OPERA Results

OPERA Experiment

Direct search for v_µ → v_τ oscillations by looking at the appearance of v_τ in a pure v_µ beam
 Requirements:

1) long baseline, 2) high neutrino energy, 3) high beam intensity,

4) large mass, 5) detect short lived τ 's

Detection Principle

> 1 mm thick Pb plate interleaved with emulsion film; 2 emulsion layers 44 μ m thick poured on a 205 μ m plastic base.

CNGS Beam

>400 GeV/c protons from the CERN SPS on a graphite target

> 6 s cycle length, 2 extraction every 50 ms, 10.5 μ s pulse length

10/1/2012

CNGS Performance

\succ Goal of the experiment: 22.5x10¹⁹ pot .

Run	ΡΟΤ	Integrated POT/Proposal	Accumulated event
2008	1.78x10 ¹⁹	7.9%	1698
2009	3.52x10 ¹⁹	23.6%	3557
2010	4.04x10 ¹⁹	41.5%	3912
2011	4.84x10 ¹⁹	63.0%	4210
2012	~4.00x10 ¹⁹	~80%	~4000

Expected POT at the end of 2012 RUN : 18.2×10^{19}

OPERA Detector

Hybrid detector (electronic + emulsions) with a modular structure: 2 supermodules = 2*(31 walls + 1 spectrometer) 4 31 walls = 31*(56*64 bricks + 2 scintillator tracker planes) The total target mass = 1.25 kton

OPERA Target

10/1/2012

Brick filling is finished in 2008.
 ~150,000 bricks with ~8 millions of nuclear emulsions films.

➢Bricks assembling was technologically challenging. The small mechanical industry installed underground and worked in the redlight dark room

Brick Wall and Brick Manipulation

The OPERA Electronic Detectors

Target Tracker

Made of plastic scintillation strips with wavelength shifting fiber s.p.e/mip > 5
 Detection efficiency: 99 %
 Brick finding efficiency: ~80 %

Muon spectrometer ➢ RPC and drift tubes in 1.5T magnet ➢ charge miss id (<25 GeV/c): <1% ➢ ΔP/P (<50GeV/c) ~ 20% ➢ μ id (with TT) ~ 95%

Neutrino Interactions

10/1/2012

Automatic Scanning System

The mean area to be scanned is ~ 200 cm^2 per each OPERA event cconsidering 20000 events to process the full area to be scanned is 400 m² of the emulsion surface.

European Scanning System

Customized commercial optics and mechanics.
 Scanning speed: 20 cm²/h.

S-UTS (Japan)

High speed CCD Camera (3 KHz)Objective lens moved by piezoelement.

- ≻Hard-coded algorithms.
- Scanning speed: 75 cm²/h.

Changeable Sheet (CS)

10/1/2012

From meters to microns:

- > OPERA: 10x10 m²
- **TT** indicate brick ~1 cm accuracy
- ➤ CS ~100 microns
- > Inside brick near the vertex ~1 micron

 CS background requirements: 1 track/10x10 cm²
 Doublet film for coincidence

Emulsion Scanning

Emulsion Data Reconstruction

Track following: TT->CS-Brick upstream till the vertex .

10/1/2012

Emulsion Data Reconstruction

➢ Volume scan and reconstruction of all tracks around the expected vertex position

Decay Search

10/1/2012

Event Kinematics

Particle ID is possible in ECC by dE/dx. (hadron or muon or electron)
 Measurement of the position or angular displacement caused by the Multiple Coulomb Scattering

Soft data sample

>Muon momenta measured by MCS as a function of the momenta obtained from the electronic detectors.

Located Events in ECC

Run 2008 \rightarrow 2012

Analysis of 2008-2009 Data

- Minimum bias analysis
 - no kinematical pre-selection.
 - •2825 interactions : located in ECC.
 - 2738 interactions : decay search was applied.
- ➢ Results
 - Ist tau neutrino event was found. Published in PLB 691(2010)138
 - Systematic electron neutrino search .
 - 19 electron neutrino candidate events was identified
 - (to be submitted soon).

