gap problem”.

A possible resolution of this problem is due to Bousso
and Polchinski [4]. In their scenario, the cosmological
constant is dynamically neutralized by a four-form field
strength produced by wrapping compact dimensions with
flux. These field strengths are quantized in integer mul-
tiples of some basic unit, giving rise to a nonzero energy
density. The measured cosmological constant is then

λ = λbare +
N∑

i=1

cin
2
i

where the first term is the bare cosmological constant. In
the second term, the charges qi arise from the geometry
of the compactification manifold. Bousso and Polchinski



Initial conditions

• Canonical inflationary model: 

• Various attempts (Freese et al, Watson et al) to start the Universe in some top 
vacuum state (perhaps the Planck scale) and tunnel down to the current state.

• This sort of model does not rely on a scalar field inflaton.



Starting the Universe

• Vilenkin, Linde: Universe spontaneously nucleates in a de Sitter space.

• Hartle-Hawking: wave function of the Universe is a path integral over all 
compact Euclidean histories terminating at a certain 3D configuration

• Both proposals must deal with “nothing”. 

• HH: Compact four-geometries interpolate between “nothing” and a 3-
geometry.

• Vilenkin: Minisuperspace model with non-singular boundary a=0, finite field.  

• Can bubble methods describe “nothing”?



Outline

• Review of the Coleman-DeLuccia mechanism.

• Reformulation using GR formalism.

• Conformal diagrams for bubble nucleation.

• Implications for chain/bubble-driven inflation.

• Some strange results

• Conclusions



Coleman & DeLuccia
bubble of true vacuum forms 
inside false vacuum



Review: scalar field with gravity

false vacuumtrue vacuum

S =

∫

d4x
√

−g

(

1

2
gµν∂µ∂νφ − V (φ) − (16πG)−1R

)



Review: scalar field with gravity

false vacuumtrue vacuum

S =

∫

d4x
√

−g

(

1

2
gµν∂µ∂νφ − V (φ) − (16πG)−1R

)

thin-wall approximation

ε

S1



Review: scalar field with gravity

• Find “bounce”: solution to Euclidean equations of motion obeying appropriate 
boundary conditions.

• Evaluate Euclidean action of the bounce solution.

• Tunnel rate per unit volume is 

• CD find Euclidean action 

• Bubble radius 

• Can we reformulate this in a purely GR context?

Γ

V
=

∣

∣

∣

∣

δ2S

δφ2

∣

∣

∣

∣

e−SE(φbounce)

rb =
12S1

4ε + 24πGS2
1

B =
27π2S4

1

2ε3 (1 + 3r2
b
/(8πG))

2



an example: de Sitter decays to Minkowski

• Metric on either side (static 
coordinates)

• Boundary: timelike brane in r-
direction (assuming spherical 
symmetry)

• Israel matching condition gives                           

2

domain walls that separate regions of different fluxes. However, these proposals do not directly address the empty
Universe problem.

If a dynamical model is to solve both problems, however, it must propose a radical new view of cosmic history.
Turok and Steinhardt solve the empty Universe and gap problems by embedding the dynamical vacuum energy in the
context of a cyclic model [13]. Because matter and radiation in this scenario are created by a collision of two orbifold
planes, the empty Universe problem is solved if the collision timescale is much shorter than the relaxation time.
Additionally, since the cyclic model does not require an inflationary period to generate a scale-invariant spectrum of
density perturbations, there is no constraint placed on the relaxation by an inflationary epoch.

Finally, the cosmological constant could be non-dynamical but anthropically fine-tuned [15]. Such arguments
depend on the availability of a large solution space with a well-defined measure. Recent progress in string theory
suggests that the space of solutions can be parametrized by moduli which act, at low energies, like massless scalar
fields [14]. The ”landscape” potential that results from changing the values of these fields appears to offer a wide
range of discrete vacua, each with a different cosmological constant. The goal of the anthropic approach is to use this
huge space of solutions to explain why the laws of physics are as observed. There does not, as yet, appear to be a
sensible measure with which to assign probabilities to these scenarios. However, many anthropic arguments rely on
the relative fluidity or stability of the vacua, and it is important to understand the mechanisms for changing vacuum
state [10].

Certainly, there is a need for further work on the subject of vacuum decay. In particular, if cosmology is to be
an effective test for these theories, it is important to understand their observational consequences. In the following
sections we investigate vacuum decay via bubble nucleation. We assume that information from the outside, false
vacuum space is transmitted by a homogenous photon bath to observers inside the bubble and calculate the resulting
redshift seen by observers inside the true vacuum bubble.

DE SITTER – MINKOWSKI DECAY

To begin, we will examine a simple model where there are only two possible vacuum states. In one of these states
the cosmological constant is small and positive; in the other it is zero. The false vacuum space is therefore pure de
Sitter. Any decay of the false vacuum leads to the creation of a bubble [6] of Minkowski space. In static coordinates,
these spacetimes are described by the metric

ds2 = −A(r)dt2M +
1

A(r)
dr2 + r2dΩ2. (1)

with AM (r) = 1 in Minkowski space and AdS(r) = (1 − χ2r2) in the de Sitter region. The boundary between these
two spacetimes is described by an infinitesimally thin domain wall, and we make the usual assumption of spherical
symmetry. The dynamics of the true vacuum bubble will therefore be described by the evolution of this wall.

