# Ultra high energy neutrinos from gamma ray burst sources

Yasaman Farzan

IPM, Tehran



#### Outline

- Gamma ray bursts (GRB)
- Fireball model and neutrinos
- UHECR and Waxman Bahcal limit
- ICECUBE bounds
- Pseudo-Dirac neutrinos
- Pseuso-Dirac neutrinos and GRBs
- Pseuso-Dirac neutrinos and diffuse Supernova neutrinos

# History of discovery of Gamma ray busters

VELA satellite: (1967)

Discovery announcement: 1973

Russians confirm in 1974



#### Galactic versus extragalactic

• Coming from all direction not just galactic disc



1997: Observation of red-shift of X-ray and Gamma ray

afterglow



#### Luminosity

10<sup>51</sup> - 10<sup>53</sup> erg in few seconds
 (ten milliseconds to several minutes)

• Most (electromagnetically) luminous

• The same energy emitted by sun during 10 billion year

#### Duration BATSE results • 80 60 NUMBER OF BURSTS 40 20 0 0.001 1000. 0.01 0.1 1. 10. 100. T<sub>90</sub> (seconds)

### Progenitors

• Hypernova: stars with mass greater than 40 solar mass Long bursts

• Neutron star mergers

Short bursts

#### Source

- Fireball
- (jet+hard core)



Cannonball:
De Rujula, Dar
(...+accretion disk)



### Effect on life

• Rate: One per galaxy in million years. Few percent directed towards us

Life has existed on Earth for about billion years

(Ordovicion-Silurian extinction of 450 million years ago)

#### Our Galaxy

The threat to life from Eta Carinae and gamma ray bursts

Dar and De Rujula

Don't worry the jet does not point towards us.







#### Photon production

Protons are Fermi accelerated





#### Neutrino and Cosmic ray production

,

• Fireball model

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & \frac{1}{3} \text{ of all cases} \\ p + \pi^0 & \frac{2}{3} \text{ of all cases} \end{cases}$$

Neutrino production

$$\pi^+ \to \mu^+ + \nu_\mu ,$$
  
$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

Cosmic ray

$$n \to p + e^- + \bar{\nu}_e$$
,



#### Waxman-Bahcall limit

• Neutrino energies  $\sim 100 \,\mathrm{TeV} - 10 \,\mathrm{PeV}$ 

 $E_{\nu}^2 dN_{\nu}/dE_{\nu} \sim 5 \times 10^{-9} \,\mathrm{GeV cm^{-2} s^{-1} sr^{-1}}$ 

• Waxman and Bahcall, PRL78 (1997) 2292.

#### • ICECUBE collaboration, Nature 484 (2012) 351



### Cannonball model?

• Arnon Dar (1205.3479):

The upper limit on the flux of ultra high energy neutrinos from gamma-ray bursts (GRBs) that was reported recently by the IceCube collaboration contradicts predictions based on the Fireball model of GRBs, but does not exclude GRBs as a main source of ultra-high energy cosmic rays.

- Baerwald, Bustamante and Winter, 1301.6163:
  - 1. Optically thin to neutron escape regime. Neutrons from photohadronic interactions, which are not magnetically confined, can escape from the source ("neutron model").
  - 2. Direct escape regime. Directly escaping protons from the outer edges of the shells dominate the UHECR injection, at least at the highest energies.
  - 3. Optically thick to neutron escape regime. Only neutrons from the outer edges of the shells can escape.

#### Saving fireball Within the SM

#### Uncertainties in fireball model

Hummer, Baerwald and Winter, PRL108 (2012)



#### Saving fireball with beyond SM

• Neutrino spin precession to sterile neutrinos inside the source

Barranco et al, PLB 718 (2012) 26  $\mu_{\nu} \sim 10^{-15} \mu_B$ 

• Neutrino decay

Baerwald, Bustamante and Winter, JCAP 1210 (2010) 20

#### **Pseduo-Dirac neutrinos**

- Cocker Melia Volkas (2002,2000);
- Karenan et al, PLB 574 (2003);
- Beacom et al, PRL 92 (2004) ;
- Esmaili, PRD81 (2010)