The First τ Candidate

>Interpretation of the event

$\tau \rightarrow \rho v_{\tau}$ candidate
$\rho \rightarrow \pi - \pi^0 (\pi^0 \rightarrow \gamma \gamma)$
m(yy) = 120 ±20±35 MeV
$m(\pi - \gamma \gamma) = 640^{+125}_{-80}^{+100} Me^{\gamma}$
Βr(τ→ρν_) ~ 25%

Variable	Estimate	Cut
kink	$41 \pm 2 mrad$	> 20 mrad
decay length	$1335 \pm 35 \mu m$	< 2 lead plates (~2600 µm)
daughter P	$12^{+6}_{-3}GeV/c$	> 2GeV/c
decay Pt	$620^{+310}_{-155} MeV$	> 300MeV/c (600 if noγ at decay vtx)
missing Pt	$530^{+300}_{-160}~MeV$	< 1 GeV/c
φ (angle btw. had. system and tauon)	173° ± 2°	> 90°

10/1/2012

$v_{\mu} \rightarrow v_{e}$ Oscillation Search

Systematic search for electron neutrinos applied to
 505 events without muon in the final state
 (2008 – 2009 data)

Expected events: 19.2 (beam) + 1.5 (oscillated)
Observed events: 19

≻E_v < 20 GeV (improve S/N ratio)

Expected events: 3.7 (beam) + 1.1 (oscillated)
Observed events: 4

Analysis Status 2010-2012

Pre-selection for oscillation analysis:
Imu events with muon momentum < 15 GeV/c (30 % reduction of 1mu events)
All 0mu events

≻Status:

•1343 interactions were located and decay search was done.

■2nd tau neutrino event was found

The Second τ Candidate

The Second τ Candidate

Background Sources for v_{τ}

> Charmed particles have similar decay topologies to the τ .

➢ Charm production in CC events represents a background source to all tau decay channels.

> This background can be suppressed by identifying the primary lepton.

Charm Candidate

FL: 1330 μm kink angle: 209 mrad IP : 262 μm daughter muon: 2.2 GeV/c Pt: 0.46 GeV/c

FL: 313.1 μm,
φ : 173.2⁰,
invariant mass: 1.7 GeV

Charm Sample

 Charged Charm's life time and its decay topology are similar with tau.
 Tau detection efficiency validation sample

Expected events: 51 ± 7.5 Observed events: 49

Background Sources for v_{τ}

> Interactions of hadrons produced in v_{μ} interactions

Expected Background

reining	Signal	Bck	Charm	Mu scattering	Hadrons
iau→mu	0,49	0,02	0,01	0,02	0,00
Tau→e	0,68	0,05	0,05	0,00	0,00
Tau . ≯h	0,56	0,06	0,03	0,00	0,03
Tau-) 3pi	0,18	0,05	0,05	0,00	0,00
total	1,91	0,18	0,14	0,02	0,03

Conclusions I

4898 neutrino interactions were located in ECC.2 tau neutrino events found .

•49 charm associating CC event were found with good agreement to MC expectations.

■19 electron neutrino events (2008-2009) were identified and a limit for $v_{\mu} \rightarrow v_{e}$ oscillations was set.

Neutrino Velocity

Past Experimental Results

FNAL experiment (*Phys. Rev. Lett.* 43 (1979) 1361) high energy ($E_v > 30$ GeV) short baseline experiment. Tested deviations down to $|v-c|/c \le 4 \times 10^{-5}$ (comparison of muon-neutrino and muon velocities).

>MINOS (*Phys. Rev. D* 76 (2007) 072005) muon neutrinos, 730 km baseline, E_v peaking at ~3 GeV with a tail extending above 100 GeV. (v-c)/c = $5.1 \pm 2.9 \times 10^{-5}$ (1.8 σ).

SN1987A (see e.g. *Phys. Lett. B 201 (1988) 353*) electron (anti) neutrinos, 10 MeV range, 168'000 light years baseline. $|v-c|/c \le 2 \times 10^{-9}$. Performed with observation of neutrino and light arrival time.

Principle of Measurement

- Definition of neutrino velocity: baseline / time of flight
- > Key ingredients:
 - High statistics.
 - Sophisticated timing system .
 - Accurate calibrations of the timing chains at CERN and OPERA.
 - Preciese measurement of the v time distribution at CERN through proton waveforms.
 - Measurement of the baseline by geodesy.

Principle of Measurement

Two Unknown Systematic Errors

- Not proper connection of the fiber to the OPERA Master Clock causes an artificial time delay of the 8.3 km fiber in LNGS.
 - Re-measurements show that time delay is increased by 73.2 ns.
- ► Internal Master Clock frequency off by $\Delta f/f = 1.24 \times 10^{-7} (124 \text{ ns/s})$ which artificially decrease the neutrino anticipation by ~15 ns.
- These anamolous conditions subsected to futher investigation in the period of December 2011 - Feburary 2012

10/1/2012

Further Investigation of Anomalous Conditions

-620

diff.

time -660

Year

≻The fiber connection problem started in 2008 and lasted end of after it was 2011 correctly connected to the OPERA Master Clock.