Equation of Motion

The advantage of this coordinate choice is that the bubble wall is located at the same radial coordinate r in both
spacetimes. Because the wall itself is spherically symmetric, its metric is

ds2 = −dτ2 + r2(τ)dΩ2 (2)

where τ is the comoving time measured by an observer on the wall. In each respective spacetime we can define a
spacelike vector nµ = (−ṙ, ṫ, 0, 0) normal to the wall, where the dot denotes the derivative with respect to τ . The
condition nµnµ = 1 yields a relationship between the time coordinates in the de Sitter and flat regions and the
comoving time on the wall:

ṫ = ±A(r)−1(1 + ṙ2)1/2 = A−1β (3)

with β = (A(r) + ṙ2)1/2 and A(r) specifying de Sitter or Minkowski space.
The extrinsic curvature induced on the surface of the bubble can be calculated by taking the Lie derivative of the

wall metric 2 along the normal vector as defined in each region. The components of the extrinsic curvature tensor are

Kττ = − 1
β

(
r̈ +

A′(r)
2

)
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Kθθ = rβ

Kφφ = rβ sin2(θ). (4)

and its trace is

TrK = β−1r̈ +
1
2
A′(r)β−1 +

2β

r
(5)

To get an equation of motion for the domain wall, we use the Israel matching condition [2]. In the thin-wall
approximation, the stress-energy of the surface is completely specified by the tension T ; the corresponding junction
condition is then

Ki
j(Minkowski)−Ki

j(dS) = −4πGT δi
j . (6)

The θθ component of Eq. (6) gives us the relation

βd − βm = 4πGTr = κr (7)

where κ = 4πGT is a measure of the wall tension, β2
d = (1 − χ2r2 + ṙ2), and β2

m = (1 + ṙ2). By manipulating Eq.
(7), we find the equation of motion for the domain wall

ṙ2 = c2r2 − 1 (8)

with c = χ2+κ2

2κ .

Tunneling Rate

The classical turning point ṙ = 0 corresponds to a bubble radius r = 1
c . This means that the bubble appears at

τ = 0 with this finite, nonzero radius. There is no way to shrink the bubble back to zero radius along a purely real
time contour; instead we must rotate to imaginary time. The instanton action therefore describes the evolution of the
bubble along this imaginary time path, or equivalently its growth from zero radius to 1

c , its radius at nucleation [12].
In order to determine the rate at which the false vacuum decays we need to evaluate the imaginary part of the

action for our configuration. This is depicted in Figure 1.

EUCLIDEAN DE

     SITTER

INSTANTON

FIG. 1: A schematic description of the instanton action. The imaginary contribution to the total action is the sum of the de
Sitter volume term, contributions from the extrinsic curvature on the de Sitter and Minkowski sides [9], and the contribution
from the surface energy of the bubble wall itself. The action is normalized by subtracting the volume of the de Sitter four-sphere,
corresponding to the probability not to nucleate a bubble.

In Euclidean time, de Sitter space is topologically equivalent to a four-sphere and Minkowski space is, of course, flat.
The instanton corresponds to a region of the four-sphere matched to a region of R4 along a three-spherical boundary.
The contributions to the action come from the volumes of the spherical cap and the flat region, the energy of the
three-dimensional boundary itself, and the gravitational effects induced on the boundary by both sides. Formally, the
action for the entire spacetime (not just the instanton) is given by

Sgrav =
1

16πG

∫

M
d4x

√
−g(RdS − 2ΛdS) +

1
16πG

∫

M
d4x

√
−g(RM − 2ΛM ) +

1
8πG

∫

∂M
d3x

√
−hKdS +

1
8πG

∫

∂M
d3x

√
−hKM − T

∫

wall
d3x

√
−h (9)
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r̈ +
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d

dτ

)



Equation of motion

• θ-θ component of Israel matching gives a simple equation of motion:

• Classical turning point: 

• No way to shrink the bubble back to zero size in real time.

• Interpretation: bubble of true vacuum nucleates at finite size 1/c. 
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βd − βm = 4πGTr = κr (7)

where κ = 4πGT is a measure of the wall tension, β2
d = (1 − χ2r2 + ṙ2), and β2

m = (1 + ṙ2). By manipulating Eq.
(7), we find the equation of motion for the domain wall

ṙ2 = c2r2 − 1 (8)

with c = χ2+κ2

2κ .