## PseudoDirac neutrinos

- Implications of the Pseudo-Dirac Scenario for Ultra High Energy Neutrinos from GRBs
   Esmaili and Farzan, JCAP 1212 (2012) 014
- Explanation for the low flux of high energy astrophysical <u>muon-neutrinos</u> Pakvasa, Joshipura and Mohanty, 1209.5630
- <u>Effects of Beyond Standard Model Physics on GRB Neutrinos</u> Moharana and Borah, 1301.4097



Seesaw scenario
$$\mathcal{L}_{mass} = -\frac{1}{2} \overline{\Psi^c} M \Psi,$$
$$M = \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \qquad m_M \gg m_D$$
Mass eigenvalues:
$$-\frac{m_D^2}{m_M}, m_M$$

PseudoDirac scenario
$$\mathcal{L}_{mass} = -\frac{1}{2}\overline{\Psi^c}M\Psi,$$
 $M = \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix}$  $m_M \ll m_D$ Mass eigenvalues: $m_D + m_M/2$  $-m_D + m_M/2$ 

Pseudo-Dirac scenario
$$\mathcal{L}_{mass} = -\frac{1}{2} \overline{\Psi^c} M \Psi,$$
$$\Psi = (\nu_{L1}, \nu_{L2}, \nu_{L3}, \nu_{R1}^c, \nu_{R2}^c, \nu_{R3}^c)^T$$
$$M = \begin{pmatrix} 0 & m_D^T \\ m_D & m_M^* \end{pmatrix} \qquad m_M \ll m_D$$

#### Mass Basis

$$m_D = \operatorname{diag}\left(m_1, m_2, m_3\right)$$

$$m_2 = \sqrt{m_1^2 + \Delta m_{\rm sol}^2}$$
 and  $m_3 = \sqrt{m_1^2 + \Delta m_{\rm atm}^2}$ ,

## Mass eigen-system

$$\nu_{i}^{+} = \frac{\nu_{Li} + \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{+} \nu_{Lj} + \beta_{ij}^{+} \nu_{Rj}^{c}) ,$$
  
$$\nu_{i}^{-} = \frac{\nu_{Li} - \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{-} \nu_{Lj} + \beta_{ij}^{-} \nu_{Rj}^{c}) ,$$

$$\alpha_{ij}^{\pm}, \beta_{ij}^{\pm} \sim m_M/m_D \ll 1$$

## Mass eigen-system

$$\nu_{i}^{+} = \frac{\nu_{Li} + \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{+} \nu_{Lj} + \beta_{ij}^{+} \nu_{Rj}^{c}) ,$$
  
$$\nu_{i}^{-} = \frac{\nu_{Li} - \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{-} \nu_{Lj} + \beta_{ij}^{-} \nu_{Rj}^{c}) ,$$

$$\langle \nu_i^+ | \nu_i^- \rangle = 0$$
 and  $\langle \nu_i^- | \nu_j^- \rangle = \langle \nu_i^+ | \nu_j^+ \rangle = 0$ 

## Mass eigensystem

$$\nu_{i}^{+} = \frac{\nu_{Li} + \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{+} \nu_{Lj} + \beta_{ij}^{+} \nu_{Rj}^{c}) ,$$
  
$$\nu_{i}^{-} = \frac{\nu_{Li} - \nu_{Ri}^{c}}{\sqrt{2}} + \sum_{j \neq i} (\alpha_{ij}^{-} \nu_{Lj} + \beta_{ij}^{-} \nu_{Rj}^{c}) ,$$

$$(m_i^-)^2 = m_i^2 - \Delta m_i^2/2, (m_i^+)^2 = m_i^2 + \Delta m_i^2/2$$

$$\Delta m_i^2 \sim m_D m_M \ll \Delta m_{\rm sol,atm}^2$$

#### **Evolution in time of neutrinos**



$$|\nu_{\alpha}, t\rangle = \sum_{i} U_{\alpha i}^{*} \frac{e^{i\phi_{i}^{+}} |\nu_{i}^{+}\rangle + e^{i\phi_{i}^{-}} |\nu_{i}^{-}\rangle}{\sqrt{2}}$$

#### Evolution in time of antineutrinos



#### **Evolution in time of neutrinos**



$$|\nu_{\alpha}, t\rangle = \sum_{i} U_{\alpha i}^{*} \frac{e^{i\phi_{i}^{+}} |\nu_{i}^{+}\rangle + e^{i\phi_{i}^{-}} |\nu_{i}^{-}\rangle}{\sqrt{2}}$$

