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Solution to the exercise ( ) ( ) ( ), (0)T k k k J kμ μπ π′ ′=
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The most jeneral Amplitude for interaction of charged 
pion with photon is
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Pion spin =0 , so we have only k and k’ . The most 
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The most general form of ( )( )T A k k B k k
μμ μ= + + −′ ′



II  DEEP INELASTIC SCATTERING    (DIS)

Incoming beam of lepton with Energy E scatters off a

fixed hadron target. The Energy and the direction 
(scattering angle) of the scattered lepton is measured.

No Final state hadron (denoted by X ) is measured.

Lepton interacts with hadron through the exchange of 
a virtual photon, Z ( or W, if lepton is a neutrino). The 
target hadron absorbs the virtual photon, to produce 
the final state hadrons X .

,k E ,k E′ ′

q k k ′= −

p X

Basic diagram for DIS

Warning! various kinematic variables are used. I will chose z-axes along the 
incident lepton beam direction. The kinematic variables are:

X may be the hadron itself (Elastic Scatt.) 
or an excited state of it. If q is large the 
initial hadron breaks up



Kinematic Variables

M:  Mass of target

k:    momentum of initial lepton

if lepton mass neglected.

the solid angle into which final lepton scattered.

Momentum of scattered lepton

( ,0,0, )k E E=

Ω

k ′

( , sin cos , sin sin , cos )k E E E Eθ φ θ φ θ′ ′ ′ ′ ′=
p:   Momentum of target. For fixed target, ( ,0,0,0)p M=

q:    momentum transfer , i.e the momentum of virtual photon q k k ′= −

ν The energy loss of the lepton E E q p Mν ′= − = ⋅

:y The fractional energy loss of lepton p q
E p ky ν ⋅

⋅= =
( )2 2 2
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,k E ,k E′ ′

q k k ′= −

p X

Basic diagram for DIS

x is called Bjorken variable. It is crucial in 
understanding of DIS, because QCD predicts 
that the structure functions are functions of x
and independent of          in the leading order2Q



DEFINITION:    DIS is  the study of lepton-hadron scattering in the Region of 
kinematics that 2 , , But is Fixed and limitedQ xν→∞ →∞

The INVARIANT mass of final state hadronic system X is

( )22 2 2 (1)2 .XM p q M p q q= + = + +

The invariant mass of X system must be at least equal to the mass of target 
nucleon.  WHY?

The lepton energy loss E Eν ′= − is between zero and E, so, the physically
allowed kinematic region is

0 1, 0 1x y≤ ≤ ≤ ≤
(1) can be written as
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The value x=1 implies that 2 2 andso,xM M=

corresponds to1 ElasticS t.catx =

2 2 2 2 2 12 .X xM M M p q Q M ⇒ ≤≥ ⇒ + − ≥

Since 2 andQ ν are both positive, x must also be positive. N
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XM

Any fixed hadron state X with invariant mass 2
XM Contributes to the cross section

at the value of x 

( )2 2 2
1

1 X

x
M M Q

=
+ −

gets driven to  In DIS limit ( )2Q →∞ any state X with fixed mass 1x =
In particular, all nucleon resonances such as N* gets pushed to 1x =

The Jacobian for converting between thses cases is
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The experimental measurements give the cross section as a function of final lepton

energy and scattering angle the results often are presented instead by 
giving the differential cross section as a function of

2d dE dσ ′ Ω

( ) ( )2, , or , ,x Q x yφ φ



The basic Feynman graph for DIS shown. The scattering Amplitude
is given by

( ) ( ) ( )2
2 0 , 0 ,h

igie k j k s X j p
q

μν μ ν λ
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−
= − ′ A A

:sA

:λ

is the polarization of lepton and 

is the polarization of the initial hadron
1 2 1 2λ = ±For spin target, 

:λ Can be chosen to be the value 
of spin in arbitrary direction, 
usually beam direction

The differential cross section is obtained  from       by 
squaring it and multiplying by the phase space factors
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A A A A

j jμ μα β β α∗ = †j jμ μ=I have used because the current is Hermitian, 

Note that we summed over all final states X, since we do not measure them. 
The polarization of final state particles are also not measured and they are 
summed over as well. Usually we define leptonic tensor         and hadronic
tensor

μνA
W μν

finalspin

2 2

1
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2 2 2e

u k u k u k u k

k k k k k k m g k k k k q g

μ μμν

μ μ μ μν ν μν ν ν μν

γ γ
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∑A

Averages over the spin states of the initial state lepton

I am sure that you are familiar with the lepton tensor        when there is no 
polarization. It is 

μνA



( ) ( ) ( ) ( )
final spin

, ,u k u k s u k s u kμν ν μγ γ′ ′= ∑ A AA

With initial lepton polarized, we need to write it as No ½ and still easy to 
evaluate using 

( ) ( )
spin

u k u k k mμγ′ ′ ′= +∑

The polarization of a spin ½ particle can be described by a spin vector,
sA , defined in the rest frame of the particle by

( ) ( ) ( ) ( )52 , , , ,u k s u k s u k s u k sγ= =s σ γA A A A A
s μ
A

( ) ( )52 , ,s u k s u k sμ μγ γ=A A A

The covarient spin 4- vector is defined in an arbitrary Lorentz
from the rest frame. In other words( )0,s = sA Aframe by boosting

Be ware! For spin ½ particle at rest with spin up along z axis, the spin 
vector is This is a different normalization  with an extra mass andˆmz=sA
it is very useful to avoid unnecessary factors of m appearing in the spin 
dependent cross-section.
In extereme relativistic case, mass of lepton is ignored, all formulae 
should be written in terms of relativistic spinors normalization 2E without 
any additional factor of m and thus, define a spin vector with dimension 
MASS which is m times the conventional definition.



With this normalization of      , longitudinally polarized  fermions in the 
extreme relativistic limit have             where     is the lepton momentum 
and           is the lepton helicity.

sA
ks = AA k

= ±A

The initial state spinor product can be written in terms of spin projection op.

( ) ( ) ( ) 51, , 2
s mu k s u k s k m γ+= + A A

A A

And use for the final state lepton use ( ) ( )
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u k u k k mμγ′ ′ ′= +∑ in μνA
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A

Spin independent 
part.Symmetric in μν

Spin dependent part. No mass 
dependence with our normalization. 
Antisymmetric in μν



:W The HadronicTensorμν More complicated

We expect that strong interaction to have an important role in W μνWμν Describes the transition to all possible final states X
Amplitude for N X→ transition is: X j Nμ

If no polarization envolved, we would average on the initial spin 
states and sum over the final spin states:

4

final allstates
spin

1 22 x

X

W N X J N X J N p q pμν μ ν π δ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∗
= + −∑ ∑

Phase space integral is included in
X
∑

Use Hermitian property  and rewrite:

( )2 k k k k g k k i q sμ μ μν μναβν νν
α

μ
βε= + − ⋅ −′ ′ ′ AA

Compare with unpolarized case
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Note fore Future
The tensor

Equivalently can be written as 
( ) ( )4 .1 1, , (0)

2 4
iq xW p q d x e p J x J pμν μ ν
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The equivalence of these two expressions can be 
understood by inserting a complete set of states:

X
X X∑

replacing ( ) ( ) ( ) ( )10J x U x J U xμ μ −→
( )U x Is a translation by the vector x so that .( ) ip xU x p e p=

Now the second term does not contribute, due to energy-
momentum conservation. To put it differently 
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Cannot be satisfied.

