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Introduction: Why study vacua”

® The cosmological constant problem

¢ Inflation

e Beginning of the Universe




The Cosmological Constant

e The cosmological constant problem: various experiments (supernovae, WMAP)
observe acceleration.

e However, the density of this cosmological constant is nowhere near the |
vacuum energy of the standard model constituents: pj)xbserved ~ 10120p’j\heoretlcal

¢ Any ultimate theory must explain why this density is small, positive, and very
nearly constant.

¢ Two main approaches: dynamical and anthropic.




Dynamical relaxation

¢ Bousso-Polchinski: neutralize cosmological constant via four-form field

strength:
F; = dAg = x11F}

N
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e Turok-Steinhardt: field moves through potential of the form

V(¢) = —M*cos (?) + e%

* |[n a cyclic universe there is no “empty Universe” problem.




Initial conditions

e Canonical inflationary model:

¢ \/arious attempts (Freese et al, Watson et al) to start the Universe in some top
vacuum state (perhaps the Planck scale) and tunnel down to the current state.

¢ This sort of model does not rely on a scalar field inflaton.




Starting the Universe

e \/ilenkin, Linde: Universe spontaneously nucleates in a de Sitter space.

¢ Hartle-Hawking: wave function of the Universe is a path integral over all
compact Euclidean histories terminating at a certain 3D configuration

¢ Both proposals must deal with “nothing”.

e HH: Compact four-geometries interpolate between “nothing” and a 3-
geometry.

e \ilenkin: Minisuperspace model with non-singular boundary a=0, finite field.

e Can bubble methods describe “nothing”?




Outline

e Review of the Coleman-DelLuccia mechanism.

e Reformulation using GR formalism.

e Conformal diagrams for bubble nucleation.

¢ Implications for chain/bubble-driven inflation.

e Some strange results

e Conclusions




bubble of true vacuum forms

Coleman & Del.uccia inside false vacuum




Review: scalar field with gravity

S = /d% V=g <%g’“’8u8y¢ —Vi(g) — (167rG)—1R)




Review: scalar field with gravity

thin-wall approximation

VN
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Review: scalar field with gravity

¢ Find “bounce”: solution to Euclidean equations of motion obeying appropriate
boundary conditions.

e Evaluate Euclidean action of the bounce solution.
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e Tunnel rate per unit volume is y = |52
277125
263 (1+ 3r7/(87G))"

e CD find Euclidean action B =

125,
e Bubble radius 7» = de 1 24752
1

e Can we reformulate this in a purely GR context?




an example: de Sitter decays to Minkowski

e Metric on either side (static
coordinates)

ds* = —A(r)dt5; +
AM(’I“) =1

Ags(r) = (1 —x2%r?)

¢ Boundary: timelike brane in r-
direction (assuming spherical

symmetry) 4
ny = (_fﬁat.a 07 O) (: E)

1
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A(r)dr + rdQ”.

¢ |srael matching condition gives

K (Minkowski) — K3(dS) = —47GT'6;.




Equation of motion

e 0-0 component of Israel matching gives a simple equation of motion:
72 =c*r? — 1

2
2 (X%Jrﬂz—x%)
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e Classical turning point: 77 =0

¢ No way to shrink the bubble back to zero size in real time.

¢ Interpretation: bubble of true vacuum nucleates at finite size 1/c.




imaginary time

¢ evaluate action along complex time
contour.

e imaginary part of the action
corresponds to Euclidean action.

e bubble nucleates at 7 = 0

¢ spacetimes become compact: de
Sitter has topology of a sphere.

¢ “instanton”= matching solution.




INnstanton action

¢ the action for this cut and glued spacetime is

1
= v/ =g —2A — e /= — 2A
Sgrav 167TG/ d*x (Ras as) + e d x/—g(Rnm M)+
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e schematically, we depict it as:
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® the imaginary portion is
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Tension and horizons

¢ As tension is increased, the bubble
radius increases Up t0 Keprit = X

e Each value of wall tension
corresponds to two nucleation radii.

e Flaw in the coordinate system: only

covers part of the manifold. OTbubble <0
Ok

e ' = X is the cosmological horizon. 5
T'bubble

e So does the theory predict
superhorizon bubbles for large wall
tensions?