Tunneling Rate

The classical turning point ṙ = 0 corresponds to a bubble radius r = 1
c . This means that the bubble appears at

τ = 0 with this finite, nonzero radius. There is no way to shrink the bubble back to zero radius along a purely real
time contour; instead we must rotate to imaginary time. The instanton action therefore describes the evolution of the
bubble along this imaginary time path, or equivalently its growth from zero radius to 1

c , its radius at nucleation [12].
In order to determine the rate at which the false vacuum decays we need to evaluate the imaginary part of the

action for our configuration. This is depicted in Figure 1.
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FIG. 1: A schematic description of the instanton action. The imaginary contribution to the total action is the sum of the de
Sitter volume term, contributions from the extrinsic curvature on the de Sitter and Minkowski sides [9], and the contribution
from the surface energy of the bubble wall itself. The action is normalized by subtracting the volume of the de Sitter four-sphere,
corresponding to the probability not to nucleate a bubble.

In Euclidean time, de Sitter space is topologically equivalent to a four-sphere and Minkowski space is, of course, flat.
The instanton corresponds to a region of the four-sphere matched to a region of R4 along a three-spherical boundary.
The contributions to the action come from the volumes of the spherical cap and the flat region, the energy of the
three-dimensional boundary itself, and the gravitational effects induced on the boundary by both sides. Formally, the
action for the entire spacetime (not just the instanton) is given by

Sgrav =
1

16πG

∫

M
d4x

√
−g(RdS − 2ΛdS) +

1
16πG

∫

M
d4x

√
−g(RM − 2ΛM ) +

1
8πG

∫

∂M
d3x

√
−hKdS +

1
8πG

∫

∂M
d3x

√
−hKM − T

∫

wall
d3x

√
−h (9)
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This allows us once again to write the equation of motion in a simple form:

ṙ2 = c2r2 − 1

c2 =
(

χ2
2 + κ2 − χ2

1

2κ

)2

Note that this time the dynamics of the wall are determined by the cosmological constants in both the true and
false vacua, as well as by the tension on the bubble wall itself.

The procedure for determining what an observer sees is similar to the dS-Minkowski case, with a few important
differences. The trajectory of an observer becomes important, since photons will continue to acquire a redshift as
they move through the bubble de Sitter space. For simplicity we will chose an observer located at the South Pole of
the bubble de Sitter space, at rest with respect to the photon background.

Once again, the equation of motion for the bubble wall is given by Eq. (19), with c redefined for the de Sitter-de
Sitter case. The point (ũ, ṽ) at which the photon intersects the wall is

ũoutside =
(u2

0 − 1)(c2u0 − u0χ2
2 + c

√
c2 − χ2

2)
2c2(u2

0 − 1)− 2u2
0χ

2
2

(22)

ṽoutside =
(u2

0 − 1)(c2u0 − u0χ2
2 + c

√
c2 − χ2

2)
2c2(u2

0 − 1)− 2u2
0χ

2
2

− uo (23)

But these (u, v) coordinates are defined only in the space outside the bubble. Inside the bubble, the different de
Sitter radius necessitates different coordinates. To convert the intersection point into coordinates (U, V ) defined inside
the bubble we solve the conversion relations

1
χ2

(
1− U2 + V 2

1 + U2 − V 2

)
=

1
χ1

(
1− u2 + v2

1 + u2 − v2

)

V

U
=

v

u
(24)

at the point of intersection with the wall.
Now, we need to get the intersection of the photon trajectory inside the bubble with the trajectory of an observer.

Once again, the photon’s path is given by

u− u0 = v − v0. (25)

Since the wall is treated as an infinitesimally thin membrane, we can set u0inside = uintinside and v0inside = vintinside.
In general, the trajectory of a timelike observer in de Sitter (u, v) coordinates is given by

v

u
= M,

with M2 > 1. For the case of an observer at rest with respect to the photon bath, M →∞ and we take uobserver = 0.
If the observer is placed at the South Pole of the bubble space, we can also take vobserver = 0. So to find the
coordinates at which the observer sees the photon, we simply need to solve

vphoton = 0.

Having found the coordinates of intersection, we simply need to plug into the formula (??) to get the scale factor. In
terms of the initial coordinate in the false vacuum space u0, it turns out to be

(1 + z)(u0) =
∑4

i=0 aiui
0∑4

i=0 biui
0

(26)

with

a4 = c
√

c2 − χ2
2(χ

3
2 + χ2

2χ1 − c2(χ2 + χ1))

a3 = 2(c4(χ1 − χ2) + χ1χ
4
2)

a2 = cχ2
2(

√
c2 − χ2

2(3χ1 − χ2) + 2(c− 2χ1))

a1 = 2c2(c2(χ2 − χ1)− χ3
2)

a0 = c3
√

c2 − χ2
2(χ1 + χ2)

ṙ = 0



imaginary time

• evaluate action along complex time 
contour.

• imaginary part of the action 
corresponds to Euclidean action.

• bubble nucleates at 

• spacetimes become compact: de 
Sitter has topology of a sphere.

• “instanton”= matching solution.