Note fore Future

Now the generalization for the polarized case us trivial.



( ) ( )4 .1 1, , , (0) ,
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Note fore Future



How to Parameterize W μν

It is  Lorentz Tensor. The most general Tensor should be constructed out of 
avalable 4- momenta and available tensors         and anti-symmetricandq p g μν μνρσε

For unpolarized case cannot use μνρσε Because, when multiplied by symm. μνA
it gives zero. NO Either, since summed over spins'sγ

We are left with only ,,p q g μν

Out of           we can make: ,p q q qμ ν , ,p p p q p qμ μ μν ν ν tensors only
i p qμνρσ

σρε is also available but for the unpolarized case, no good

52 4
1 2 2 2p p p

W W WW W g p p q q p q q p
m m mμ μ μ μμν μν ν ν ν ν

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=− + + + +

Where did I get this?  In a moment. But first a point

( )
4

allstates
21

2 x

X

X J N X J N p q pW μ ν π δμν ⎛ ⎞
⎜ ⎟
⎝ ⎠

∗
= + −∑

Summ incl. final spins

No polarization



52 4
1 2 2 2p p p

W W WW W g p p q q p q q p
m m mμ μ μ μμν μν ν ν ν ν

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=− + + + +

Where did I get this?  In a moment. But first a point

From current conservation, we have

0j q j q W q Wμ μ μ ν
μ μ μν μν∂ ⇒ = =∼

Only the following tensors satisfy this condition:

2 2 2, ,a a
a a a

p q q p q qq qg p p i p q
q q q

μ νμ νμν μ μνρσν σρε
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⋅ ⋅
− + − −

Anti symmwtric, opposite parity with respect to 
the other two combinations. Since in E&M 
interaction conserves parity, this term is ignored 
Let us get this tensorial combinations Without it, we have 5 

tensors left:
,, ,g p p p q p q q qμ μ μ μμν ν ν ν ν



S
W A g B q q C q p q p D p pμ μ μ μμν μν ν ν ν ν
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⎜ ⎟⎜ ⎟
⎝ ⎠

= + + + +

Apply the condition 0j q j q W q Wμ μ μ ν
μ μ μν μν∂ ⇒ = =∼
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ν
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⎛ ⎞
⎜ ⎟
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,p q are independent variables  ⇒ each term must be separately zero 
⇒⇒ 2

20 q pCq Dq p C
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2
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2 2 2 2 4
1 1 10
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Plug into 
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2 2 4
S q pq q q pW g A p p p q p q q q D

q q q
μ ν

μ μ μ μμν μν ν ν ν ν

⎛ ⎞
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⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥⎡ ⎤
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1 22
1,2 2p p p

A DW Wm m m
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Coefficients

2 2
4

2 2 2 2
1 24

2
22 2 2

1 24

1
2

4 2 sin 2 cos 2

4
2 sin 2 cos 2

e
p

d E WEmd dE q
d E EE W WEd dE q

Ed W Wd dE q

μν
μν

σ α

σ α θ θ

ασ θ θ

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

′=
Ω ′

′⇒ = +′Ω ′

′
⇒ = +

Ω ′

A

Cress-section: Lab Frame:

Details in the write up

Other choices of variables include ,2 2 px Q m ν≡ y Eν=
Jacobian for going from ( ) ( )2, ,Q to x yν is 2 22 pdQ d m E y dx dyν =

Physis is contained in the dependence of 1 2
2and on andW QW ν

iW are called STRUCTURE FUNCTIONS. They are functions of
Lorentz scalars. And now we have two scalars: 2 andQ ν

Because, energy is 
transferred



Physics

1
2

2How do and depend on n ?a dQW W ν

We have see 3 processes:

Let us write the cross sections with identical variables. 
For details, see the write up

• Electron- muon elastic scattering

• Electron- nucleon elastic scattering

• Deep inelastic scattering of electron- nucleon

2 22 2 2
2 2 4 2

1 cos 2 sin 2 24 sin 2 2
q Qd

EE mdQ d E m μμ

σ α π θ θ δ ν
ν θ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪ ⎜ ⎟⎜ ⎟ ⎪ ⎪ ⎜ ⎟⎨ ⎬⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪ ⎝ ⎠⎩ ⎭

= − −
′

2 2 2 2
22 2 2 2 2

2 2 4
1 cos 2 2 sin 21 24 sin 2

E M
M p

G q G q Qd G qEE mdQ d E

τσ α π θ τ θ δ ντν θ

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎪ ⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎪ ⎪ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪
⎩ ⎭

+
= + −+′

2 2 2 2
1 22 2 4

1 2 sin 2 os 2
4 sin 2

d W W cEEdQ d E
σ α π θ θ
ν θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= +
′



cos sinsin
qd E

E md E μ

σ α θ θθ
⎧ ⎫⎛ ⎞ ⎪ ⎪⎜ ⎟ ⎨ ⎬

⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎩ ⎭

′= −
Ω

22 2 222 4 2 224 2

•Electron- muon elastic scattering

( ) ( ) ( )cos sin
sin

E M
M

G q G qd E G q
d E E

τσ α θ τ θ
θ τ

⎧ ⎫+′⎛ ⎞ ⎪ ⎪= +⎨ ⎬⎜ ⎟Ω +⎝ ⎠ ⎪ ⎪⎩ ⎭

2 2 2 22
2 2 2 2

2 4 2 2 24 2 1

•Electron- nucleon elastic scattering

RHS’s have the same form, but LHS are different.

( ) ( )
222

2 2
1 24

4
2 sin 2 cos 2

Ed W Wd dE q
ασ θ θ

′
= +Ω ′

Deep inelastic scattering of electron- nucleon



Remember that in DIS,                      are two independent 
variables. We can change them into                  .           