► Wrong oscillator frequency was there all the time in a stable way.

≻The following 2011 results have been corrected according to new measured parameters and new systematic have errors been evaluated.

2008

2009

LOPERA - LOAG INS

Analysis Method

➢ For each neutrino event → Proton waveform of the corresponding extraction.
 ➢ Sum up and normalise → form PDF→ Seperate likelihood for each extraction.

Bunched Beam Analysis

Bunched Beam Analysis

- Short bunched beam is designed for OPERA to exclude possible biases effecting the statistical analysis based on the proton PDF.
 - Result is consistent with the main analysis
 - With TT $\delta t = -1.9 \pm 3.7$ (stat.) ns
 - With RPC $\delta t = -0.8 \pm 3.5$ (stat.) ns

T. Adam et al. [arXiv: 1109.4897] will appear in JHEP

Bunched Beam in May 2012

>Mainly designed to get conclusive result

1 extraction per CNGS cycle
4 batches per extraction
16 bunches per batch
2x10¹⁷ pot in total (for two weeks)

New OPERA results (Bunched Beam in May)

>106 events collected and 59 events are selected.

Muon Selection Criteria
 CERN-LNGS time-link
 WFD
 Well identified muon
 No isolated earliest hits

Conclusions II

➢ OPERA found the source of the anomaly announced last year and corrected the result.

- ➢ Neutino velocity measurement performed in OPERA by using different beam and different sub-detectors are in agreement with the speed of light.
- Combination of all the different experimental results in progress.

Thank you !

Moteşekkirem!

Proton Timing

> Proton pulse digitized by a 1GS/s.

≻Wave Form Digitilizer(WFD) triggered by a replica the Kicker signal.

► Waveforms are UTC time-stamped and stored in CNGS database for offline analysis.

10/1/2012

GPS common view mode

 \triangleright GResolves (x,y,z,t) with \geq 4 satellite observations

≻GPS common-view mode.

Same satellite visible of the sites from former dedicated measurements \rightarrow determine time difference of local clocks w.r.t. the satellite by off-line data exchange.

Advantage: 730 km << 20000 km (satellite height) \rightarrow similar paths in ionosphere error cancellation.

Standard technique for high accuracy time transfer.

≻Permanent time link (~1 ns) between reference points at CERN at CERN and OPERA.

Timing-Inter-calibration

Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt (PTB)

High accuracy/stability portable timetransfer setup @ CERN and LNGS

GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter

Correction to the time-link:

$$t_{CERN} - t_{OPERA} = (2.3 \pm 0.9) \text{ ns}$$

LNGS

Dedicated measurements July-September 2010.

➤2 new GPS benchmar.ks on each side of the 10 km highway tunnel

CERN measurements (taken in different periods) combined in the ETRF200 European Global system accounting for earth dynamics.

Cross-check in June 2011: simultaneous CERN-LNGS measurement of GPS benchmarks.

Distance (BCT-OPERA reference frame) = (731278.0 ± 0.2) m

New Calibration Delays

tem	Result	Method	•
CERN UTC distribution (GMT)	10077.8±1 ks	 Portable Cs Two-ways] gg
WFD trigger	26.6 ± 1 ks	Scope	ER 🗠
8 TC de lay	583.7 ± 1 ks	 Portable Cs Dedicated belam experiment. 	[] ₩ 2
CERN-LNGS Intercalibration	2.3±17 ks	• METAS Pola Rx calibration • PTB directme as urement	
LNGSUTC distribution (fbers)	41067 ± 1 15	• Two-ways • Portable Cs	
OPERAmaster clock distribution	7046 ± 1 ± 5	 Two-ways Portable Cs 	
FPGA later oy, q varitization ov lie	24.5 ± 1 ks	Scope us DAQ de lay scali (0.5 is steps)	2 ns vERA
Target Tracker delay (Pilotocathode to FPGA)	502 ± 2,3 %s	UV picose con ditaser	¥Ö
Target Tracker response (Schtillator-Photocathode, trigger time-wak, quantisation)	9.4 ±3 ±s	UV tase r, time walk and photon arriual time parametrizations, full detectors in utation	