τ =
iπ

2c

τ = 0

τ = 0



instanton action

• the action for this cut and glued spacetime is 

• schematically, we depict it as:

• the imaginary portion is 

3

Kθθ = rβ

Kφφ = rβ sin2(θ). (4)

and its trace is

TrK = β−1r̈ +
1
2
A′(r)β−1 +

2β

r
(5)

To get an equation of motion for the domain wall, we use the Israel matching condition [2]. In the thin-wall
approximation, the stress-energy of the surface is completely specified by the tension T ; the corresponding junction
condition is then

Ki
j(Minkowski)−Ki

j(dS) = −4πGT δi
j . (6)

The θθ component of Eq. (6) gives us the relation

βd − βm = 4πGTr = κr (7)

where κ = 4πGT is a measure of the wall tension, β2
d = (1 − χ2r2 + ṙ2), and β2

m = (1 + ṙ2). By manipulating Eq.
(7), we find the equation of motion for the domain wall

ṙ2 = c2r2 − 1 (8)

with c = χ2+κ2

2κ .

Tunneling Rate

The classical turning point ṙ = 0 corresponds to a bubble radius r = 1
c . This means that the bubble appears at

τ = 0 with this finite, nonzero radius. There is no way to shrink the bubble back to zero radius along a purely real
time contour; instead we must rotate to imaginary time. The instanton action therefore describes the evolution of the
bubble along this imaginary time path, or equivalently its growth from zero radius to 1

c , its radius at nucleation [12].
In order to determine the rate at which the false vacuum decays we need to evaluate the imaginary part of the

action for our configuration. This is depicted in Figure 1.
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FIG. 1: A schematic description of the instanton action. The imaginary contribution to the total action is the sum of the de
Sitter volume term, contributions from the extrinsic curvature on the de Sitter and Minkowski sides [9], and the contribution
from the surface energy of the bubble wall itself. The action is normalized by subtracting the volume of the de Sitter four-sphere,
corresponding to the probability not to nucleate a bubble.

In Euclidean time, de Sitter space is topologically equivalent to a four-sphere and Minkowski space is, of course, flat.
The instanton corresponds to a region of the four-sphere matched to a region of R4 along a three-spherical boundary.
The contributions to the action come from the volumes of the spherical cap and the flat region, the energy of the
three-dimensional boundary itself, and the gravitational effects induced on the boundary by both sides. Formally, the
action for the entire spacetime (not just the instanton) is given by

Sgrav =
1

16πG

∫

M
d4x

√
−g(RdS − 2ΛdS) +

1
16πG

∫

M
d4x

√
−g(RM − 2ΛM ) +

1
8πG

∫

∂M
d3x

√
−hKdS +

1
8πG

∫

∂M
d3x

√
−hKM − T

∫

wall
d3x

√
−h (9)

3
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Kφφ = rβ sin2(θ). (4)

and its trace is

TrK = β−1r̈ +
1
2
A′(r)β−1 +
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r
(5)

To get an equation of motion for the domain wall, we use the Israel matching condition [2]. In the thin-wall
approximation, the stress-energy of the surface is completely specified by the tension T ; the corresponding junction
condition is then

Ki
j(Minkowski)−Ki

j(dS) = −4πGT δi
j . (6)

The θθ component of Eq. (6) gives us the relation

βd − βm = 4πGTr = κr (7)

where κ = 4πGT is a measure of the wall tension, β2
d = (1 − χ2r2 + ṙ2), and β2

m = (1 + ṙ2). By manipulating Eq.
(7), we find the equation of motion for the domain wall

ṙ2 = c2r2 − 1 (8)

with c = χ2+κ2

2κ .

Tunneling Rate

The classical turning point ṙ = 0 corresponds to a bubble radius r = 1
c . This means that the bubble appears at

τ = 0 with this finite, nonzero radius. There is no way to shrink the bubble back to zero radius along a purely real
time contour; instead we must rotate to imaginary time. The instanton action therefore describes the evolution of the
bubble along this imaginary time path, or equivalently its growth from zero radius to 1

c , its radius at nucleation [12].
In order to determine the rate at which the false vacuum decays we need to evaluate the imaginary part of the

action for our configuration. This is depicted in Figure 1.
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FIG. 1: A schematic description of the instanton action. The imaginary contribution to the total action is the sum of the de
Sitter volume term, contributions from the extrinsic curvature on the de Sitter and Minkowski sides [9], and the contribution
from the surface energy of the bubble wall itself. The action is normalized by subtracting the volume of the de Sitter four-sphere,
corresponding to the probability not to nucleate a bubble.

