B physics and MSSM

Nazila Mahmoudi

CERN TH & LPC Clermont-Ferrand (France)

IPP Workshop and school, IPM, May 4th, 2013

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion		
•0000	0000		0000000000000				
A successful story							

Standard Model (SM)

- Based on $SU(3) \times SU(2) \times U(1)$
- Fermions can be grouped into 3 flavour families:

Up type quarks $(3)_{+2/3}$	и	С	t
Down type quarks $(3)_{-1/3}$	d	S	Ь
Charged leptons $(1)_{-1}$	е	μ	au
Neutrinos (1) ₀	ν_{e}	$ u_{\mu}$	ν_{τ}

Flavour physics describes interactions that distinguish between fermion generations **Flavour mixings** can be parametrized by the CKM matrix

FCNC (Flavour changing neutral current): processes that involve either up- or

down-type quarks but not both \rightarrow highly suppressed in the SM

MFV (Minimal Flavour Violation): Flavour and CP symmetries broken as in the SM

- \rightarrow all flavour/CP violating interactions linked to SM structure of Yukawa couplings
- Bosons: Z and W bosons, photon, gluon and Higgs

• + anti-particles

A remarkably successful theory!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion		
•0000	0000		0000000000000				
A successful story							

Standard Model (SM)

- Based on $SU(3) \times SU(2) \times U(1)$
- Fermions can be grouped into 3 flavour families:

Up type quarks $(3)_{+2/3}$	и	С	t
Down type quarks $(3)_{-1/3}$	d	S	Ь
Charged leptons $(1)_{-1}$	е	μ	au
Neutrinos (1) ₀	ν_{e}	$ u_{\mu}$	ν_{τ}

Flavour physics describes interactions that distinguish between fermion generations **Flavour mixings** can be parametrized by the CKM matrix

FCNC (Flavour changing neutral current): processes that involve either up- or

down-type quarks but not both \rightarrow highly suppressed in the SM

MFV (Minimal Flavour Violation): Flavour and CP symmetries broken as in the SM

- \rightarrow all flavour/CP violating interactions linked to SM structure of Yukawa couplings
- Bosons: Z and W bosons, photon, gluon and Higgs

+ anti-particles

A remarkably successful theory!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion		
•0000	0000		0000000000000				
A successful story							

Standard Model (SM)

- Based on $SU(3) \times SU(2) \times U(1)$
- Fermions can be grouped into 3 flavour families:

Up type quarks $(3)_{+2/3}$	и	С	t
Down type quarks $(3)_{-1/3}$	d	S	Ь
Charged leptons $(1)_{-1}$	е	μ	au
Neutrinos (1) ₀	ν_{e}	$ u_{\mu}$	ν_{τ}

Flavour physics describes interactions that distinguish between fermion generations **Flavour mixings** can be parametrized by the CKM matrix

FCNC (Flavour changing neutral current): processes that involve either up- or

down-type quarks but not both \rightarrow highly suppressed in the SM

MFV (Minimal Flavour Violation): Flavour and CP symmetries broken as in the SM

- \rightarrow all flavour/CP violating interactions linked to SM structure of Yukawa couplings
- Bosons: Z and W bosons, photon, gluon and Higgs

+ anti-particles

A remarkably successful theory!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
0000					
Beyond the SM					

- Gravitation does not fit in the SM framework
- Dark matter, Dark energy
- Hierarchy problem
- Unification of the fundamental interactions
- ...

Going beyond the SM appears as a necessity!

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

The hope is that LHC will bring some answers!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
0000					
Beyond the SM					

- Gravitation does not fit in the SM framework
- Dark matter, Dark energy
- Hierarchy problem
- Unification of the fundamental interactions
- ...

Going beyond the SM appears as a necessity!

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

The hope is that LHC will bring some answers!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
0000					
Beyond the SM					

- Gravitation does not fit in the SM framework
- Dark matter, Dark energy
- Hierarchy problem
- Unification of the fundamental interactions
- ...

Going beyond the SM appears as a necessity!

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

The hope is that LHC will bring some answers!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
0000					
${\sf Beyond} \ {\sf the} \ {\sf SM}$					

- Gravitation does not fit in the SM framework
- Dark matter, Dark energy
- Hierarchy problem
- Unification of the fundamental interactions
- ...

Going beyond the SM appears as a necessity!

