On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna)

Dr. SUCHETA KOSHTI
IISER, Pune, India.

ICSW-07, IPM, Tehran, Iran Jun 4, 2007
Motivation

• Einstein’s General theory of relativity (GR) is the most beautiful & successful theory of gravity. It has matched most of the tests of Gravitation remarkably well.

• Weak field, linearized GR predicts Gravitational radiation. Massless, propagating excitations of the gravitational field.

\[g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} + O(h^2) \]

\[\Box h_{\mu\nu} = 0 \]

• Strong, indirect evidence of Gravitational waves (GW) deduced from measured slow down of Binary pulsars due to GW emission. (Hulse & Taylor won the 1993 Nobel prize for physics for this work.)

• Intense international efforts is underway for direct detection of GW.
Terrestrial GW observatories

Weak interaction of Gravitational waves makes direct detection a major scientific challenge of this century.

• Number of Laser interferometers with Kilometer Scale arm length are already taking scientific data in hope of detecting GW signals from astrophysical sources.
LIGO
Laser Interferometer Gravitational-Wave Observatory

LIGO
Hanford
Washington
USA

LIGO
Livingston
Louisiana,
USA

4 kms
Effect of GW on test masses
Effect of GW on a ring of test masses

Interferometer mirrors as test masses
Detecting GW with Laser Interferometer

Difference in distance of Path A & B \Rightarrow Interference of laser light at the detector (Photodiode)
The effects of gravitational waves appear as a fluctuation in the phase differences between two orthogonal light paths of an interferometer.

Equal arms: Dark fringe

Unequal arm: Signal in PD
Challenge of Direct Detection

Gravitational waves are very weak!

Gravitational wave is measured in terms of strain, \(h \)

\[
2 \frac{\delta L}{L} = h
\]

(change in length/original length)

Expected amplitude of GW signals

\[h \approx 10^{-20} - 10^{-23} \]

Measure changes of one part in thousand-billion-billion!
LISA : Laser Interferometer Space Antenna
(An ambitious world-wide project)

NASA, ESA joint proposal for space based GW Observatory (expected launch 2015).
Why a GW Observatory in space?

• Terrestrial GW observatories are limited to GW frequencies **above 10 Hz** due to **seismic noise**.
 (10 Hz–2000 Hz.)

• Interesting sources abundant at sub-Hertz frequencies (milli-Hz to Hz range) are accessible.

• Easier to attain higher sensitivity with longer baselines.
A NASA, ESA joint proposal for space based GW Observatory (launch 2015).
Frequency range: 10^{-4} Hz - 1 Hz

A configuration of three `freely falling' spacecrafts in Earth-like orbit linked by optical laser beams working as an interferometer in space.

LISA : Laser Interferometer Space Antenna
The Orbit of LISA

The spacecraft are freely falling in the Sun’s field.
The Orbit of LISA

The spacecraft are freely falling in the Sun’s field.

The cluster rolls once per year.
GW Source for LISA

Coalescence of massive black holes during collisions between galaxies, perhaps in formation of massive black holes, probing the central engines powering quasars.

Black holes orbiting massive black holes, providing precision tests of gravitational theory in the high-field limit.

Hundreds of galactic binary star systems, many containing neutron stars or black holes, including several known binary systems.

\[h \approx 10^{-20} - 10^{-23} \]
• Terrestrial observatories and space observatories compliment each other
Technical Challenges of LISA
-- an extremely ambitious mission

1. Cancellation of Laser frequency noise.

- Laser frequency Fluctuations is orders of magnitude larger than the GW signal
- For terrestrial observatory, equal arm length of interferometer can be ensured → automatic cancellation of laser frequency noise.
- For LISA, distances between spacecrafts do not remain constant.
Technical Challenges of LISA
-- an extremely ambitious mission

2. Stable flight formation & configuration
 The spacecraft configuration needs to maintain rigidity

• Distances between spacecrafts should not change.
• We do detail analysis of orbits of LISA spacecrafts.
CW: Clohessy-Wiltshire eqns.

\[\ddot{x} - 2\Omega\dot{y} - 3\Omega^2 x = 0, \]
\[\dot{y} + 2\Omega\dot{x} = 0, \]
\[\ddot{z} + \Omega^2 z = 0. \]
The general solution of CW equations

Reference orbit circular: $\Omega = \text{constant}$

\[x(t) = \frac{x_0}{\Omega} \sin \Omega t - (3x_0 + \frac{2y_0}{\Omega}) \cos \Omega t + 2(2x_0 + \frac{y_0}{\Omega}), \]

\[y(t) = (6x_0 + \frac{4y_0}{\Omega}) \sin \Omega t + \frac{2\dot{x}_0}{\Omega} \cos \Omega t - 3(2\Omega x_0 + \dot{y}_0) t + \left(y_0 - \frac{2\dot{x}_0}{\Omega}\right), \]

\[z(t) = z_0 \cos \Omega t + \frac{\dot{z}_0}{\Omega} \sin \Omega t. \]

Initial conditions: $x_0, y_0, z_0, \dot{x}_0, \dot{y}_0, \dot{z}_0$

Offset terms: \[2x_0 + \frac{\dot{y}_0}{\Omega}, \quad y_0 - \frac{2\dot{x}_0}{\Omega} \]
Stability requirements

