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ABSTRACT. In the recent years, Hopf algebras have been introduced to describe
certain combinatorial properties of quantum field theories.I have a short review
of Hopf algebras and Quantum groups in this lecture. I will give a basic intro-
duction to these algebras and objects and review some occurrences in particle
physics and explain our conclude and ideas in this matter with some examples.

INTRODUCTION

The mathematics of non-commutative geometry was pioneered by several great
mathematicians, including the legendary Russian mathematician Israil Gelfand,
who with his collaborators proved the first key theorems about C*—algebras, and
in modern times the Fields medallist Alain Connes. Connes recognised that non-
commutative geometry could be immensely useful for theoretical physics. One of
his ideas here, loosely speaking, is to reformulate the basic pattern of elementary
particle physics by appending non-commutative ”extra dimensions” to the usual
classical notion of spacetime. This model is not about quantum gravity in the first
instance; the space-time coordinates z, y, z, t(three for space and one for time) from
an ordinary commutative algebraic system for spacetime as usual, but Connes then
"takes on” non-commutative matrix coordinates that nearly encode all the different
types of particles. His theory is not only exceedingly elegant, but makes a number
of predictions that had previously eluded physicists, including predictions about
the masses of fundamental particles like the mysterious Higgs boson.
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quantum groups in the late 1980s and early 1990s. He is the author of numer-
ous research articles and two textbooks on quantum algebra. He is currently on
sabbatical at the Department of Applied Mathematics and Theoretical Physics at
the University of Cambridge. Majid has taken non-commutative geometry down a
slightly different road. In his work he forgets about the classical picture of spacetime
altogether. He still has the four objects that take the place of the four co-ordinates
-x,y, z for space and ¢ for time- but now these coordinates do not commute: xt is
not the same as tx. Together the coordinates form a non-commutative algebraic
system and spacetime would then be the mysterious geometrical space that we’re
hoping comes attached to this system.

But simply saying that the co-ordinates don’t commute is not quite enough. If xt is
not the same as tx, then in order to construct a specific system we must say by how
much they differ. Majid suggests that a number called the Planck scale measures
this amount of non-commutativity.

Heinz Hopf, one of the pioneers of Algebraic topology, first introduced these alge-
bras in connection with the homology of Lie groups in 1939. Later, in the 1960s
Milnor introduced the Steenrod algebra, the algebra of cohomology operations,
which was another example of a Hopf algebra. More recently the study of these
algbras has gained pace because of their applications in Physics as quantum groups,
renormalisation and non-comutative geometry. In the late 1970s Rota introduced
Hopf algebras into combinatorics and there is now a well established research field
know as combinatorial Hopf algebras. An article by Woronowicz in 1987, which
provided explicit examples of non-trivial Hopf algebras, triggered the interest of
the physics community.

In turn, Hopf algebras have been used for integrable systems and quantum groups.
In 1998 Kreimer and Connes re- examined renormalization of quantum field theo-
ries and showed that it can be described by a Hopf algebra structure.

Quantum groups, introduced in 1986 by Drinfeld, form a certain class of Hopf al-
gebras. Up to date there is no rigorous, universally accepted definition, but it is
generally agreed that this term includes certain deformations in one or more param-
eters of classical objects associated to algebraic groups, such as enveloping algebras
of semisimple Lie algebras or algebras of regular functions on the corresponding al-
gebraic groups. As one can relate algebraic groups with commutative Hopf algebras
via group schemes, it is also agreed that the category of quantum groups should
correspond to the opposite category of the category of Hopf algebras. This is why
some authors define quantum groups as non-commutative and non-cocommutative
Hopf algebras. We can say that a quantum group is a deformation of a Hopf alge-
bra; this Hopf algebra is typically the algebra of C> functions on a Lie group, or
the universal enveloping algebra of its Lie algebra. Quantum groups arise in diverse
areas of physics and mathematics, for example, quantum inverse scattering, knot
theory and 3 manifold invariants and representation theory.

Definition 0.0.1. (a) A lie algebra L is a vector space with a bilinear map [,] :
L x L — Lycalled the Lie bracket, satisfying the following two conditions for all
z,y,z € L:
(i) (antisymmetry)

[a:,y] = —[y,:n],
(ii)(Jacobi identity)

[z, [y, 2]] + [y, [z, 2]] + [2,[2z,9]] = 0
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(b) A morphism of Lie algebras f from the Lie algebra L into the Lie algebra L, is
a linear map f : L — L such that f(z,y]) = [f(z), f(y)] for all z,y € L.