Searches for New Physics

- direct detection of new physics particles
- nature of Dark Matter
- indirect evidence for new physics

The hope is that LHC will bring some answers!

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion		
00000							
Direct searches for new particles							

ATLAS and CMS main searches:

- Higgs bosons
- New Physics (NP)

most studied theoretically most considered experimentally

Supersymmetry (SUSY)

<u>ini</u>

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion			
00000								
Indirect search	Indirect searches using flavour data							

LHCb

- LHCb has a very rich program to search for indirect signs of new physics!
- In the past, the *B* physics experiment objectives were focused on the tests of the CKM matrix for a long time, but this is now well established!
- Focus is now towards the new physics! And search for the indirect signs of new physics

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
00000					
Interplay betwee	en direct and	indirect searches			

The combination of information from both sectors can help us to pin down the underlying NP scenario!

Let's consider Supersymmetry!

- Direct searches for SUSY particles: the limits on the masses are being pushed higher and higher.
- This is not enough!
- Interplay can play a crucial role

Also interesting non-LHC data on dark matter

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Minimal Supers	ymmetric Mo	odel (MSSM)			

Supersymmetry is based on an additional symmetry between fermions and bosons

SM particle	spin	Superpartner	spin
quarks	1/2	squarks	0
leptons	1/2	sleptons	0
gauge bosons	1	gauginos	1/2
Higgs bosons	0	higgsinos	1/2

gauginos + higgsinos mix to 2 charginos + 4 neutralinos

2 Higgs doublets \rightarrow 5 physical Higgs bosons:

- neutral states: scalar h, H; pseudoscalar A
- charged states: H^+ , H^-

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case,
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- To keep δm_{H}^{2} under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case, SUSY must be broken
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- To keep δm_{H}^{2} under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case, SUSY must be broken
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- To keep δm_{H}^{2} under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case, SUSY must be broken
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- To keep δm_{H}^{2} under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case, SUSY must be broken
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- $\bullet~{\rm To~keep}~\delta m_{H}^{2}$ under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Supersymmetry					

- If SUSY were an exact symmetry, the SM particles and their supersymmetric partners would have the same masses.
- As this is not the case, SUSY must be broken
- Fortunately, how SUSY is broken is irrelevant for phenomenology
- This is the mediation mechanism and the associated scale of SUSY breaking which is important
- $\bullet~{\rm To~keep}~\delta m_{H}^{2}$ under control, the superparticles should have masses of about 1 TeV
- One can expect SUSY to be in the reach of LHC!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion			
	0000							
Constrained MSSM scenarios								

Minimal Supersymmetric extension of the Standard Model (MSSM)

- More than 100 free parameters
- Very difficult to perform systematic studies

A way out: Constrained MSSM scenarios

- Assume universality at GUT scale
 - \rightarrow Reduces the number of free parameters to a handful!
- Most well known scenario: CMSSM (or mSUGRA)

Universal parameters: scalar mass m_0 , gaugino mass $m_{1/2}$, trilinear soft coupling A_0 and Higgs parameters (sign of μ and tan β)

 \rightarrow Very useful for phenomenology, benchmarking, model discrimination, ...

 \rightarrow But not representative of the whole MSSM!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion			
	0000		0000000000000					
Constrained MSSM scenarios								

Minimal Supersymmetric extension of the Standard Model (MSSM)

- More than 100 free parameters
- Very difficult to perform systematic studies

A way out: Constrained MSSM scenarios

• Assume universality at GUT scale

 \rightarrow Reduces the number of free parameters to a handful!

• Most well known scenario: CMSSM (or mSUGRA)

Universal parameters: scalar mass m_0 , gaugino mass $m_{1/2}$, trilinear soft coupling A_0 and Higgs parameters (sign of μ and tan β)

 \rightarrow Very useful for phenomenology, benchmarking, model discrimination, ...

