Observational Evidence for Dark Energy: The Future

Michael Wood-Vasey Harvard University

IPM Cosmology School & Workshop

2007 June 7

Future of Probing the Nature of Dark Energy

signal!

- SN cosmology tests
- Gravitational lensing
- Galaxy cluster abundances
- Baryon oscillations
- Particle physics experiments
- Tests of gravity on all scales

Next-Generation Facilities

Microwave background -Better angular resolution CMB maps Detection of clusters of galaxies vs. z

Supernovae – Dedicated Dark Energy satellite mission Large Synoptic Survey Telescope (LSST)

Weak Gravitational Lensing -Both ground-based and space based

Probing the foundations of gravity -Equivalence principle Inverse square law

Future of Observational Dark Energy

Type Ia Supernovae
 Baryon Acoustic Oscillation
 Weak Lensing
 Galaxy clusters

Future of Observational Dark Energy

Luminosity distance vs. z

Angular diameter distance vs. z + LSS

Matter distribution + angular diameter

LSS + substructure probe smooth cosmological constant vs. modified GR

Upcoming Experiments

- ✤ Now-2010
 - ✤ Pan-STARRS1, (ESSENCE, SNLS)
- ∞ 2010-2015
 - ✤ DES, Planck, SKA
- ∞ 2015-2020
 - ✤ LSST, JDEM

Future of SN Ia Cosmology

Space-based Projects

✤ HST

JDEM-like: SNAP, DESTiny, ADEPT, DUNE

Ground-based Surveys

- Final ESSENCE, SNLS
- Pan-STARRS, SkyMapper
- ✤ DES
- ✤ LSST

Ground vs. Space for w

wdw/da != 0 means going to z > 1

SNe Ia at z > 1 means space

• If $w(z) = w_0$ then ground is fine

Spectroscopic confirmation bottleneck

Photo-typing/redshift for SNe Ia key

What would an optimized ground-based facility look like?

- Large collecting area
- ✤ Wide field of view
- Real-time analysis of data
- Significant leap in figure of merit
 - Collecting area x field of view

Large Synoptic Survey Telescope

Highly ranked in Decadal Survey Optimized for time domain scan mode deep mode 10 square degree field 6.5-m effective aperture 24th mag in 20 sec 20 Tbyte/night **Real-time analysis** Simultaneous science goals

Field of View, sq degrees

Unobscured Aperture, sq meters

Cut-Away View of LSST Camera Assembly

2.3 Gigapixels 20 Terabytes/night Data of full SDSS survey/night

LSST Opens up the Skies

Data will be immediately publicly available

Allow small colleges and institutions to do research with big telescopes

•Will shift the nature of research

LSST Dark Energy

- ✤ Supernovae
- ✤ Weak Lensing
- ✤ Baryon Oscillations

LSST will find huge numbers of supernovae

LSST will find huge numbers of supernovae

So what?

LSST will find huge numbers of supernovae

So what?

• What do you do with them?

LSST will find huge numbers of supernovae

So what?

• What do you do with them?

Spectra to understand physics

- LSST will find huge numbers of supernovae
- So what?
- What do you do with them?
- Spectra to understand physics
 - Need additional resources

- LSST will find huge numbers of supernovae
- So what?
- What do you do with them?
- Spectra to understand physics
 - Need additional resources
- How to best use LSST supernovae?

Observed Colors of Higher-z Supernovae

LSST SN Ia Constraints

Space-Based Missions

- Going to space is expensive
- ✤ Need ~\$1 billion
- NASA funds most space astronomy in US
- So what does NASA want to do?