andcosE θ′
2 andQ ν

( )
( )

sin cos

cos

q EE Q EE

dQ EE d

θ θ

θ

′ ′= − ⇒ = −

′⇒ = −

2 2 2

2

4 2 2 1
2

( )cosE E dE d d dE dQ d
EE

ν ν θ ν′ ′ ′= − ⇒ = − ⇒ =
′

21
2

Use the followings

That gives us

( ) ( )lab labcosd d dq E d dq Eπ θ π π′ ′Ω = = ⇒ Ω =2 2 2 22 2 2



cos sin
sin

d q
dq E EE mμ

σ α π θ θ
θ

⎧ ⎫⎛ ⎞ ⎪ ⎪= −⎨ ⎬⎜ ⎟ ′ ⎪ ⎪⎝ ⎠ ⎩ ⎭

2 2
2 2

2 2 4 2
1 2 24 2 2

•Electron- muon elastic scattering

( ) ( ) ( )cos sin
sin

E M
M

G q G qd G q
dq E EE

τσ α π θ τ θ
θ τ

⎧ ⎫+⎛ ⎞ ⎪ ⎪= +⎨ ⎬⎜ ⎟ ′ +⎝ ⎠ ⎪ ⎪⎩ ⎭

2 2 2 22
2 2 2 2

2 2 4
1 2 2 24 2 1

•Electron- nucleon elastic scattering

( )sin cos
sin

d W W
dQ d E EE

σ α π θ θ
ν θ
= +

′

2 2
2 2

1 22 2 4
1 2 2 24 2

Deep inelastic scattering of electron- nucleon

Now convert 2 2 2intod dq d dQ dσ σ ν

And this is the subtle point



And this is the subtle point

Multiply the first two by a                      and convert it into a 
second order differential. That is, use                         or

functionδ −
pq m ν= −2 2

( )2 2 1pd q mνδ ν + =∫

2 2 2
2 2

2 2 4 2

1 cos 2 sin 2
4 sin 2 2 2

d q Q
dQ d E EE m mμ μ

σ α π θ θ δ ν
ν θ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪= − −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟′ ⎪ ⎪⎝ ⎠ ⎩ ⎭ ⎝ ⎠

•Electron- muon elastic scattering

( ) ( ) ( )

2

2 2 2 22 2
2 2 2 2

2 4
1 cos 2 2 sin 2

4 sin 2 1 2
E M

M
p

d
dQ d

G q G q QG q
E EE m

σ
ν

τα π θ τ θ δ ν
θ τ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪
⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪ ⎝ ⎠⎩ ⎭

=

+
+ −

′ +

•Electron- nucleon elastic scattering



( )sin cos
sin

d W W
dQ d E EE

σ α π θ θ
ν θ
= +

′

2 2
2 2

1 22 2 4
1 2 2 24 2

Deep inelastic scattering of electron- nucleon



Physics: Bjorken Scaling

Compare cross sections for ande e eN eXμ μ→ →

2 22 2 2
2 2 4 2

1 cos 2 sin 2 24 sin 2 2
q Qd

EE mdQ d E m μμ

σ α π θ θ δ ν
ν θ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪ ⎜ ⎟⎜ ⎟ ⎪ ⎪ ⎜ ⎟⎨ ⎬⎜ ⎟
⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪ ⎝ ⎠⎩ ⎭

= − −
′

And

2 2 2 2
1 22 2 4

1 2 sin 2 cos 2
4 sin 2

d W WEEdQ d E
σ α π θ θ
ν θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= +
′

2 2 22 2
2 1 2point point

, , 2 ,2 22p pp

Q Q QW Q W Qm mm
ν δ ν ν δ ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→ − → −

If the nucleon was a point particle should reduce to
and we would have

2 2 22 2
2 1point point

, 1 , 2 , 12 2 2p
p p p

Q Q QW Q m W Qm m mν ν δ ν δν ν ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − = −

Or using ( ) ( )x a a xδ δ=



2 2 22 2
2 1point point

, 1 , 2 , 12 2 2p
p p p

Q Q QW Q m W Qm m mν ν δ ν δν ν ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − = −

x

Experimentally we measure the  cross section. 
Then at each fixed      plot the results as a function 
of                that determines

2Q
2tan 2θ

1 2andW W

Friedmann,J.IandKendall,H.W, .Re .
. . ,203(1972).

Ann v
Nucl Sci 22

2Q
No 2Q
dependence

Scaling

Physics: we see that the RHS depends only on the ratio 2Q ν
But not individually on 2 andQ ν

The same property does not emerge for elastic electron- proton scattering! FF

M.Breidenbach ., .Re . ., : , .et al Phys v Lett 23 935 1969



Physics: Scaling

2 2Q q= −

The tensor            is dimensionless, as are the structure functions. The structure 
functions are dimensionless functions of Lorentz invariant variables                  
and      . It is conventional to write them as functions of     and                

W μν 2,p p q⋅
2q 2 2x Q p q= ⋅

in order to be able to write them (SF) as dimensionless functions of 
dimensionless variables of     and                . In the elastic scattering there is a 
strong dependence on                 , and the elastic form factors fall off like a 
power of                 . It was thought that the same behavior will persist for the 
DID structure functions. The scale         is a typical hadronic scale at which the 
confinement effects ( and other non-perturbative effects) become important. 
Bjorken was the first to point out that if the constituents of hadron were 
essentially pointlike objects, then the hadronic scale should be irrelevant and the 
structure functions then only depend on     , and must be independent of 

x 2 2
pQ m

2 2
pQ m

2 2
pQ m

pm

x 2Q

This is the famous SCALING

( ) ( )2 2
1 1 2 2, , ,pm W Q F x W Q F xν ν ν⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→ →

In the limit 2 , and , but is finiteQ xν→∞ →∞ ( )2
1,2 scale,W x Q QCD effect at 

high energies, 
or large 2Q



Hadronic scale irrelevance: 

We now know that QCD is an asymptotically free theory, and the strong 
interaction coupling constant       becomes small at short distances. Thus at 
large          non-perturbative effects (such as the hadronic mass scale) are 
irrelevant, and QCD is described by a dimensionless coupling constant. 
Hence, we recover the prediction of scaling in QCD, since there is NO
dimensionful scale in the problem.

sα
2Q

However, in Quantum Field Theory, scale invariance is broken, because of 
quantum corrections. This introduces scaling violations, because of anomalous 
dimensions and the RUNING of       . Since at high energies,      is small, these 
scaling vilations can be reliably computed in PQCD.

sα sα



Physics

Early experiments with elastic ep showed that the form factors factors ( )2
,E MG Q

Fall off rapidly as       increses. These experiments show that proton is not a 
point particle but it has structure. So, it must be a bound state. But the bound 
state of what? And what is the nature of the binding force?

2Q

DIS gives us two key observations:

• Structure functions are approximately independent of 2Q
• More importantly, as       increases, SF DO NOT go to zero.2Q

( )
2

2Mott
1 22 2 tan 2

p

d W W
dQ d m EE

πσσ θ
ν
= +

′

Presence of                   says as 2tan 2θ ( ) ( )2
1 1, 0W x Q F x→ ≠

First point indicates that when the nucleon is probed by photon, the 
photon “sees” it as the weakly bound state of point particles, partons

Why point particle ? If it was the bound state of say,                      then     
would strongly depend on        and            would be zero    

orn kπ + +Λ 1,2W
2Q ( )1F x



Second point says that the partons are FERMIONS, Spin ½ objects
Why spin ½? If it was spinless, we would not have tan                  term    2tan 2θ

Also Callan-Gross relation ( ) ( )1 22xF x F x=

So, nucleon is composed of point particles ( )( )1 0F x ≠
And they are Fermions

Feynman used the kinematics of Elastic Scattering off a point particle, for 
example                      and explained the Scaling behavior of the structure 
Functions:

e eμ μ+ → +

1k 2k

q
p

yp

1k
2k

yp
q

Uncertainty principle: ,Q tλ νΔ Δ ≈ Δ Δ ≈= =

Short distances
Short time to deliver 
energy to parton: parton
is almost Free! At high 
energy partons are free 
and at low energy they 