 \rightarrow But not representative of the whole MSSM!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
	0000				
Going beyon	d CMSSM				

Phenomenological MSSM (pMSSM)

- The most general CP/R parity-conserving MSSM
- Minimal Flavour Violation at the TeV scale
- The first two sfermion generations are degenerate
- The three trilinear couplings are general for the 3 generations

\rightarrow 19 free parameters

10 sfermion masses: $M_{\tilde{\mathbf{e}}_{L}} = M_{\tilde{\mu}_{L}}$, $M_{\tilde{\mathbf{e}}_{R}} = M_{\tilde{\mu}_{R}}$, $M_{\tilde{\tau}_{L}}$, $M_{\tilde{\tau}_{R}}$, $M_{\tilde{\mathbf{q}}_{1L}} = M_{\tilde{\mathbf{q}}_{2L}}$, $M_{\tilde{\mathbf{q}}_{3L}}$, $M_{\tilde{\mu}_{R}} = M_{\tilde{e}_{R}}$, $M_{\tilde{t}_{R}}$, $M_{\tilde{d}_{R}} = M_{\tilde{s}_{R}}$, $M_{\tilde{b}_{R}}$ 3 gaugino masses: M_{1} , M_{2} , M_{3} 3 trilinear couplings: $A_{d} = A_{s} = A_{b}$, $A_{u} = A_{c} = A_{t}$, $A_{e} = A_{\mu} = A_{\tau}$ 3 Higgs/Higgsino parameters: M_{A} , tan β , μ A. Djouadi et al., hep-ph/9901246

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		0000000			

Flavour Physics

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		●000000			
Why is flavour p	hysics intere	sting?			

Flavour physics is sensitive to new physics at $\Lambda_{\rm NP} \gg E_{\rm experiments}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

CP violation is closely related to flavour physics

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation is needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If such NP has a generic flavour structure, it should contribute to FCNC processes

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Flavour and Nev	w Physics				

Assuming a generic flavour structure

Parametrisation of New Physics, with Higher Dimensional Operators:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda_{\rm NP}} \mathcal{L}^{(5)} + \frac{1}{\Lambda_{\rm NP}^2} \mathcal{L}^{(6)} + \cdots$$

with

• $\Lambda_{\rm NP}\colon$ New Physics scale

•
$$\mathcal{L}^{(n)}:\sum_{i}C_{i}O_{i}^{(n)}$$

• $O_i^{(n)}$: Local operators of dimension n

Example: B_s mixings, $O^{(6)} = (\bar{b}\gamma_\mu P_L s)(\bar{b}\gamma_\mu P_L s)$

$$\rightarrow \Lambda_{\rm NP}\gtrsim 70 \text{ TeV}$$

ightarrow Any NP below the 1 TeV scale must have a non-generic flavour structure!

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Why is it compl	icated?				

Two different problems here due to mixture of strong/weak:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem M_W , m_b , $\Lambda_{\rm QCD}$, $m_{\rm light}$

Here scales of order m_b (or lower)!

So why not integrate out heavier degrees of freedom (t, W, Z)? (with still *b*, *c*, *s*, *d*, *u*, *g* and γ as dynamical particles)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Why is it compl	icated?				

Two different problems here due to mixture of strong/weak:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem M_W , m_b , $\Lambda_{\rm QCD}$, $m_{\rm light}$

Here scales of order m_b (or lower)!

So why not integrate out heavier degrees of freedom (t, W, Z)? (with still *b*, *c*, *s*, *d*, *u*, *g* and γ as dynamical particles)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Basic idea					

Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\rm eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \left[\sum_{i=1\cdots 10, S, P} C_{i}(\mu) \mathcal{O}_{i}(\mu) \right]$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NP}$
- Additional operators: $\sum C_j^{NP} \mathcal{O}_j^{NP}$

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Basic idea					

Effective field theory approach:

separation between low and high energies using Operator Product Expansion

- short distance: Wilson coefficients, computed perturbatively
- long distance: local operators

$$\mathcal{H}_{\rm eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \left[\sum_{i=1\cdots 10, S, P} C_{i}(\mu) \mathcal{O}_{i}(\mu) \right]$$

New physics:

- Corrections to the Wilson coefficients: $C_i \rightarrow C_i + \Delta C_i^{NP}$
- Additional operators: $\sum_{j} C_{j}^{NP} \mathcal{O}_{j}^{NP}$