Dark Energy Probe

- Joint Dark Energy Mission (JDEM):
 - Competitive proposal
 - Mission to best measure dark energy
 - Complicated because no good theories to test
- · Missions
 - SNAP, ADEPT, DESTiny
- NASA manned program puts JDEM in jeopardy

SNAP concept

Observables:

Light Curves

SuperNova/Acceleration Probe

Dark Energy and the Accelerating Universe

SNAP SN Ia Diagram

SNAP Orbit

Focal plane

Spectrograph port

Focal plane

SNAP redshifted B-band filter set — z=0 -z=0.15 -z=0.32 z=0.52 - z=0.75 -z=1.01 - z=1.31 - z=1.65 — z=2.05 500 1100 1300 1500 1700 700 900 wavelength (nm)

Spectrograph port

Focal plane

Integral Field Spectrograph (3"x3")

Spectrograph port

Physics with SNAP: Deep & Large Space Surveys

- The SNAP surveys will have an unprecedented combination of depth, solid-angle, angular resolution, temporal sampling, and wavelength coverage
- Hubble Deep Fields illustrate the impact of a deep space survey.
- SNAP SN survey 5,000 x HDF.
 - SNAP $m_{AB} = 27.7$ per filter (30.4 coadded) every 4 days
- SNAP lensing survey ~10⁶ x HDF, 500 x COSMOS!

Physics with SNAP: Deep & Large Space Surveys

3

~

3

0

SNAP Deep Survey Area HDF GOØDS SNAP Lensing Survey Area COSMO

4

Physics with SNAP: Deep & Large Space Surveys

- The SNAP surveys will have an unprecedented combination of depth, solid-angle, angular resolution, temporal sampling, and wavelength coverage
- Hubble Deep Fields illustrate the impact of a deep space survey.
- SNAP SN survey 5,000 x HDF.
 - SNAP $m_{AB} = 27.7$ per filter (30.4 coadded) every 4 days
- SNAP lensing survey ~10⁶ x HDF, 500 x COSMOS!

Supernova Cosmology Project

mass density

JDEM/DESTINY

Thinking the Unthinkable for JDEM: DESTINY

- -Use IR detectors only $0.85\mu 1.7\mu$
- Use a grism for much simpler spectrograph

 Divide labor with ground-based systems at z~0.5 (going lower drives field-of-view and pixel size)

 Focus simpler mission on SN and the Dark Energy

Dark Universe Explorer (DUNE)

Proposed (2004) as weak lensing probe 1.2 m telescope

0.5 sq. deg. Imager visible only - 1 filter Currently in phase O study at French Space Agency If approved .. launch by 2011-12 ?

A SN program for DUNE 2x60 sq deg. (UBVRIZ, I=26) - cadence: 4days Photométric id of SNe (UBV restframe) Ground based spectroscopy (host galaxies)

=> 10000 SNe 0.1<z<1 in ~18 months statistical uncertainties on w, w' (80%xSNAP) calibration/systematic uncertainties ?

SNLS vs DUNE vs SNAP (simulation)

SNLS vs DUNE vs SNAP

JDEM Finalist: ADEPT

BAO+SNe+lensing*

P.I.: C. Bennett (JHU)

*Provides 10⁸ spectroscopic redshifts for LSST and Pan-starrs

Extracting Cosmology

- The final step of the simulation is extracting the cosmological parameters
- The plot is an example of the cosmology to be obtained from SNAP results only (no CMB priors)

SNe Ia

(Bennett, Riess)

ADEPT DE Probes

(Bennett, Riess)

Baryon Acoustic Oscillation Surveys: All-sky, Space-based wins (Gen IV)

Survey ^a	Redshift range	Sky area (deg²)	Millions of Galaxies	Volume (h ⁻³ Gpc ³)	Volume (Gpc³)°	Effective Volume ^b (h ⁻³ Gpc ³)	Effective Volume ^b (Gpc ³) ^c
ADEPT	1<₂<2	28,600	~100	100	390	60	180
SDSS DR4 Main+ 2dF	<i>z</i> <0.3	7,000	0.7	0.4	1.2	0.17	0.50
SDSS LRG	0.16< <i>z</i> <0.47	3,800	0.047	0.75	2.2	0.18	0.52
SDSS-II 8-yr LRG	0.16< <i>z</i> <0.47	7,600	0.094	1.5	4.4	0.36	1.0
FMOS/Subaru (200 nights)	1.4< _z <1.7	300	0.6	0.3	1.0	0.24	0.7
AAOmega/AAT (500 nights)	0.5< <i>z</i> <0.8	4,500	0.45	2.3	6.7	1.1	3.2
WFMOS/Subaru (150 nights)	0.5< _z <1.3	2,000	2.	4.	12	1.3	3.8
WFMOS/Subaru (150 nights)	2.3< _z <3.3	300	0.6	1.2	3.5	0.4	1.2
HETDEX	1.8< <i>z</i> <3.8	200	1.	1.6	4.7	0.4	1.2