Each parton carries a fraction f of 
energy and momentum of the nucleon 
it is easy to show that f=x

( ) ( ) ( )22 2 2

2 2 2 2 2

2

,

2

2 .

i i p

i i p

p

p f p m f m

p q f p q m f m

f m q f p q f m

qf x
p q

μ μ= =

+ = + = =

⇒ = + ⋅ =

⇒ = − =



Condition for elastic scattering of electron and parton leads to scaling:

We can use e eμ μ→ Cross section formula with, , andi im m e eμ → →

2 22 2 2 2 2
2 2 4 2

1 cos 2 sin 2 24 sin 2 2
i

i i
ii

q Qd e eEE mdQ d E m
σ α π θ θ δ ν
ν θ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎪ ⎪ ⎜ ⎟⎜ ⎟ ⎪ ⎪ ⎜ ⎟⎜ ⎟ ⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎪ ⎪ ⎜ ⎟⎝ ⎠ ⎪ ⎪ ⎝ ⎠⎩ ⎭

= − −
′

Compare with general inelastic scattering cross section:

( )
2

2
1 22 2 tan 2

2
2 4

1
4 sin 2

d W W
dQ d EEE

σ θ
ν

α π
θ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠ ′

We get the contribution of each parton i in the structure functions

2 2 2 22 2
1 2 2 2

2 22 2
2

2 24 4

2 2

i
i i ppi ii i

i
i i pi i

Q Q Q Qw e em m xm m x

Q Qw e em m x

δ ν δ ν

δ ν δ ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − = −

= − = −



If the structure function of nucleon is in fact sum of contributions of each parton, 
it must be an incoherent sum. so, to get                                           ,we must 
multiply the contribution of each parton type i by the probability of finding that 
parton in the nucleon and then sum over. Moreover, each parton can have any 
value of x, which is a continues variable, hence need to integrate over x. 

1 2and of nucleonW W

1 1 2 22 2
1 1 2 2

1 22 2
2 2

, 24

, 2

i
i i i i i i i pi i p ii

i
i i i i i i i pi i

Q QW Q dx f x w dx f x e m xm x

QW Q dx f x w dx f x e m x

ν δ ν

ν δ ν

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= = −

= = −

∑ ∑∫ ∫

∑∫

D D

D
1

i
∑∫D

Rewrite the delta function

2 2

2 2
i

i ip pii

xQ Qx x xxm x m
νδ ν δ δνν

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

− = − = −

We get



( )

212 2
1 2 2

1 2 2

12 2
2 2

,
4

1 1
2 2

,

i
i i i i i

i p i

i i i i i ip pi ii

i
i i i i i i i

i

xQW Q dx f x e x x
m x

xdx f x e x x e f xm x m

W Q dx f x w dx f x e

ν δν

δ

ν

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= −

= − =

= =

∑∫

∑ ∑∫

∑∫

D

D

D

( )

21

1 2 2

2

1

pi i

i
i i i i i i i

i i

Q
m x

xdx f x e x x e x f x

δ ν

δν ν

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

−

= − =

∑∫

∑ ∑∫

D

D

( ) ( )

( ) ( )

2
2

1 1

2 2
2 2

, 2

,

ip i
i

i i
i

em W Q f x F x

W Q e xf x F x

ν

ν ν

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= ≡

= ≡

∑

∑
So, they are functions 
of only x

We also see the parton model  main equation, Callan-Gross Equation

( ) ( ) ( )2
1 22 i i

i
xF x F x e x f x= =∑



DIS can be viewed as a 2 step process:

Callan – Gross relation           quark has spin 1/2 2 12F xF=

( ) ( ) ( )
( ) ( )or

1.

2. a

e k q e k

q pN X

γ

γ

− ∗ −

∗

′→ +

+ →
Only provides γ ∗

partonap =

Look at the step 2: below the dashed line.
1 2 1 2(or , ),W FW F

Represent the photoproduction of hadrons (X) 
from nucleon: ( )tot N xσ γ ∗ + →

So, to calculate                               we need to consider both ( )tot N xσ γ ∗ + →

In the nucleon rest frame    is the photon’s energy           . since 
phton is virtual,                     ,  then photon has two transver
polarization,            i.e.          and also one longitudinal (or scalar) 
polarization             with

ν 0qν =
2 0q m

γ ∗
= ≠

( )T qμε
( )L qμε

1λ = ±
0λ =



Callan – Gross relation           quark has spin 1/2 2 12F xF=

Take the z axes along the direction of photon momentum, then
( )0 3, 0, 0,q q qμ =

Virtual photon is like a massive boson, but with spacelike
four momentum.    

( )2 0q <

0 ; 1,0q q μ
με λ ε λ λ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⋅ = = =±

Polarization vector should be perpendicular to     therforeq

For a free (real) massive spin-1 particle, 4- momentum is 
timelike and all three polarization vectors satisfy the 
above condition. But for virtual, spacelike photon, one of  its 
polarization vectors must be timelike. So we define them as: 

( )2 0q >

211 0,1, ,0 , 1 1
2T iμ με ε λ ε λ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= =± = ± =± =−∓

2 2 2
3 02 2

1 10 ,0,0, ,0,0, , 0 1L q q Q
Q Q

μ με ε λ ν ν ε λ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= = = = + = =+



Callan – Gross relation           quark has spin 1/2 2 12F xF=

Remark: we could choose a frame (Breit Frame) in which         and 
write                                    that is why we call    state scalar.

0ν =
( ) ( )0 1,0,0,0με λ = = 0λ =

We also write the normalization conditions, in a single 
orthonormality condition

1
λ

μ
μ λλε λ ε λ ε λ ε λ δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ′

⋅ = ⋅ = −′ ′

q qg q
μλ νμ μνν

λ
ε λ ε λ

⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠

+
− =− −∑

1
21

With the complementary relation

1 2

2
2

2 2;a a
a a

p q p q
p q p

q q
μ μ με λ η η

−
⎛ ⎞

⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

⋅ ⋅
= = − = −D

Exercise : Show that  polarization vector of scalar photon can be 
written as

:ap
Parton momentum



Callan – Gross relation           quark has spin 1/2 2 12F xF=

( )tot N xσ γ ∗ + →To calculate                               besides the scalar photon state 
we also need to define the flux K of the photon. Let me skip 
the details and just give the conventional definition

2 2 22 2a a aK W m m Q mν⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − = −

*

4 *2 4

* 4*2 4

tot

124 2

1 24 2

X X Xp X

X X Xp X
W

d e p p p J p p J pKmd

e p J p p J p p pKm
μν

γ μ νμ ν
λ

μ νμ ν
λ

γ

σ π δ ε ε λ ε λ

ε λ ε λ π δ ε

σ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≡

= + − ×
Ω

= + −

⇒ =

∑ ∑

∑ ∑
�����������������	����������������


*24 WK
μν

μ ν
λ

π α ε λ ε λ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

Now, we are ready to calculate ( )tot N xσ γ ∗ + →
The transition amplitude is

4
42 0X XfiT q p p p J pμ

μπ δ ε λ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= + −

The absorption cross section in the lab frame is

Parameterized already 
in terms of  1 2,W W



Callan – Gross relation           quark has spin 1/2 2 12F xF=

Now we can determine the longitudinal      and transversal      
cross sections. Recall that