In Euclidean time, de Sitter space is topologically equivalent to a four-sphere and Minkowski space is, of course, flat.
The instanton corresponds to a region of the four-sphere matched to a region of R4 along a three-spherical boundary.
The contributions to the action come from the volumes of the spherical cap and the flat region, the energy of the
three-dimensional boundary itself, and the gravitational effects induced on the boundary by both sides. Formally, the
action for the entire spacetime (not just the instanton) is given by

Sgrav =
1

16πG

∫

M
d4x

√
−g(RdS − 2ΛdS) +

1
16πG

∫

M
d4x

√
−g(RM − 2ΛM ) +

1
8πG

∫

∂M
d3x

√
−hKdS +

1
8πG

∫

∂M
d3x

√
−hKM − T

∫

wall
d3x

√
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The final step is to subtract the volume term for a four-sphere of radius 1/χ- the Euclidean de Sitter world volume
that represents the probability not to nucleate a bubble. This is simply

Sstay =
π

2χ2G
. (17)

Now, we only need to add these terms together to get the tunneling coefficient, which tells us that

B =
κπ

2Gc3
− 3π

4Gc2
+

π

2Gχ2
− π

√
c2 − χ2

2Gχ2c
− π

√
c2 − x2

2Gc3
. (18)

Using [7], the tunneling rate per unit volume is then Γ/V = A exp(−B), with A an operator determinant factor.
This calculation reproduces the results obtained by Coleman and DeLuccia for a scalar field in the thin-wall

approximation. Although we have used a simple rotation to the imaginary axis for our time contour, this method is
easily generalizable to situations where the time contour is not so simple; for example, in the case of a perturbed metric
in which the bubble does not lie along a surface of constant time. Finally, we believe that this method emphasizes
the continuity of the instanton and Lorentzian solutions by allowing the same equations of motion to represent both.

Points of View

It is useful to translate the wall trajectory into the coordinates defined in the Minkowski and de Sitter spaces. This
gives an intuitive feel for what an observer located in each space will see. First, recall that for a hapless observer glued
to the surface of the bubble wall, the radial coordinate of the wall grows like 1

c cosh(cτ). This means the observer will
see the bubble coming into existence with characteristic size 1

c and rapidly growing, eventually reaching infinite size.
In the Minkowski frame the bubble trajectory is

r(tm) =
1
c

√
1 + c2t2m.

This means an observer inside the true vacuum bubble sees the wall materialize at a finite radius and then grow at a
velocity rapidly approaching the speed of light.

In the de Sitter frame, however, the bubble trajectory is

r(td) =
1
c

√

1 +
c2 − χ2

χ2
tanh2(χtd).

Here, the wall expands but appears stuck at the causal horizon. This reveals a problem with the hitherto useful
static coordinates- they do not cover the whole space. More physical intuition will come from a change of coordinate
systems.

New Coordinates

The problem of the previous section arises because bubble nucleation affects the future horizon of the de Sitter
observer at the South Pole. Prior to tunnelling, she observes herself to be in de Sitter space, with a future causal
horizon. However, after the tunnelling event she finds herself in Minkowski space with no future horizon. Further,
photons from outside her previous causal horizon will enter the bubble, making regions of spacetime previously
inaccessible suddenly within her communicative reach. If the bubble size does not exceed the Hubble radius of the
outside spacetime, then there will still be regions of space inaccessible to the Minkowski observer. However, the
previously defined de Sitter causal horizons are no longer a good boundary. This means we must switch to a more
sensible coordinate system.

We choose the Gibbons-Hawking (u, v) system as used in [2]. In these coordinates, the metric is

ds2 = χ−2(1 + χR)(−dv2 + du2) + R2dΩ2
(2).

They cover the whole space if |u2 − v2| < 1. The photon geodesics are just

dv = ±du



Tension and horizons

• As tension is increased, the bubble 
radius increases up to 

• Each value of wall tension 
corresponds to two nucleation radii.

• Flaw in the coordinate system: only 
covers part of the manifold.

•               is the cosmological horizon.

• So does the theory predict 
superhorizon bubbles for large wall 
tensions?

κcrit = χ
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FIG. 5: My figure

It is helpful to construct a conformal diagram for the bubble nucleation process. In global coordinates, the wall
trajectory is

c2

χ2
cosh2(χη) sin2(ψ) =

(
c2 − χ2

χ2

)
tanh(χη) sec2(ψ) + 1

with

0 ≤ ψ ≤ π

−∞ < η <∞.

If we let

T = 2 arctan(eχη)− π

2

∂rbubble

∂κ
= 0

∂rbubble

∂κ
> 0

∂rbubble

∂κ
< 0

r = χ



plot of tunnel rate vs. membrane tension and top vacuum de sitter radius.
normalized and sensible only for tensions less than the critical tension.



Conformal diagram

• Change to coordinates                       in which metric is 

• Wall trajectory is then

• For all subhorizon bubbles,       is reached at 

• For horizon-size bubbles it is reached at 

• What about superhorizon size bubbles?