1. No offsets:

\[2x_0 + \frac{\dot{y}_0}{\Omega} = 0, \quad y_0 - \frac{2\dot{x}_0}{\Omega} = 0 \]

2. Constant distance from the origin of the CW Frame

\[
x(t) = \frac{1}{2} \rho_0 \cos(\Omega t - \phi_0), \\
y(t) = -\rho_0 \sin(\Omega t - \phi_0), \\
z(t) = \pm \frac{\sqrt{3}}{2} \rho_0 \cos(\Omega t - \phi_0),
\]

where

\[
\rho_0 = \sqrt{4x_0^2 + y_0^2}, \quad \tan \phi_0 = \frac{y_0}{2x_0}
\]

Orbits must lie in a plane making \(\pm 60^\circ \) angle with the ecliptic.
Orbit equations

- First order in orbit eccentricity, e

$$x_k(t) = e \ R \ \cos\left[\Omega t - (k - 1) \frac{2\pi}{3} \right]$$

$$y_k(t) = -2 \ eR \ \sin\left[\Omega t - (k - 1) \frac{2\pi}{3} \right]$$

$$z_k(t) = \sqrt{3} \ eR \ \cos\left[\Omega t - (k - 1) \frac{2\pi}{3} \right]$$

Coordinates of spacecraft, k

$\{x_k(t), y_k(t), z_k(t)\}$
The distance between spacecraft

\[l_{ij} = \left[(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \right]^{\frac{1}{2}} \]
To the first order in eccentricity, the distances between space craft remain constant.

But

To the second order in eccentricity, the distances between space craft change. This is called arm flexing.
'Breathing modes' for 60^\pm tilt

2.3% Peak-peak variation

Arm Length (million Kms.)

Time (years)
Tuning the tilt of LISA plane

We readjust the tilt of the plane of LISA triangle

from $60^\pm \rightarrow 60^\pm + \delta$

Then find the condition on δ.
Geometry of LISA
\[
\alpha = \frac{l}{2R} = \frac{1}{60}, \quad e = \frac{\alpha}{\sqrt{3}} + \frac{\alpha^2}{2} - \alpha \delta, \quad \varepsilon = \alpha - \frac{\alpha^2}{\sqrt{3}} + \frac{\alpha \delta}{\sqrt{3}}
\]

\[
l_{12}(t, \delta) = l + \Delta l_{12}(t, \delta)
\]

\[
\Delta l_{12}(t, \delta) = \frac{\alpha^2 R}{16 \sqrt{3}} \left[48 \left(\frac{3}{8} - \delta_1 \right) - 15 \cos \theta + 48 \left(\frac{5}{8} - \delta_1 \right) \cos 2\theta - \cos 3\theta \right]
\]

\[
\delta = \alpha \delta_1 \quad \text{and} \quad \theta = 2\pi t - \frac{\pi}{3}
\]

\[
\Delta l_{12}(t, \delta = 0) = \frac{\sqrt{3}}{32} \alpha l (6 - 5 \cos \theta + 10 \cos 2\theta - \frac{1}{3} \cos 3\theta)
\]
Optimal variation in arm-length vs. time

Tilt = 60^\pm

2.3%

0.96 %

Optimal Tilt
Arm-length vs. time and tilt

\[\text{Tilt} = \frac{\pi}{3} + \delta \]

Arm-length (million km)

Time in years

60° ±

60.57° ±
Maximum Variation of arm length for different tilts

- Variation is minimized around Tilt angle = $60^\circ \pm 0.57^\circ$

Reduction by factor 5.5

Variation is minimized around Tilt angle = $60^\circ \pm 0.57^\circ$
Relative velocities (\(\Rightarrow\) Doppler shifts)

Optimal tilt: Maximum separation velocity is 5.6 times smaller!!

Doppler shifts reduction is more crucial than arm length variation
Main results

- We show that there exist heliocentric orbits which can form stable flight configurations.
 - The inter-spacecraft distances remain constant during flight to the first order in eccentricity.
 - The configuration moves rigidly.
- The configuration can have any number of spacecraft and arbitrary shape.
 - Need not be an equilateral triangle (LISA).
Reducing flexing of arms of LISA

(Proc. Quantum Grav., 23(2006)1763-1778)

At higher order in eccentricity:

• LISA arms slowly change over the time scale of a year. This is called as flexing of arms or breathing modes.

• The maximum flexing amplitude is \(~115000\) km (2.3% variation) if the configuration is in a \(60^\pm\) Plane with the ecliptic.

• The maximum flexing amplitude can be reduced further to \(~48000\) km (0.96% variation) by readjusting the tilt of the plane of LISA triangle.
Significance beyond LISA

• The stable constellation can consist of arbitrary number N of spacecraft and can have arbitrary shape.
 – For LISA with $N=3$, the equilateral triangular configuration is not the only one.
 » $N=4$ square configuration has been proposed for detecting stochastic GW background.
 – Big Bang Observer (NASA: Beyond Einstein program) would like to have several LISA like, but smaller (0.5 million km. arm lengths) constellations flown simultaneously.
Thank you !!!
References

Stable flight formation of LISA
S.V. Dhurandhar, R. Nayak, S. Koshti & J-Y Vinet

Class. Quantum Grav. 22(2005)481-487

On the minimum flexing of LISA’s arms
R. Nayak, S. Koshti, S.V. Dhurandhar, & J-Y Vinet

Class. Quantum Grav. 23(2006)1763-1778