Introduction 00000	SUSY 0000	Flavour Physics 0000€00	Observables 000000000000000	Implications	Conclusion O
\mathcal{O} perators					
$egin{aligned} \mathcal{O}_1 &= (ar{s}\gamma_\mu \ \mathcal{O}_2 &= (ar{s}\gamma_\mu \ \end{pmatrix}$	$T^{a}P_{L}c)(ar{c}\gamma^{\mu}P_{L}c)(ar{c}\gamma^{\mu}P_{L}c)$	T°P _L b) b)	u W	b u u current	b
$egin{aligned} O_3 &= (ar{s}\gamma_\mu\ O_4 &= (ar{s}\gamma_\mu\ O_5 &= (ar{s}\gamma_\mu\ O_6 &= (ar{s}\gamma$	$\begin{array}{l} P_L b) \sum_{q} (\bar{q} \gamma^{\mu} \\ T^{a} P_L b) \sum_{q} (i \\ {}_{1} \gamma_{\mu_2} \gamma_{\mu_3} P_L b) \\ {}_{1} \gamma_{\mu_2} \gamma_{\mu_3} T^{a} P_L \end{array}$		d u	$ \begin{array}{c} \mathbf{b} \mathbf{d} \mathbf{w} \mathbf{b} \\ \mathbf{u}_{\mathbf{c},\mathbf{t}} \mathbf{u}_{\mathbf{c},\mathbf{t}} \\ \mathbf{q} \mathbf{q} \\ \mathbf{c} \mathbf{q} \\ \mathbf{E} \text{lectroweak points} \end{array} $	d u.c.t b W y y y y y y y y y y y y y y y y y y y
$O_7=rac{e}{16\pi^2}$ $O_8=rac{g_s}{16\pi^2}$	$\begin{bmatrix} \bar{s}\sigma^{\mu\nu}(m_s P_L) \\ \bar{s}\sigma^{\mu\nu}(m_s P_L) \end{bmatrix}$	$+ m_b P_R b \Big] F_{\mu\nu} + m_b P_R T^a b \Big] G^a_{\mu\nu}$		$\begin{array}{c} b \\ w \\ t \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	
$O_9 = rac{e^2}{(4\pi)^2} O_{10} = rac{e^2}{(4\pi)^2}$	$(\overline{s}\gamma^{\mu}b_{L})(\overline{l}\gamma_{\mu})$ $(\overline{s}\gamma^{\mu}b_{L})(\overline{l}\gamma_{\mu})$	l) ,γ5l)		Magnetic operators d t	

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		0000000			
Wilson coefficie	nts				

Two main steps:

• Calculating $C_i^{eff}(\mu)$ at scale $\mu \sim M_W$ by requiring matching between the effective and full theories

$$C_i^{\text{eff}}(\mu) = C_i^{(0)\text{eff}}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_i^{(1)\text{eff}}(\mu) + \cdots$$

• Evolving the $C_i^{eff}(\mu)$ to scale $\mu \sim m_b$ using the RGE:

$$\mu \frac{d}{d\mu} C_i^{\text{eff}}(\mu) = C_j^{\text{eff}}(\mu) \gamma_{ji}^{\text{eff}}(\mu)$$

driven by the anomalous dimension matrix $\hat{\gamma}^{\textit{eff}}(\mu)$:

$$\hat{\gamma}^{\text{eff}}(\mu) = rac{lpha_{s}(\mu)}{4\pi} \hat{\gamma}^{(0)\text{eff}} + rac{lpha_{s}^{2}(\mu)}{(4\pi)^{2}} \hat{\gamma}^{(1)\text{eff}} + \cdots$$

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
		000000			
Form factors an	d decay cons	stants			

To compute the amplitudes:

$$\mathcal{A}(A o B) = \langle B | \mathcal{H}_{ ext{eff}} | A
angle = rac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A
angle(\mu)$$

 $\langle B|\mathcal{O}_i|A\rangle$: hadronic matrix element

How to compute matrix elements?

 \rightarrow Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

ightarrow Describe hadronic matrix elements in terms of hadronic quantities

Two types of hadronic quantities:

- Decay constants: Probability amplitude of hadronizing quark pair into a given hadron
- Form factors: Transition from a meson to another through flavour change

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			• 0000 000000000		
Observables					

Rare decays of interest for LHCb

• $B_s \rightarrow \mu^+ \mu^-$

•
$$B \rightarrow K^* \mu^+ \mu^-$$

- Branching Ratio (BR)
- Forward-Backward Asymmetry (A_{FB}, A_{FB0})
- Many angular observables (F_L, S₃, A_{Im}, ...)