a. The SDSS surveys in the 2nd and 3rd rows are the only ones completed; the rest are planned or proposed. They are all spectral line surveys. LSST plans a large (~10,000 deg²) photometric redshift survey, perhaps observing >10⁸ galaxies at 0.5 < z < 3.5. The photometric redshift errors would degrade the equivalent effective volume of the LSST survey to $<5h^{-3}$ Gpc³.

b. Effective volume accounts for the limited sampling of the survey volume due to the discrete number of galaxies as a function of redshift. It is evaluated at the scale of the BAO, k = 0.15h Mpc⁻¹.

- Markov chains are run with w(z)represented in a 5 parameter quartic polynomial in ln (1 + z).
- Ω_m , h, Ω k, and w(z)free to vary, with priors set on $\Omega_m h^2$ (1% precision) and the CMB angular size of the acoustic scale at z = 1100.

• We assume 0.5% SNe distance calibration per $\Delta z = 0.1$ redshift bin.

The w(z) constraint regions from the Markov chains as shaded areas. The solid black lines are sample Markov chain models that represent 3 possible w(z) models that would be unresolved by ADEPT ($\Delta \chi^2 = 4$); the dashed black lines are models resolved by ADEPT, but unresolved by future ground data.

From D. Eisenstein et al

BAO+SNeIa w(z)

(Bennett)

Future of Cosmology

Luminosity Distance

- SNeIa: SNAP; PanSTARRS, LSST
- ✤ GRBs?
- Angular Diameter Distance
- Large Scale Structure
 - Baryon Acoustic Oscillations
 - Lensing/Shear
- Cosmic Microwave Background
 Planck
- · Gravity
 - ∞ LIGO, LISA

Weak Lensing

LSST BAO+WL

Beyond O/IR

Radio (lambda > 1 millimeter)

- ✤ SPT, ACT
- SKA

Future Dark Energy Survey (an incomplete list)

- Sence (2002-2007): 200 SNe Ia, 0.2 < z < 0.7, 3 bands, Δt ~ 2d
- Supernova Legacy Survey (2003-2008): 2000 SNe Ia to z=1
- ESO VISTA (2005?-?): few hundred SNe, z < 0.5</p>
- CFHT Legacy (2003-2008): 2000 SNe Ia, 100's high z SNe, 3 bands, Δt ~ 15d
- → Pan-STARRS (2006-?): all sky WL, 100's SNe y⁻¹, z < 0.3, 6 bands, $\Delta t = 10d$
- → HETDEX (?): 200 sq deg BAO, 1.8 < z < 3.
- → WFMOS on Subaru (?): 2000 sq deg BAO, 0.5<z<1.3 and 2.5<z<3.5
- → ALPACA (?): 50,000 SNe Ia per yr to z=0.8, $\Delta t = 1d$, 800 sq deg WL & BAO with photo-z's
- Dark Energy Survey (?): cluster at 0.1<z<1.3, 5000 sq deg WL, 2000 SNe at 0.3<z<0.8</p>
- LSST (2013-): 10⁶ SNe Ia y⁻¹, z < 0.8, 6 bands, Δt = 4d; 20,000 sq deg WL & BAO with photo-z's.

How many methods should we use to probe DE?

- The challenge to solving the DE mystery will not be the statistics of the data obtained, but the tight control of systematic effects inherent in the data.
- A combination of the three most promising methods (each optimized by having its systematics minimized by design) provides the tightest control of systematics.

How To Organize Theory?

- More money?
- Selective culling?
- Make part of experiments?
- Performance enhancing drugs?

Theory Workshops on The Moon!