Lσ Tσ

1 22 2 2 2
1 1

2
a aa a

p p

q p q pq qW g W p q p q Wm q m q q
μ νμν μν μ μ ν ν

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦

⋅ ⋅= − + + − −

2
2

2 2;a a
a a

p q p q
p q p

q q
μ μ με λ η η

⎛ ⎞
⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

⋅ ⋅
= = − = −DAnd use To rewrite it as

1 22 2 2

0 01
2 p p

q qW g W Wm q m

μ νμ νμν μν
ε ε
η

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − + +

* *2
tot 1 22 2 2

0 08 p

p

m q qg W WK q m

μ νμ νγ μν
μ ν

λ

ε επ ασ ε λ ε λ
η

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥⎣ ⎦

= − + +∑



Callan – Gross relation           quark has spin 1/2 2 12F xF=

*
1 0 0 , 1 1 1gμ μν

μ μ νε ε ε ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
± = ± ± =−Using                                                           we get

22 *
12 1

* 2

1 22 2

2

2 2

8 81

0 08 0 0

8 1

p p
T

p
L

p

p

p

m WK
m q qg WK q

m g W

m WK m

WK m

μ νγ μν
μ ν

λ

μ ν
γ μν

μ ν

π ασ λ ε ε αλ πλ

ε επ ασ ε ε
η

π α
η

∗ ⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟⎜ ⎟⎢

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜
⎜
⎝ ⎠

⎥⎝ ⎠⎣ ⎦

=±

∗

=± = − + =

= +

+

−

= −

∑

2 2
2 2 12

8 1pmW W WK Q
π α ν

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎟ ⎜ ⎟⎟ ⎢ ⎥⎝ ⎠⎣ ⎦

= + −

The combination defined as 2 2
2 11 LQ W W Wν⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠
+ − ≡

These relations also shows why 21 and are positiveW W



Callan – Gross relation           quark has spin 1/2 2 12F xF=

In the scaling region, we arrive at

* *2 2 2
1 2 1

4 4 1 4, 22T L Lp p p
F F xF FKm Km Kmx

γ γπ α π α π ασ σ ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

→ → − =

Callan- Gross relation                   correspomds to2 12F xF=

0L

T

γ

γ

σ
σ

∗

∗ →

We can understand both relations in the Breit frame using 
angular momentum (helicity) conservation

And valid for spin ½ target, if spin of target was zero, we wouldn’t 
have magnetic scattering and      would be zero or equivalently  

Inverse of0T

L

γ

γ

σ
σ

∗

∗ →

1F



Callan – Gross relation           quark has spin 1/2 2 12F xF=

Breit Frame: photon and parton
move along the same line, 
opposite directions. After 
collision, partonexactly reversed 
its 3- momentum. suppose 
electron moves in x-y plane.

e

e

k

k ′

proton
1p

xp

z

x

proton
1p

xp

γ

q

After collision, only     electron 
changes, while      remains unchanged.  

zp
xp

No energy transfer to the target 
only recoils after absorbing.

Now, photon gets absorbed by the parton of the nucleon. 
parton with spin zero can absorb a scalar photon. No problem 
ther. Initial state total helicity is zero and so is the final state 
helicity.                 But a spin zero parton cannot absorb 
transvere photon. Angular momentum conservation.  

0L
γσ
∗

⇒ ≠

1λ = ±



Callan – Gross relation           quark has spin 1/2 2 12F xF=

( )if the parton isa spin0 0particleT

L

γ

γ

σ
σ

∗

∗ →

1λ = ± 1
2λ = ∓

1
2λ = ±

For spin ½ parton, when it heads back, 
helicity is changed by 1 unit. This can be 
accomodated by only by transversally 
polarized photon. Longitudinally  
polarized photon cannot provide the 
needed       unit of helicity change for 
parton.                         Which is the 
Callan- Gross relation. What does data 
show?

1±
0L T

γ γσ σ
∗ ∗

⇒ →

From Perkins, D. Introduction to high Energu Physics, 3rd ed. 
Addison-Wesley Publication Co.
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( ) ( )or orN Nν ν ν ν− ++ → + →A A

0or z

ν orν−Ak k ′

N p

0or z

ν orν+Ak k ′

N p

W −

( ) Probeν ν

Requires  gauge boson coupling to the partons through 
a current which has a mixture current of vector (V)
and axial vector (A)

Many times you heard this week that such a current exists:
All we need is to replace                             in the upper 
part of the right graph and                            ,   

( )51byμ μγ γ γ−
2 2 2

Wq q M→ − 2 2
2

G
We M→

( ) ( )8eeμν μν ν→A A



2 2 2 22 2
1 2 2 2

2 22 2
2

2 24 4

2 2

i
i i ppi ii i

i
i i pi i

Q Q Q Qw e em m xm m x

Q Qw e em m x

δ ν δ ν

δ ν δ ν

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − = −

= − = −

Recall that for a particle of mass      and chargeim ie

And we summed over all such contribution to get 1 2andW W

( ) ( )

( ) ( )

1

1,2 1,2

2
2

1 1

2 2
2 2

, 2

,
i

i

i
p i

i

i i
i

W W

em W Q f x F x

W Q e xf x F x

ν

ν ν

⎧
⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠

= ⇒ ⎨
⎪ ⎛ ⎞

⎜ ⎟⎪ ⎝ ⎠⎩

= ≡

= ≡
∑

∑

∑
Also, when we parameterized        we ignorred the antisymmetric
Tensor                      . NO More, an analogous term also appears 
in the lepton tensor due to V-A interaction.: That is, Now we have 
a 3rd Structur function,       which is a little more subtle than          

eW μν

ai p qμνρσ
σρε

3W 1,2W

A Reminder



With neurrino (anti- neutrino) probe

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )3

3

, ,3
3 3

1,2,

2
2

1 1

2
2

1 1

2 2
2 2

2

, 2

, 2

,

i

i

W
i im

i ip

i
p i

i

i
p i

i

i i
i

W W F x f x f

W

x
m

em W Q f x F x

em W Q f x F x

W Q e xf x F x

ν ν ν νν

ν

ν

ν ν

⎧
⎛ ⎞⎪ ⎜ ⎟⎪ ⎝ ⎠

⎪
⎪ ⎛ ⎞⎪ ⎜ ⎟

⎝ ⎠⎪= ⎨
⎪ ⎛ ⎞

⎜ ⎟⎪ ⎝ ⎠⎪
⎪
⎪ ⎡ ⎤= ⇒ ≡ − = −⎣
⎪

⎦
⎩

= ≡

= ≡

= ≡

∑ ∑

∑

∑

∑

With and interaction, they select quark flavothe in thenu onr cleν ν



Is prob. of  finding a u
quark in the target
( )f x

We Also learned one more thing:

There is anti-quark (as well as quark) inside the nucleon!

Where did we learn this?!