Oscillation probability in pseudo-Dirac scenario

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}, t = 0 | \nu_{\alpha}, t \rangle|^{2} =$$

$$\left|\sum_{i} U_{\beta i}^{*} U_{\alpha i} \frac{e^{i\phi_{i}^{+}} + e^{i\phi_{i}^{-}}}{2}\right|^{2}$$

Pure Dirac limit 
$$m_i^+ = m_i^- \quad \square \qquad \phi_i \equiv \phi_i^+ = \phi_i^-$$

#### Oscillation probability in Standard case

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}, t = 0 | \nu_{\alpha}, t \rangle|^{2} = \left| \sum_{i} U_{\beta i}^{*} U_{\alpha i} e^{i\phi_{i}} \right|^{2}$$

$$\phi_i = \frac{m_i^2 L}{2E}$$

#### Limits

• No non-Standard effect

$$\phi_i^+ - \phi_i^- \to 0$$

• Sensitivity to oscillation to sterile effect:

$$|\phi_i^+ - \phi_i^-| \stackrel{>}{\sim} \pi$$

• For solar neutrinos with MeV energy:

$$\Delta m_j^2 \sim 10^{-12} \ \mathrm{eV}^2$$

$$\Delta m_j^2 < 1.8 \times 10^{-12} \text{ eV}^2$$
 at  $3\sigma$  level

De Gouvea, Huang and Jenkins, PRD 80 (2009)

#### Oscillation probability in Standard case

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\langle \nu_{\beta}, t = 0 | \nu_{\alpha}, t \rangle|^{2} = \left| \sum_{i} U_{\beta i}^{*} U_{\alpha i} e^{im_{i}^{2}L/2E} \right|^{2}$$



#### Averaging out

- For a comparison: Sun-Earth distance=15000000 km
- For cosmic neutrinos, the interference term averaged out:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \langle |\langle \nu_{\beta}, t = 0 | \nu_{\alpha}, t \rangle|^{2} \rangle = \sum_{i} \left| U_{\beta i}^{*} U_{\alpha i} \right|^{2}$$

Unitarity:

$$\sum_{\beta} P_{\alpha\beta} = \sum_{\alpha} P_{\alpha\beta} = 1$$

#### Pseudo-Dirac scenario

 $|(m_i^+)^2 - (m_i^-)^2| \ll |(m_i^+)^2 - (m_j^+)^2|_{i \neq j} \simeq |(m_i^-)^2 - (m_j^-)^2|_{i \neq j}$ 

 $L \gg 10^8 \ km \frac{E}{\text{PeV}}$ 

$$P_{\alpha\beta} = \sum_{j=1}^{3} |U_{\alpha j}|^2 |U_{\beta j}|^2 \cos^2\left(\frac{\Delta\Phi_j}{2}\right) \quad \text{where} \quad \Delta\Phi_j \equiv \Phi_j^+ - \Phi_j^-$$

• Oscillation to sterile neutrinos

$$u_R \simeq rac{
u^+ - 
u^-}{\sqrt{2}}$$
 :

$$\sum_{\beta} P_{\alpha\beta}, \sum_{\alpha} P_{\alpha\beta} < 1$$

#### Phase at cosmological distances

$$\Phi_j^{\pm} = \int_t^{t_0} \frac{k}{a(t')} \left[ 1 + \left(\frac{m_j^{\pm}a(t')}{k}\right)^2 \right]^{1/2} dt'$$
$$\simeq \int_t^{t_0} \frac{k}{a(t')} dt' + \frac{(m_j^{\pm})^2}{2} \int_t^{t_0} \frac{a(t')}{k} dt' .$$

$$\Delta \Phi_j \equiv \Phi_j^+ - \Phi_j^- = \frac{\Delta m_j^2}{2} \int_t^{t_0} \frac{a(t')}{E_\nu} \, \mathrm{d}t' \; ,$$

 $E_{\nu} = k$   $E_{\nu} = E_{\nu}^{0}/(1+z)$ 

#### Phase

$$\Delta \Phi_j = \frac{\Delta m_j^2}{2E_{\nu}} D_H \int_0^z \frac{\mathrm{d}z'}{(1+z')^2 \sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} ,$$