(T, ψ, θ, φ)

ds2 =
sec2(T )

χ2
(−dT 2 + dΩ2

(3))

A Conformal Diagram for Bubble Nucleation

Kate Marvel
(Dated: May 14, 2007)

The equation of motion for the bubble wall is

dr

dτ
= r2c2 − 1

where τ is the proper time on the bubble wall surface and

c =
χ2

2 − χ2
1 + κ2

2κ
(1)

We assume the bubble wall is spherically symmetric; this gives a relation between de Sitter time in static coordinates
and the wall time:

dtdS

dτ
=

√
1 + (dr/dτ)2

1− r2χ2

where χ specifies the de Sitter space time. In static coordinates the bubble trajectory as seen by observers in both
vacua is

r(tdS) =
1
c

√

1 + (
c2

χ2
− 1) tanh2(χt) (2)

where χ = χ2 in the false vacuum and χ = χ1 ≤ χ2 in the true vacuum. To convert this to global coordinates covering
the whole manifold, we use the relations

r2
static =

1
χ

cosh2(ηχ) sin2 ψ

and

tanh(χtdS) = tanh(χη) sec2 ψ.

The wall trajectory in both regions is then

c2

x2
cosh2(χη) sin2 ψ = (

c2

χ2
− 1) tanh2(χη) sec2 ψ + 1

Now, we choose a new time coordinate

T = 2 arctan(eχη)− π

2

. This maps the infinite range of η to a finite range in T : −π
2 < T < π

2 . Using the identities

cosh(ln(tan(x))) = csc(2x)
tanh(ln(tan(x))) = − cos(2x)

we can write the bubble wall trajectory as seen by an observer in either vacuum:

c2

χ2
sin2 ψ cos2 ψ = (

c2

χ2
− 1) sin2 T cos2 T + cos2 T cos2 ψ (3)

If we let p = sin2 ψ, this becomes a quadratic equation for p, with two solutions. We can choose the physically
relevant solution by demanding that the bubble have positive, finite size at T = 0, the time of nucleation. This sets
sinψO = χ

c .

−

π

2
< T <

π

2

I+ ψ =
π

2

ψ = π

0 < ψ < π



Implications

• Two solutions for 

• Solution in blue corresponds to a 
subhorizon bubble reaching 
conformal infinity at 

• Solution in red corresponds to a 
horizon-size bubble reaching 
conformal infinity at 

• This is the only decreasing solution!

• Superhorizon bubbles are not 
tunneling solutions.
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then

ds2 =
sec(T )2

χ2

(
−dT 2 + dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

)

and −π/2 ≤ T ≤ π/2. In these coordinates the wall trajectory is

c2

χ2
sin2 ψ cos2 ψ = (

c2

χ2
− 1) sin2 T cos2 T + cos2 T cos2 ψ. (21)

This means that at bubble nucleation (T = 0) the coordinate ψ0 = arcsin(χ/c). For bubbles with wall tension less
than the critical tension, ψ0 < π

2 and for bubbles with wall tension greater than this value ψ0 > π
2 , with equality

at T = Tcrit. From Eq. 21, we see that there are two solutions for the bubble spatial coordinate sin2(ψ), as shown
in Figure 6 for a specific choice of c and χ. Note that the only decreasing trajectory corresponds to the maximal

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

FIG. 6: Two allowed trajectories for the the bubble wall.

bubble with sin2 ψ0 = π
2 . Bubbles with ψ0 = arcsin(χ

c ) > π
2 – supercritical bubbles – do not correspond to an allowed

trajectory and are therefore not present in the theory.
The trajectory of a sub-critical bubble asymptotes to the light cone of the bubble center, while that of a critical

bubble precisely traces out the light cone of the cosmological horizon at T = 0. Note that in each region the endpoint
of the trajectory at timelike infinity is independent of the bubble radius and of the cosmological constant in the false
vacuum space.

This is illustrated in Figure (7). The trajectories of bubbles corresponding to small tension are represented by
purple and blue lines, while larger tension bubbles are represented by yellow and red lines.

What about the bubbles associated with the critical tension? These bubbles immediately swallow the entire cos-
mological horizon at nucleation and then proceed along a lightlike trajectory that precisely mirrors the light cone of
the cosmological horizon at T = 0.

A STEP CLOSER TO REALITY

Now, let’s extend this to the more general case of tunnelling from a space of de Sitter radius 1/χ2 to one of de Sitter
radius 1/χ1. For now, we’ll assume χ2 > χ1, and the tunnelling is from a space with higher cosmological constant
into one with lower cosmological constant. Most of our earlier analysis still holds. We assume the domain brane is
infinitesimally thin, with tension T . Then, once again, we can use Israel matching :

Ki(1)
j −Ki(2)

j = κδi
j (22)

with Kθ(1,2)
θ = β(1,2)

r and

β(1) = (1 = χ2
1r

2 + ṙ2)
β(2) = (1 = χ2

2r
2 + ṙ2).

sin
2 ψ

ψ =
π

2

ψ = π
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cos ψ2 =

(

χ2

χ1

)2

sinT2

de Sitter - de Sitter decay

• True vacuum has lower 
cosmological constant than false 
vacuum.

• So will have different horizon 
structure:

• As the Hubble parameter of the false 
vacuum space goes to zero the 
horizon approaches         : flat space 
has no horizons!

I+



chain inflation: freese, liu, spolyar, watson, perry, kane, etc.