Is prob. of  finding a d
quark in the target
( )f x

μν e −



With an exchange of          , e p e xν −→ W +

e p e xν +→ With an exchange of W −

Not all quarks and anti-quarks couple to ,W W+ −

In reaction                    the incoming     decays to   e p e xν −→ eν e W eν + −→ then 
, ,and,W d u W s c W u d W c s+ + + +→ → → →

W +In proton,       couples to and q, , uarksd s u c

An exchanged photon treats all charged partons equally. Thus 
the E&M structure functions of proton is the sum over all 
partons. However, in neutrino induced interactions, the reaction 
must proceed by charged current scattering for the final state 
electron or muon. Therefore the DIS reactions are, e.g.

Similarily, in reaction                   and e W eν +−→ ,couples to ,and quarksW d s c−

So, for a nutrino beam with       exchange the structure functions 
of the proton is 

W +



Likewise, the structure functions determined by  anti-neutrino beam 
with        exchange areW −

( ) ( ) ( )
( ) ( ) ( )

2

3

2 ( ) ( ) ( )

2 ( ) ( ) ( )

W p
p p p p p

W p
p p p p p

F x x d x s x b x u x c x

F x d x s x b x u x c x

−

−

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤= − + + − −⎣ ⎦

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

3

2

2

W p
p p p p p

W p
p p p p p

F x x d x s x b x u x c x

F x d x s x b x u x c x

+

+

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤= + + − −⎣ ⎦

In neutron:
p n

p n

u d

d u

→

→



What do structure functions tell us ?

We start with          structure function 2
e pF
−

The probability f(x) for the quark f to carry a fraction x of the 
nucleon momentum is an intrinsic property of the nucleon and is 
process independent.

The probability f(x) for the quark f to carry a fraction x of the 
nucleon momentum is an intrinsic property of the nucleon and is 
process independent.

Momentum carried by all partons has to add up to one:    
Momentum Sum Rule

: amount of momentumcarried by a particular( ) partonx f x
Parton momentum dist.



The u and d quarks are already present in the proton, since in the 
constituent quark model (CQM), the proton is a uud state where. 
They carry the bulk of proton momentum at large x . The sea
quarks do not contribute to the baryon number of the hadron since 
they are always produced in a virtual          pair. So, for every        
there is a            the u, and d quark densities include both valence 
and sea quark densities.  

q q−
pu

,p seau

So, 

( )
( )

,

,

( ) ,

( )

v
p p p sea

v
p p p sea

u x u x u

d x d x d

= +

= +



Quantum numbers have to be right:  So, for proton we must have

[ ]
, ,( ) ( ) ((# ) (# )

"sea" quark contributi

2 ,

o

) ( )

( ) (

1

0 n)

valp p sea p p sea valu x u x d x d xu ddx

dxx s

dx

s x

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦− −

− + =

∫ ∫
∫ "

Take separate contributions of the valence and the “sea”
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

val val( ) , ( )
For now,All sea contributios are"equal"

sea sea

s s s s

u x u x u x d x d x d x

u x d x u x d x S x

= + = +

→ = = = ≡

( )

( )

2 val val

2 val val

4 1 10( ) ( )
9 9 9
4 1 10( ) ( )
9 9 9

ep

en

F x x u x d x S

F x x d x u x S

⎡ ⎤= + +⎢ ⎥⎣ ⎦
⎡ ⎤= + +⎢ ⎥⎣ ⎦

( ) ( ) ( )( )

2 2 val val

1 1
1 1

2 2 val val3
val0 0

1 1( ) ( )
3 3

1 1
3

ep en

ep en
x

F x F x x u d

F F dx u x d x dx
N

⎡ ⎤− = −⎢ ⎥⎣ ⎦

⇒ − = − = =∫ ∫

Gottfreid Sum Rule. 

Grossly violated

Arash. Tomio, PLB 
410,207 (1997).



Area under      , neglecting the strange sea quark2F

( ) [ ]

( ) [ ]

1 1 1
4 1 4 1

2 9 9 9 9
0 0 0

1 1 1
4 1 4 1

2 9 9 9 9
0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ep
u d

en
d u

F x dx dx x u x u x dx x d x d x f f

F x dx dx x d x d x dx x u x u x f f

⎡ ⎤= + + + = +⎣ ⎦

⎡ ⎤= + + + = +⎣ ⎦

∫ ∫ ∫

∫ ∫ ∫
Add and subtract 0.36 and 0.18u df f= =

Quarks and anti-quarks carry only half of the momentum.

First direct evidence of GLUON!



I used “sea” quark and “valence” quark. They will be clarified in 
a moment. For Now, If There is No sea quark, then only 3 non-
interacting quarks

2F
2

2 ( )q
q

F x e q x= ∑

x1
3

x1
3

2F



What we have learned so far?

The probe sees  putative 
objects (free  pointlike) 
partons inside the proton- that 
is the scaling property. Does 
data supports it?

Scaling property. Does it 
hold ? See some real Data





2F grows with      at low x 
(sea region)

2Q

2F Decreases with     at 
high x (valence region)

2Q

Scaling Violation!



Scaling Violation

Rising with increasing Q 
at small x

Flat behavior at medium x

Decreases with increasing 
Q at small x

( ) 2( , )F x F x Q→



Q dependence is inherent in QCD. Renormalization group equation 
(RGE) governs the scale dependence of  parton distributions and 
hard cross section

Scaling Violation

Good news, because we can apply perturbative QCD. Quark Parton
Model is the 0th order of perturbation expansion.

Dokshitzer- Gribov-Lipatov-Altarelli- parisi (DGLAP) equation

2F varies with 2Q

Gluon splitting enhances  quark 
density            rises with         

2F 2Q

At low xGluon radiation shifts 
quark to lower x

At high x

gluon radiates 
gluons



So, proton is really a complicated object

And what do we expect for      as a function 
of x at a fixed      to look like?

2F
2Q

All of the processes on the last slide says 
that  branchings shift the densities to lower x

x1
3

2F

2F varies with 2Q The variation is logarithmic
2

2 s
F xg
nQ

α∂
∂

∼
A

Why logarithmic? It comes from the QCD diagrams



Why logarithmic?

Recall that at the parton level,        is just             . At the proton 
level we must multiply it by the probability of finding parton inside 
the proton,          and integrate over x. we write this as

2F 2
2̂ fF e x=

( )q x

( ) ( ) ( ) ( ) ( )1 12 2
2 0 0

1d x
f fF x e x d q x e x qξ

ξ ξξ ξ δ ξ ξ δ= − = −∫ ∫
( )sαAt the            (i.e. one loop) many diagrams contribute. We are 

looking for scaling violations and therefore, we must investigate 
ultraviolet, infrared and mass singularities of any kind. It turns 
out that ultraviolet singularities are proportional to the free result 
and simply renormalize the charge. Infrared singularities cancel
among the diagrams. Only the mass singularity present in 
diagram (d) when the momentum of the gluon parallel to the 
gluon survives. Keeping only the logrithmic terms, the 
calculation at           amounts to the replacement  ( )sα