Other important rare decays

•
$$B \to X_s \gamma$$

• $B \to \tau \nu_{\tau}$ (and similarly $B \to D \tau \nu_{\tau}$, $D_s \to \tau \nu_{\tau}$, $K \to \mu \nu_{\mu}$, ...)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			• 0000 000000000		
Observables					

Rare decays of interest for LHCb

• $B_s \rightarrow \mu^+ \mu^-$

•
$$B \rightarrow K^* \mu^+ \mu^-$$

- Branching Ratio (BR)
- Forward-Backward Asymmetry (A_{FB}, A_{FB0})
- Many angular observables (F_L, S₃, A_{Im}, ...)

Other important rare decays

•
$$B \to X_s \gamma$$

•
$$B o au
u_{ au}$$
 (and similarly $B o D au
u_{ au}$, $D_s o au
u_{ au}$, $K o \mu
u_{\mu}$, ...)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			000000000000000000000000000000000000000		
$BR(B_s \to \mu^+ \mu^-)$					

Relevant operators:

2

$$\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{\ell}\gamma_{\mu}\gamma_5 \ell)$$

$$Q_1 = \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\ell)$$

$$Q_2 = \frac{e^2}{16\pi^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{\ell}\gamma_5 \ell)$$

$$BR(B_s \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 \tau_{B_s} m_{B_s}^3 |V_{tb} V_{ts}^*|^2 \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}}$$

$$\times \left\{ \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2}\right) \left| C_{Q_1} - C'_{Q_1} \right|^2 + \left| (C_{Q_2} - C'_{Q_2}) + 2(C_{10} - C'_{10}) \frac{m_{\mu}}{m_{B_s}} \right|^2 \right\}^s \xrightarrow{h, H, A, Z} \mu^-$$

Very sensitive to new physics, especially for large $\tan \beta$: SUSY contributions can lead to an O(100) enhancement over the SM!

, u, c, t
Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 0000000000000000000000000000000		
$BR(B_{s} \to \mu^{+}\mu^{-}$)				

First experimental evidence:

$$BR(B_s \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (\text{stat})^{+0.5}_{-0.3} (\text{syst})) \times 10^{-9}$$

LHCb, Phys. Rev. Lett. 110 (2013) 021801

Previous limit: BR($B_s \rightarrow \mu^+ \mu^-$) < 4.2 \times 10⁻⁹ at 95% C.L.

ATLAS+CMS+LHCb combined value, LHCb-CONF-2012-017

- \rightarrow Consistent with the SM value!
- \rightarrow Crucial to have a clear estimation of the SM prediction!

Main source of uncertainty: f_{B_s}

- ETMC-11: 232 ± 10 MeV
- $\bullet~$ Fermilab-MILC-11: $~\mathbf{242}\pm\mathbf{9.5}~$ MeV

Our choice: 234 \pm 10 MeV

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 0000000000000000000000000000000		
$BR(B_{s} \to \mu^{+}\mu^{-}$)				

First experimental evidence:

$$BR(B_s \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (\text{stat})^{+0.5}_{-0.3} (\text{syst})) \times 10^{-9}$$

LHCb, Phys. Rev. Lett. 110 (2013) 021801

Previous limit: BR($B_s
ightarrow \mu^+ \mu^-$) < 4.2 imes 10⁻⁹ at 95% C.L.

ATLAS+CMS+LHCb combined value, LHCb-CONF-2012-017

- \rightarrow Consistent with the SM value!
- \rightarrow Crucial to have a clear estimation of the SM prediction!

Main source of uncertainty: f_{B_s}

- ETMC-11: 232 \pm 10 MeV • HPQCD-12: 227 \pm 10 MeV HPQCD NR-09: 231 \pm 15 MeV
- HPQCD HISQ-11: 225 \pm 4 MeV
- Fermilab-MILC-11: 242 ± 9.5 MeV

```
Our choice: 234 \pm 10 MeV
```


Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 0000000000000000000000000000000		
$BR(B_{s} \to \mu^{+}\mu^{-}$)				

First experimental evidence:

$$BR(B_s \to \mu^+ \mu^-) = (3.2^{+1.4}_{-1.2} (\text{stat})^{+0.5}_{-0.3} (\text{syst})) \times 10^{-9}$$

LHCb, Phys. Rev. Lett. 110 (2013) 021801

Previous limit: BR($B_s \rightarrow \mu^+ \mu^-$) < 4.2 \times 10⁻⁹ at 95% C.L.