Conformal diagram

e Change to coordinates (T, 1, 8, ¢) in which metric is

2 O<y<m
o  SeC (1) 2 2

e \Wall trajectory is then

02 2

— sin? 1) cos? ¢ = (C—2 — 1) sin? T cos? T + cos® T cos? 1)
X

e For all subhorizon bubbles,_’Z'+ Is reached at ¢ — 5
* For horizon-size bubbles it is reached at 1) = 7

e \What about superhorizon size bubbles?




Implications

e Two solutions for sin? 1

e Solution in blue corresponds to a
subhorizon bubble reaching

conformal infinity at = 2

e Solution in red corresponds to a
horizon-size bubble reaching
conformal infinity at ¥ ==«

0.25 0.5 0.75 1  1.25 1.
¢ ThIS IS the Only decreaSIng SOIUtlon' FIG. 6: Two allowed trajectories for the the bubble wall.

e Superhorizon bubbles are not
tunneling solutions.




Bubble nucleation in de Sitter

Cosmological horizons of false vacuum




Bubble nucleation in de Sitter

1y

Cosmological horizons of false vacuum

bubble wall trajectory




Bubble nucleation in de Sitter

Cosmological horizons of false vacuum

subhorizon bubbles

Increasing .
bubble radius




Bubble nucleation in de Sitter

Cosmological horizons of false vacuum

subhorizon bubbles

horizon-size bubble

Increasing .
bubble radius




Bubble nucleation in de Sitter

Cosmological horizons of false vacuum

subhorizon bubbles ,
superhorizon bubble

horizon-size bubble

Increasing .
bubble radius




de Sitter - de Sitter decay

e True vacuum has lower
cosmological constant than false
vacuum.

e So will have different horizon
structure:

e As the Hubble parameter of the false
vacuum space goes to zero the
horizon approaches J - : flat space
has no horizons!




chain inflation:

e Inflation happens via tunneling
In some vacuum landscape

e no need for artificial initial
conditions: start at Planck scale

¢ tunnel rate per unit volume is




bubble-driven inflation: a simple model

¢ tunneling rate between two vacua is

r 1 — 1223/2_1 1 — 2223/2_1
_Mexp{” (( 2 il W€ e 51 bl O

2G x12 Y22
: . . 1
e M is a one-loop determinant factor which we’ll take to be =~ A
b

¢ \/ is the Hubble volume.

¢ \We assume the Universe starts in some top vacuum = 1 and that the vacua are
evenly spaced.

¢ Also assume uniform tension on the membranes separating vacuum regions.




Top vacuum energy density

Initially, tunneling is
simple.




bounds on inflation




causality again

e note that if the vacuum spacing is sufficiently large(dy > «) we never have to
worry about causality issues.

¢ this means that “slow-roll” ends when the lifetime of a vacuum exceeds the
Hubble time of that vacuum: 1" ~ H

e however, for small vacuum spacings, there is a point where semiclassical
tunneling is FORBIDDEN by causality:

Tbubble = TdS

¢ This final state is semiclassically stable!




Is nothing unstable?

e Recall de Sitter - Minkowski decay example:

p_ b 3 LT T2 —x?2 w2 — x?
- 2Ge3 4Ge? T 2G Y2 2Gx3c 2Gc3

47
lim B = ——
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e \What does this correspond to physically?




A very silly instanton

Two “wedges” of flat space appear from nothing.




More bounds on tension

¢ |n this limit, the bubble radius is

trivially related to the wall tension:

K
r = —

¢ |In the usual conformal coordinates
for flat space, the trajectory is

tan(T + R) tan(T — R) = —r;

e As before, this forces all trajectories
to reach null infinity at the same
spatial coordinate.

e So even though flat space has no
horizons, we can place a bound on
tension, allowing a sensible
interpretation of the solution.




Conclusions

e Causality issues and horizons dictate semiclassical stability.
¢ There is a maximum allowable wall tension to create tunneling instantons.

e if, as predicted, N,.. ~ 10°%, difficult to get chain inflation without large, fine-
tuned degeneracies.

¢ [nstanton methods predict that “nothing” (g=0) is unstable to the formation of
bounded wedges of spacetime.

¢ | ots of interesting further work to be done.