Technical



( ) ( ) ( ) 2

221 1 s Qx x xP nα
ξ ξ π ξ λ

δ δ− → − + A

b
a c

d e

2 isan infrared regulatorλ and P is given by

( ) ( )
21 3 1

1 2F
zP C z
z

δ
+

⎡ ⎤+
= + −⎢ ⎥

−⎢ ⎥⎣ ⎦
( )1 1 z

+
− defined by

( ) ( ) ( ) ( )1 1 11
110 0

f z f
zz f z dz dz

+

−
−− =∫ ∫

Technical



Only the logarithmic term is retained for this lecture. Now we 
understand the reason for writing things in apparently such a 
complicated way. First of all, scaling violation appear through the 
contribution of real soft partons.   is the original momentum 
fraction of the nucleon that is carried by the parton, upon radiation 
it is reduced to           after the emission of the soft gluon. Photon 
interact with the parton which carrying fraction x. Then

ξ

x ξ≤

( ) ( ) ( ) ( ) 2

2

12 2
2 0 0 2, sd Qx

i x
F x Q e x q x q x P nαξ

ξ π ξ λ
⎡ ⎤= +⎢ ⎥⎣ ⎦∫ A

Bare parton of QPM QCD Correction

Define renormalized PDF

( ) ( ) ( ) ( ) 2

2

12
0 0 2, sd Qx

x
q x q x q x P nαξ

ξ π ξ λ
μ = + ∫ A

( ) ( ) ( ) ( ) 2

2

12 2 2 2
2 2, , , sd Qx

i x
F x Q e x q x q x P nαξ

ξ π ξ μ
μ μ⎡ ⎤= +⎢ ⎥⎣ ⎦∫ A

We get:

Technical



Now the infrared regulator is eliminated (hidden in the bare PDF, 
note that this is an IR ill-defined object because of the soft gluon 
emission) at the expense of introducing a renormalization- scale 
dependence. These are the sought after scaling ciolations.

DGLAP Equation

Let us introduce the variable :
2

2
1
2 QCD

t n μ
Λ

= A It follow from

( ) ( ) ( ) ( ) 2

2

12
0 0 2, sd Qx

x
q x q x q x P nαξ

ξ π ξ λ
μ = + ∫ A

( ) ( ) ( )1
, ,

2
ds x

x
q x t q t P

t
ξ
ξ ξ

α ξ
π

∂
=

∂ ∫
Which immediately translates into differential equation for 2F

DGLAP Equation

DGLAP equations summarize the rate of change of parton
distributions with t

Technical



It is simpler to work with the moments, rather than with the 
distribution functions itself. Define the moments by:

( ) ( )
1 1

0
, ,nq n t dx x q x t−= ∫

Introduce the anomalous dimension      as nγ

( )
1 1

0

n
n dx x P xγ −= ∫

The convolution over the fractional momentum     transforms 
into a product. That is the simplification of working in moment 
space rather than working in x space: we get

ξ

( ) ( ), ,s
nq n t q n t

t
α γ
π

∂
=

∂
This leads to following scaling behavior for the moments of 
the structure functions

( ) ( )
2 1
0
2

2 2
2 2 0, ,

n

s

s

Q

Q
F n Q F n Q

γ
βα

α

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

=

Technical



Let us put the technicality into perspective

DGLAP Equation is essentially a diff. equation of  the form

2 , : , densityp pp ff f P
Q

q g
n
∂

⊗
∂

∼
A

:Splitting functionP

In the LO we need to consider 4 splitting functions, correponding to

( )qqP z

1 z−

z ( )gqP z

1 z−

z

1 z−

z
qgP

1 z−

z
ggP

baP : Probability that parton a will radiate a parton b with the fraction 
z of the original momentum carried by a

Never happens



So, the DGLAP equation, 2 p pf f P
nQ
∂

⊗
∂

∼
A For quarks and gluons are:

( ) ( ) ( )2

2
2, 2

2 qq
s

f qgP n
nQ

Q
x Q g P

α
π

∂ ⎡ ⎤ ⎡ ⎤= ⊗ + ⊗⎣ ⎦ ⎦∂
Σ ⎣Σ

A
Where                                                        is the quark
density summed over all active flavors.

( ) ( )22 2( , ) ( , ), i i
i

q x Q qQ xx Q+Σ =∑

And for the gluon we have

( ) ( ) ( )
2

2
2 2

, gq gg
s P P

Q
g x Q

nQ
g

α
π

Σ
∂ ⎡ ⎤ ⎡ ⎤= ⊗ + ⊗⎣ ⎦ ⎣ ⎦∂ A

More commonly: for non-singlet (valence), singlet,gluon

( )
( )

( )
( )

2

2 2

2 2 2

ln

ln

NS NS NS

qq qg

gq gg

q P q
Q

Q P P
P q

P PQ g Q g

μ

μ

± ± ±∂
= ⊗

∂

⎡ ⎤ ⎡ ⎤Σ Σ⎡ ⎤∂ ⎢ ⎥ ⎢ ⎥= ⊗ = ⊗⎢ ⎥∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦



Where in the leading order

( )
( )

( )
( )

2

2 2

2 2 2

ln

ln

NS NS NS

qq qg

gq gg

q P q
Q

Q P P
P q

P PQ g Q g

μ

μ

± ± ±∂
= ⊗

∂

⎡ ⎤ ⎡ ⎤Σ Σ⎡ ⎤∂ ⎢ ⎥ ⎢ ⎥= ⊗ = ⊗⎢ ⎥∂ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦



Parton distributions

In general we do not know how to compute the parton distributions, 
even for                . Only their evolution can be reliably computed 
either through OPE or using DGLAP equation. We can, however 
use the experimental data to find parton distributions.

2Q →∞

The recipe is:
Step 1: parameterize the parton densities,                         at some     

as:  
( ) ( ),q x g x

2Q
( ) ( ) ( )32

1 4 51 1ppp p pq x x x x x= − + +

Step 2: find                by fitting to DIS (and other) data, using 
DGLAP evolution equation and then evolve            in

1 5p p"
( )q x 2Q



Overview of parton distributions



A final note

The scaling behavior is governed by the anomalous dimensions. 
At the Leading Order they are

( )

( ) ( )( )

( ) ( )

( ) ( )( )

1

2

2

2

2

1

2

1 1 2
2 ( 1)

2
1 2

2
1

1 1 1 22
2 1 1 2 3

j

qq F k
k

qg R

gq F

j
f

gg A Rk
k

j C
j j

j jj T
j j j

j jj C
j j

Nj C T
j j j

γ

γ

γ

γ

=

=

⎡ ⎤
= − + =⎢ ⎥+⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

⎡ ⎤+ +
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡ ⎤

= − + + − −⎢ ⎥− + +⎣ ⎦

∑

∑

Sea also, Arash, Khorramian, 
PRC 67, 045201 (2003) for 
the NLO calculations

, and are group fa ors, ct
F A R

C C T



We worked with      , but it is the same with any other structure 
function.

2F

A final note-2

If  we used neutrino, instead of electron, or considered       probe 
(instead of        ) then, we would have an additional structure
function,     .