• Inflation happens via tunneling 
in some vacuum landscape

• no need for artificial initial 
conditions: start at Planck scale

• tunnel rate per unit volume is 

Γ

V
= Ae

−B



bubble-driven inflation: a simple model

• tunneling rate between two vacua is 

• M is a one-loop determinant factor which we’ll take to be 

• V is the Hubble volume.

• We assume the Universe starts in some top vacuum = 1 and that the vacua are 
evenly spaced.

• Also assume uniform tension on the membranes separating vacuum regions.

the tunneling process. However, we will neglect this possibility for the
time being.

• We ignore the possibility that the value of the cosmological constant
may be lowered by tunneling to a space filled with a gas of black holes.
This scenario modifies the tunneling rate calculated in the previous
sections by introducing a term proportional to exp(−χ2). However, in
this high-energy scenario its contribution is negligible.

Our goal is to examine the behavior of the inflationary Universe as it moves
down each rung of this ”vacuum ladder”.

0.1 Tunneling Rate

We assume the Universe starts in a state at or close to the Planck scale
and gradually tunnels down to a state where the vacuum energy is zero.
Inflation therefore ends when the Universe reaches the bottom rung on the
ladder, resulting in a flat, FRW-like spacetime. The tunneling is governed
by bubble nucleation, and a straightforward generalization of the calculation
in Section?? gives the decay rate as

Γ
V

= Mexp

{
π

2G

(
(1− χ12r2b)

3/2 − 1
χ12

−
(1− χ22r2b)

3/2 − 1
χ22

+ r2b

)}
(1)

where V is taken to be the Hubble volume and M is a one-loop determinant
factor 1. χ2 and χ1 are the inverse de Sitter radii of the upper and lower
vacua, respectively, and the radius of the bubble is

rb =
2κ

χ2
2 − χ2

1 + κ2
.

Figure 1 illustrates that, for a specific tension κ, the Euclidean action
describing tunneling between two adjacent vacua varies with the magnitude
of the upper vacuum. In particular, tunneling per Hubble volume is rapid
and easy when the Universe is in the topmost vacuum states. However, there
is an obvious drop-off in the tunneling rate as the spacetime tunnels down to
lower vacua. At this point the average time in each level starts to increase
drastically, as the Universe becomes less and less likely to drop down to a

1I’m taking this to be ≈ r−4
bubble. I don’t have much justification for this yet. I’ll send

along another note trying to calculate this determinant later. Malcolm is totally good at
this sort of stuff, though, so I will get him to help out.

2

!

1

r
4

b



Initially, tunneling is 
simple.

this depends on the tension.



bounds on inflation

• “slow-roll” period ends when tunneling becomes prohibitively slow:

• Number of e-folds is then 

3 E-Folds

Initially, the euclidean action is close to unity, so the field effectively rolls
unimpeded down the potential. We therefore expect the initial rate of change
of the inverse de Sitter radius, χ, to be given by

−Γ
∆χ

∆t

where Γ ≈ 1. During this period, the slow-roll parameter ε = −Ḣ/H2

is small in magnitude, since the rate of change of the Hubble parameter
H is constant while H2 remains large. It is therefore during this period
that the Universe undergoes the majority of its inflationary expansion; the
required number of e-folds necessary to solve the various puzzles associated
with inflation must be generated here.

Observational evidence places a lower bound on the amount of inflation-
ary expansion the Universe must undergo in its first few seconds. I will now
outline a simple argument which uses this fact to constrain the vacuum-
inspired inflationary model.

While the Universe rolls effectively unimpeded down the potential, we
have seen that χ changes linearly as

χ ≈ −dχt + χmax (2)

where we have assumed the vacua are evenly spaced so that χmax = Nvacdχ.
In the previous section we saw that tunneling becomes suppressed when

the bubble wall tension, κ, begins to appear large compared to the spacing
between vacua. We therefore estimate that slow-roll inflation will end when

κ

χend
=

dχ

χmax
→ χend = Nvacκ.

This means that the proper time at which slow-roll ends can be found from
Eq. (2):

tend = N(1− k/dχ).

To find the number of e-folds, we need to integrate the Hubble parameter
from t = 0 to tend. This is simple, because during the initial period it
simply changes linearly as the Universe rolls down the ”ladder” of vacua.
The number of e-folds is then expected to depend on the parameters of the
theory as

Nefolds ∼
N2

vac(dχ2 − κ2)
Gdχ

. (3)

5

the graph of χ versus time. This ”elbow” in the plot marks the end of

Figure 6: Inverse de Sitter radius as a function of time in Planck units.

the effective slow-roll era and corresponds to a certain critical χend, whose
value varies with the tension κ and with the number of vacua present in the
theory. Figure (7) shows the dependence of χend on the number of vacua
for a fixed value of κ. The behavior is roughly linear in Nvac, with slope
∼ κ. Simulations with varying values of bubble wall tension indicate that
the exact value of this slope dχend/dNvac is roughly equal to κ, so that

χend ≈ 1.253κNvac.