The Lie algebra ¢l(2) = L(M>(C))of 2 x 2—matrices with complex entries is
four-dimensional. The four matrices

form a basis of gl(2). Their commutators are easily computed. We get

[X,Y]=H,[H,X]=2X,[H,Y] = -2Y,
and
[I,X]=[I,Y]=][I,H]

The above relations show that sl(2) is an ideal of gl/(2) and that there is an isomor-
phism of Lie algebras

gl(2) = sl(2) P I
which reduces the investigation of the Lie algebra gl(2) to that of si(2).
To any Lie algebra L we assign an(associative) algebra U(L), called the envelop-
ing algebra of L, and a morphism of Lie algebras iy, : L — L(U(L)). We define the
enveloping algebra as follows. Let I(L) be the two-sided ideal of the tensor algebra

T(L) generated by all elements of the form zy — yz — [z, y] where x,y are elements
of L. We define

Proposition 0.0.2. The enveloping algebra U(L) as a cocommutative Hopf algebra
for maps A, € and S, for xy,...,x, € L:

n—1
A(zy..xp) =1Q@z1...2p + Z Zxa(l)...ma(p) ® Ty (pt1)-Ta(n) T T1.Tp @ L.
p=1 o

where o runs over all (p,q)—shuffles of the symmetric group S,, and
S(xy...wp) = (=1)"2p...21.
The enveloping algebra
U=U(sl(2))

of sl(2) is isomorphic to the algebra generated by the three elements X,Y, H with
the three relations

[X,Y] = H,[H,X] =2X,[HY] = -2Y,



1. THE ALGEBRA U,(sl(2))

Let me fix an invertible element ¢ of C different from 1 and —1 so that, the

fraction —— is well-defined. I review some notation.
q—q

For any integer n, set

n

[n] = q”—iq—l
q9—q
[-n] = —[n]and]m + n] = ¢"[m] + ¢~ [n].
We also have the following versions of factorials and binomial coefficients. For
integers 0 < k <m, set [0]! =1,

— qn—l +qn—3 4+ o+ q—n+3 + q—n+1

[k]! = [1]]2]...[%]
if k> 0, and
B R O
= [ k } ~ [k — &
for
[n] - qf(”fl)(n)q% [TL]' = qw(n)!zp
and

nl _ —kn—k)[ T
=),

Definition 1.0.3. We define U, = U,(sl(2)) as the algebra generated by the four
variables E, F, K, K~! with the relations

KK'=K'K=1
KEK™' =¢*E,KFK~! = ¢72F,
K—-K!

q—q!
Example:(The coordinate Hopf algebras O(G) of simple matrix Lie groups).

Let G denote one of the matrix groups SL(N,C), SO(N, C)orSp(N,C). Each ele-
ment g of G is a complex N X N matrix g = (9ij)- Define the coordinate functions

uf on G by u!(g) := gij,9 = (9i5) € G. For g,h € G we have
A(ul)(g,h) = ul(gh) = (gh);; =Y girhiy = > uj(g)ul(h)
k k

[EaF]:

and uZ(e) = d;j, so that

Aul) = Zu}c ®u?ande(uz) = 0y;.
k
Let A = O(G) be the subalgebra of Fun(G) generated by the N? functions u/,i,j =
1,2,...,N. Since A : Fun(G) — Fun(G x G) is an algebra homomorphism, we have
A(A) C A® A by the first formula of the above sequence. Any element g € G has
determinant 1. Hence the function which is a constant equal to 1 on G belongs
to A, so A has a unit. Further, it follows that there are polynomials P;; in N>
indeterminates such that (g’l)ij = pij (911,912, ---, gN N, SO that

S(l)(g) =ul(g™"),; = Pij(ui(9), ub(9), - ui(9)

= Pi]’(u%(g)vué(g)a "'7“’%(9)'
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That is, we have S(u!) € A and hence S(A) C A. Therefore, A = O(G) is a Hopf
algebra.

2. THE COMPACT QUANTUM GROUP SU,(2)

Recall that the quantum group SU,(2) is described by the Hopf sx—algebra
O(SU,(2)) which is just the Hopf algebra O(SL,(2)) for real q equipped with the
x—structure defined in following way

a* =d,b* = —ge,¢f = —¢q~ b, d* = a

The corresponding Hopf algebra is called the coordinate algebra of the real quan-
tum group SU,(2) and is denoted by O(SU,(2)). It is called the compact real form
of SL,(2). Therefore, the theory developed in the previous section applies in par-
ticular to SU,(2). But it still remains to deal with all questions and properties
related to the x—structure.