3F

W ± Probe gives CC, and     (like photon) corresponds to NC Z

Z
γ ∗

The reason:      coupling 5γ



( )
2 2

2
2 4 2 3

2e
L

pd
Y y Y

dxdQ xQ
F F xF

σ πα
+ −= − ∓

( )( )2

1 1 , the inelasticity parameterY y
±
≡ ± −

NC helps to separate sea and valence quark distributions



Comparing NC and CC cross-sections at HERA: EW Unification

CC cross section approaches a 
constant at low 2Q

( ) 22 2 2
W WM Q M⎡ ⎤+⎣ ⎦∼

NC cross section sharply 
decreases with increasing

γ2Q (dominantly exchange)
41 Q∼

Dramatic confirmation of the unification of electromagnetic and 
weak interactions of SM in  Deep Inelastic Scattering!



Now in addition to variables ,p q we also have the hadron’s spin hs
( ), , hW W p q sμν μν⇒ =

As in the case of μνA We will have additional tensor quantities

( ), ,andi q s i q p q s i q s q pλ σ λ σ λ σ
μνλσ μνλσ μνλσε ε ε⋅ ⋅

They enter into our earlier decomposition as additional terms

The leptonic tensor μνA is conserved 0q qμ μν ν μν= =A A
So, we better simplify          befor contracting withW μν

μνA

( )
( )

1

1 2
2

2
2 2 2

. .

.,

..

W

i i
p q p q
g g

F
qF p

p q q p q qq

q s

qg p p

q s s

q q

q

q

pp q

μν
μ νμ ν

μμν ν

λ σ λ σ σ
μνρσ μνρσε ε

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝

⎝

=

⎠

⎠⎝ ⎠

−

⋅ ⋅
− + + − −

++

Unpol.

Polarized

Now, let me go back to hadron tensor         for the polarized caseW μν

Polarized



( )( )2
1

1 2
2.

.h h h
ig igqFW F g s q p q s qp

p
s pp

qμ
λ σ λ σ

μνλσ μν μν μ σν νλε ε
ν ν

= −− + ⋅+ +

2
1 1 1 2 22

2
12, ,mW F W GF m G g m gν νν = = ==

Spin part is antisymmetric under μνsymmetric under μν

We have already seen that the symmetric part of         is independent of the 
lepton spin, and the spin dependent part of         is antisymmetric in       . 
Thus the conbination has no terms which have only the hadron
spin, or only the lepton spin; all terms contain either both or none.

μνA
μνA μν

W μν
μνA

The structure functions                    can be measured using unpolarized
beam and target, but to measure                   requires both a polarized 
beam and polarized target. There is no advantage to do experiment with 
only a polarized beam or only a polarized target. This is not true for spin 
greater than ½

1 2andF F
1 2andg g



( )2 k k k k g k k i q sμν μ μ μν μναβν ν
α βε≈ + − ⋅ −′ ′ ′ AA

Cross section for spin ½ target
Combining      : μνA

( )
( )

1

1 2
2

2
2 2 2

. .

.,

..

W

i i
p q p q
g g

F
qF p

p q q p q qq

q s

qg p p

q s s

q q

q

q

pp q

μν
μ νμ ν

μμν ν

λ σ λ σ σ
μνρσ μνρσε ε

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝

⎝

=

⎠

⎠⎝ ⎠

−

⋅ ⋅
− + + − −

++

Unpol.

Polarized

W μνAnd           : 

In the cross section

( )
2 4

2 4 ,
16

d e y W p q
dx dy d Q

μν
μν λλ

σ
φ π
= A

And using the identity

( )2 g g g gμναβ α β α β
μνλσ λ σ σ λε ε = − −



( )2 2
1 2 12 4

2 4

2
2

1 2

4
2

h

h

h

h

q s q s
xy F y F y g x

p q p qd e ME
dx dy d Q p s q s

xy g
p q p q

s s
p q

s s
p q

σ

φ π

⋅ ⋅
+ − + +

⋅ ⋅
=

⋅ ⋅
+ −

⋅ ⋅

⋅⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⋅⎝ ⎠⎢ ⎥

⎢ ⎥⋅⎛ ⎞
⎜ ⎟⎢ ⎥⋅⎝ ⎠⎣ ⎦

A

A

A

A

I want to concentrate on two cases which are more intersting for 
the present days experiments: Longitudinal and Transversal 
polarizations target and longitudinally polarized lepton.

For longitudinally polarized lepton beam incident on the target 
which is either longitudinally or transversely polarized. The 
polarization of the lepton is                                   is the 
lepton helisity . The lepton polarized term in the cross section, 
above can be written as 

where,s k= = ±A A A

, , h hq s p s s s s kq k p kx
p q p q p q p q y p q p q
⋅ ⋅ ⋅ ⋅⋅ ⋅

= = − = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

AA A A
A A A A



Longitudinally polarized target:

A target polarized along the incident beam has                  whereˆ ,h hs M= zG

h = ± for a target polarized parallel (+) or antiparallel (-) to the beam
In the cross section expression we only have         andhq s⋅ hk s⋅

( )2 2
1 2 12 4

2 4

2
2

1 2

4
2

h

h

h

h

q s
p

q s
xy F y F y g x

p qd e ME
dx dy d Q p s

xy g
p

q

q s
q p q

s s
p q

s s
p q

σ

φ π

⋅
+ − + +

⋅
=

⋅

⋅

⋅⋅

⋅ ⋅
+ −

⋅
⋅

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥⎛ ⎞
⎜ ⎟⎢

⋅
⋅ ⎥⎝ ⎠⎣ ⎦

A

A

A

A

h hs s s k
p q p q
⋅ ⋅

=
⋅ ⋅
A

A

Also recall
( ), sin cos , sin sin , cosq k k E E E E E Eθ φ θ φ θ′ ′ ′ ′ ′= − = − −

andk q both has 0 and 3 components which are almost equal



Thus,      can be replaced by            when evaluating cross section in 
the DIS limit. ( note the additional minus sign, which comes from 
the relative minus sign between the space and time components in
the dot product, such as k .s ). The result is 

hs h p−

( ) ( ) ( )
2 4

2 2 2
14 2 11 2

2 h
d e ME xy y gy y x M Q
dxd

F F
y Q
σ

π
⎡ ⎤= + − − − +⎣ ⎦A

The effect of      term is suppressed relative to the leading term2g

Polarization asymmetry in the cross section can be used to 
measure the structure function 1g
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U accounts for the 2-loop contribution  as an extension to LO

DGLAP in Moment space

Make an inverse Mellin transform back to momentum space



The polarized structure function

( ) ( ) ( )2 2 2 21
1 2, , ,q

q

g x q e q x Q q x Qδ δ⎡ ⎤= +⎣ ⎦∑

where

( ) ( ) ( )
( ) ( ) ( )

2 2 2

2 2 2

, , ,

, , ,

q x Q q x Q q x Q

q x Q q x Q q x Q

δ

δ

→ →

→ →

= −

= −

( )2,q x Qδ Measures how much the parton of flavor q remembers 
the parent proton polarization.

The First moment of polarized parton distribution is defined as

( ) ( )
1

2 2

0

,q Q dx q x QδΔ = ∫



They are related to the total z- component of quark (and gluon) 
spins by:

1
2 ,z zq g

S q S g= Δ = Δ