This would appear to reinforce the intuitive argument outlined in the pre-
vious section.

5 Stuff to do next

• Find the determinant M .

• Look at what happens when there’s lots of degeneracy. It’s interesting
that the Euclidean action for tunneling between two degenerate vacua
is the same, regardless of the value of those vacua. So the tunneling
between degenerate vacua is wholly dependent on the MV factor.

8

Nefolds ∼ Nvac(1 − κNvac)



causality again

• note that if the vacuum spacing is sufficiently large(             ) we never have to 
worry about causality issues.

• this means that “slow-roll” ends when the lifetime of a vacuum exceeds the 
Hubble time of that vacuum:

• however, for small vacuum spacings, there is a point where semiclassical 
tunneling is FORBIDDEN by causality: 

• This final state is semiclassically stable!

dχ > κ

Γ ! H

rbubble > rdS



Is nothing unstable?

• Recall de Sitter - Minkowski decay example: 

• What does this correspond to physically?

5

The final step is to subtract the volume term for a four-sphere of radius 1/χ- the Euclidean de Sitter world volume
that represents the probability not to nucleate a bubble. This is simply

Sstay =
π

2χ2G
. (17)

Now, we only need to add these terms together to get the tunneling coefficient, which tells us that

B =
κπ

2Gc3
− 3π

4Gc2
+

π

2Gχ2
− π

√
c2 − χ2

2Gχ2c
− π

√
c2 − x2

2Gc3
. (18)

Using [7], the tunneling rate per unit volume is then Γ/V = A exp(−B), with A an operator determinant factor.
This calculation reproduces the results obtained by Coleman and DeLuccia for a scalar field in the thin-wall

approximation. Although we have used a simple rotation to the imaginary axis for our time contour, this method is
easily generalizable to situations where the time contour is not so simple; for example, in the case of a perturbed metric
in which the bubble does not lie along a surface of constant time. Finally, we believe that this method emphasizes
the continuity of the instanton and Lorentzian solutions by allowing the same equations of motion to represent both.

Points of View

It is useful to translate the wall trajectory into the coordinates defined in the Minkowski and de Sitter spaces. This
gives an intuitive feel for what an observer located in each space will see. First, recall that for a hapless observer glued
to the surface of the bubble wall, the radial coordinate of the wall grows like 1

c cosh(cτ). This means the observer will
see the bubble coming into existence with characteristic size 1

c and rapidly growing, eventually reaching infinite size.
In the Minkowski frame the bubble trajectory is

r(tm) =
1
c

√
1 + c2t2m.

This means an observer inside the true vacuum bubble sees the wall materialize at a finite radius and then grow at a
velocity rapidly approaching the speed of light.

In the de Sitter frame, however, the bubble trajectory is

r(td) =
1
c

√

1 +
c2 − χ2

χ2
tanh2(χtd).

Here, the wall expands but appears stuck at the causal horizon. This reveals a problem with the hitherto useful
static coordinates- they do not cover the whole space. More physical intuition will come from a change of coordinate
systems.

New Coordinates

The problem of the previous section arises because bubble nucleation affects the future horizon of the de Sitter
observer at the South Pole. Prior to tunnelling, she observes herself to be in de Sitter space, with a future causal
horizon. However, after the tunnelling event she finds herself in Minkowski space with no future horizon. Further,
photons from outside her previous causal horizon will enter the bubble, making regions of spacetime previously
inaccessible suddenly within her communicative reach. If the bubble size does not exceed the Hubble radius of the
outside spacetime, then there will still be regions of space inaccessible to the Minkowski observer. However, the
previously defined de Sitter causal horizons are no longer a good boundary. This means we must switch to a more
sensible coordinate system.

We choose the Gibbons-Hawking (u, v) system as used in [2]. In these coordinates, the metric is

ds2 = χ−2(1 + χR)(−dv2 + du2) + R2dΩ2
(2).

They cover the whole space if |u2 − v2| < 1. The photon geodesics are just

dv = ±du

lim
χ→0

B =
4π

Gκ2



A very silly instanton

Two “wedges” of flat space appear from nothing.



More bounds on tension

• In this limit, the bubble radius is 
trivially related to the wall tension:

• In the usual conformal coordinates 
for flat space, the trajectory is 

• As before, this forces all trajectories 
to reach null infinity at the same 
spatial coordinate.

• So even though flat space has no 
horizons, we can place a bound on 
tension, allowing a sensible 
interpretation of the solution.

r =
κ

2

tan(T + R) tan(T − R) = −r
2

b



Conclusions

• Causality issues and horizons dictate semiclassical stability.

• There is a maximum allowable wall tension to create tunneling instantons.

• if, as predicted,                    ,    difficult to get chain inflation without large, fine-
tuned degeneracies.

• Instanton methods predict that “nothing” (g=0) is unstable to the formation of 
bounded wedges of spacetime.

• Lots of interesting further work to be done.

Nvac ∼ 10
500