Throughout this section ¢ is a real number such that ¢ # 0,+1 and A denotes the
Hopf x—algebra O(SU,(2)).

In previous example we have seen that the algebraic properties of the group SL(2, C)
are stored in its coordinate Hopf algebra O(SL(2)). Let me briefly recall the struc-
ture of this Hopf algebra from example. As an algebra, O(SL(2)) is the quo-

tient of the commutative polynomial algebra Clul, ul, u?,u3] in four indeterminates

ul,ul, u?,u2 ( the coordinate functions on SL(2,C) by the two sided ideal gener-

ated by the element ulu3 — udu? — 1. On the generators the comultiplication A,

the counit € and the antipode S are given by
' i k
Aul) =Y uj, @ ub
k

e(uj) = 8
S(uy) = u3, S(uy) = —uy, S(uf) = —ui, S(uj) =
The Hopf algebras O(SLy(2)) introduced are a one parameter deformation of this
Hopf algebra O(SL(2)).
3. THE BIALGEBRA O(M,(2))

Let O(M4(2)) be the complex (associative) algebra with generators a, b, ¢, d sat-
isfying the following relations:

ab = gba, ac = qca, bd = qdb, cd = qdc, bc = cb
ad —da = (¢ — ¢ ')be
In order to shorten formulas we also write ul = a,ul = b,u? = c,u? = d.

Proposition 3.0.4. There exists a unique bialgebra structure on the algebra O(M,(2))
with comultiplication A and counit € such that

Ala) =a®a+b@c,A(b) =a®@b+b®d
Ale)=c®a+d@c,A(d)=cb+d®d
€(a) =€(d) =1,e(b) =€(c) =0
In other words we can be written as A(ul) = 3, ul, @u¥ and e(ul) =d;,i,j =1,2.

Definition 3.0.5. The bialgebra O(M,(2)) is called the coordinate algebra of the
quantum matrix space My(2).



4. THE HOPF ALGEBRA O(SL,(2))
According to the above relations we have
ad — gbe = da — g tbe
This element of O(M,(2)) is denoted D,, and called the quantum determinant. This
is a group like element (that is, A(D,) = D, ® D, and €(D,) = 1) belonging to

the center of the algebra O(M,(2)) Since D, is group like, the two sided ideal

< D, —1 > generated by the element D, — 1 is a biideal of O(M,(2)). Hence the
quotient O(SL,(2)) := % is again a bialgebra. and a Hopf algebra with the
antipode map is determined by

S(a) =d,8(b) = —¢~'b,5(c) = —qc,S(d) = a
A direct computation shows that for the algebra O(SLy(2)) the matrices

=(% )

o= (4 7)

are inverse to each other. This fact is actually equivalent to the validity of the
antipod condition for the generators a, b, ¢, d.

The Hopf algebra O(SL,(2)) is called the coordinate algebra of the quantum group
SLy(2).

and

5. ROOTED TREES

A rooted tree is a tree in which a special (”labeled”) node is singled out. This
node is called the "root” of the tree. Rooted trees are equivalent to oriented trees
(Knuth 1997, pp. 385-399). A tree which is not rooted is sometimes called a free
tree, although the unqualified term ”tree” generally refers to a free tree. A rooted
tree in which the root node has vertex degree 1 is known as a planted tree. The num-
bers of rooted trees on n nodes forn =1,2,...are 1,1,2,4,9,20,48,115, 286, 719, ....
Denote the number of rooted trees with n nodes by T}, then the generating function
is .

T(z) = Zan" =z 42>+ 22% + 42" + 925 + ..
n=0
Consider a set of rooted trees. An admissible cut of a rooted tree is any assignment
of cuts such that any path from any vertex of the tree to the root has at most one
cut. An admissible cut maps a tree t to a monomial in trees ¢; X ... X t,41. Precisely
one of these subtrees ¢; will contain the root of t. We denote this distinguished tree
by R°(t), and the monomial delivered by the n other factors by P¢(¢). The counit
€ is given by:
ele) =1,e(t) =0fort #£ e
The coproduct A is given by:
Ale)=e®e

Afty=t®e+ext+ »  P(t)®@R()

adm.cutsCoft



The antipode S is given by:
Se)=e

St)y=~t— > SP()®R()

adm.cutsCoft
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