 $D_H = c/H_0$  is the Hubble length with  $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$ 

$$\Omega_m = 0.27$$
 and  $\Omega_\Lambda = 0.73$ 

Saturation of baseline  $\Delta \Phi_j = \frac{\Delta m_j^2}{2E_\nu} L(z) ,$ 

$$L(z) = D_H \int_0^z \frac{\mathrm{d}z'}{(1+z')^2 \sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$



#### Averaging out limit

 $L \gg L_{\rm osc}$ 

• Independent of the spatial distribution of sources:

$$P_{\alpha\beta} = \frac{1}{2} \sum_{i} |U_{\alpha i}|^2 |U_{\beta i}|^2$$

- Half the conventional 3 neutrino scenario
- Robust result against matter effects

• Averaging over sources L

$$L \sim L_{\rm osc},$$

• Effective suppression factor

$$S_{\rm eff}(\Delta m_j^2, E_{\nu}) = \frac{\sum_k \left\langle \cos^2\left(\frac{\Delta \Phi_j(z_k, E_{\nu}^0)}{2}\right) \right\rangle \frac{dN_{\nu}(z_k, E_{\nu}^0)}{dE_{\nu}^0} \frac{(1+z_k)}{[d_c(z_k)]^2}}{\sum_k \frac{dN_{\nu}(z_k, E_{\nu}^0)}{dE_{\nu}^0} \frac{1+z_k}{[d_c(z_k)]^2}}$$

• Averaging over energy resolution

# Do we know know the redshift of sources?

- Measuring the X-ray spectrum of aftergolw
- Only the redshift of 13 sources out of 300 is measured
- Assumption: GRB rate star formation

Madau and Pozzetti (2001)

#### Suppression factor



The neutrino energy at Earth is fixed to  $E_{\nu} = 1$  PeV.

### Suppression over energy range

$$\overline{S_{\text{eff}}(\Delta m_j^2; E_{\nu}^1, E_{\nu}^2)} = \frac{\int_{E_{\nu}^1}^{E_{\nu}^2} \sum_k \left\langle \cos^2\left(\frac{\Delta \Phi_j(z_k, E_{\nu}^0)}{2}\right) \right\rangle \frac{dN_{\nu}(z_k, E_{\nu}^0)}{dE_{\nu}^0} \frac{(1+z_k)}{[d_c(z_k)]^2} \, \mathrm{d}E_{\nu}}{\int_{E_{\nu}^1}^{E_{\nu}^2} \sum_k \frac{dN_{\nu}(z_k, E_{\nu}^0)}{dE_{\nu}^0} \frac{(1+z_k)}{[d_c(z_k)]^2} \, \mathrm{d}E_{\nu}}$$



The assumed energy range is  $(E_{\nu}^1, E_{\nu}^2) = (0.1, 3)$  PeV.

#### Distortion of energy spectrum









#### Short summary

• Pseudo-Dirac scenario can partially solve the problem of missing neutrinos from GRB sources.



#### Diffuse neutrinos from supernova

- If SN is inside our galaxy, Super-Kamiokande can detect thousands.
- Neutrinos from SN at cosmological distances diffuse neutrinos

Energy ~ 10 MeV 
$$\square$$
 Down to  $\Delta m_j^2 \sim 10^{-18} \text{eV}^2$  total averaging

## Conclusions on Diffuse SN neutrino

- An energy-independent suppression of  $\frac{1}{2}$ ;
- Uncertainty in prediction of the flux of diffuse SN neutrinos:
- A factor of 4
- Observation cannot rule out pseudo-Dirac scenario but can rule in those models that predict too much.

• Distortion of spectrum: 
$$\Delta m_j^2 \sim 10^{-25} \text{ eV}^2$$

#### Our sponsors



#### Our sponsor •

Special thanks to Belen Gavela and Silvia Pascoli •

Allameh Tabatabii grant of Prof Sheikh-Jabbari •



- <u>www.invisibles.eu</u>
- Post-doctoral and PhD positions in Europe
- Meetings

. . . .

• On-line webinars

#### Thanks

• To all speakers and participants

 1/3 of speakers were female. In sending invitation, I did not have gender issue in mind. It turned out to be like that. Considering the mix of younger participants, I hope and predict that in recent future, we can reach 50/50 just naturally without any doping!

#### Special thanks to

- Ms Pileroudi
- Ms Jam
- Ms Babanzadeh
- Mr Iman Bagheri
- Mr Aliabadi
- Mr Zare