ATLAS+CMS+LHCb combined value, LHCb-CONF-2012-017

- \rightarrow Consistent with the SM value!
- \rightarrow Crucial to have a clear estimation of the SM prediction!

Main source of uncertainty: f_{B_s}

- ETMC-11: 232 ± 10 MeV
- \bullet HPQCD-12: 227 \pm 10 MeV HPQCD NR-09: 231 \pm 15 MeV HPQCD HISQ-11: 225 \pm 4 MeV
- Fermilab-MILC-11: 242 ± 9.5 MeV

```
Our choice: 234 \pm 10 MeV
```


Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			000000000000000000000000000000000000000		
${\sf BR}(B_s o \mu^+ \mu^-$)				

Up-to-date input parameters (PDG 2012):

V _{ts}	V _{tb}	m _{Bs}	τ_{B_s}	$m_t^{ m pole}$
-0.0404	0.999146	5.3663 GeV	1.497 ps	173.5 GeV

SM prediction:
$${
m BR}(B_s o \mu^+\mu^-) = (3.53\pm0.38) imes 10^{-9}$$

FM, S. Neshatpour, J. Orloff, JHEP 1208 (2012) 092

Most important sources of uncertainties:

8% from *f_{Bs}* 2% from EW corrections 2% from scales 2% from B_s lifetime 5% from V_{ts} 1.3% from top mass

Overall TH uncertainty: $\sim 10\%$.

Using $f_{B_s} = 227$ MeV and $\tau_{B_s} = 1.466$ ps, one gets: BR $(B_s \rightarrow \mu^+ \mu^-) = 3.25 \times 10^{-9}$

Experimental expectations: uncertainty vs. luminosity

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys. Rev. D87 (2013) 035026

Red line: systematic uncertainty of 5% for LHCb Green line: ultimate systematic uncertainty of 1% for LHCb Dashed lines: LHC combinations

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 00000 0000		
$B ightarrow K^* \mu^+ \mu^-$ –	- Angular dis	tributions			

Angular distributions

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-$ with $\bar{K}^{*0} \to K^- \pi^+$ on the mass shell is completely described by four independent kinematic variables:

- q^2 : dilepton invariant mass squared
- θ_{ℓ} : angle between ℓ^- and the \bar{B} in the dilepton frame
- θ_{K^*} : angle between K^- and \bar{B} in the $K^-\pi^+$ frame
- ϕ : angle between the normals of the $K^-\pi^+$ and the dilepton planes

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_{K^*}\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_{K^*},\phi)$$

Kinematics: $4m_{\ell}^2 \leq q^2 \leq (M_B - m_{K^*})^2$, $-1 \leq \cos \theta_{\ell} \leq 1$, $-1 \leq \cos \theta_{K^*} \leq 1$, $0 \leq \phi \leq 2\pi$ $J(q^2, \theta_{\ell}, \theta_{K^*}, \phi)$ are written in function of the angular coefficients $J_{1-9}^{s,c}$ J_{1-9} : functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 00000 0000		
$B ightarrow K^* \mu^+ \mu^-$ –	Observable	S			

Dilepton invariant mass spectrum

$$\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$$

Forward backward asymmetry

Difference between the differential branching fractions in the forward and backward directions:

$$A_{\rm FB}(q^2) \equiv \left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \left/ \frac{d\Gamma}{dq^2} = \frac{3}{8}J_6 \right/ \frac{d\Gamma}{dq^2}$$

 \rightarrow Reduced theoretical uncertainty

Forward backward asymmetry zero-crossing

 \rightarrow Reduced form factor uncertainties

$$q_0^2 \simeq -2m_b m_B rac{C_9^{ ext{eff}}(q_0^2)}{C_7} + O(lpha_s, \Lambda/m_b)$$

 \rightarrow fix the sign of $\mathit{C}_{9}/\mathit{C}_{7}$

24 / 39

Polarization fractions:

$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$
$$F_T(q^2) = 1 - F_L(q^2) = \frac{|A_{\perp}|^2 + |A_{\parallel}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2}$$

K^* polarization parameter:

$$\alpha_{K^*}(q^2) = \frac{2F_L}{F_T} - 1 = \frac{2|A_0|^2}{|A_{\parallel}|^2 + |A_{\perp}|^2} - 1$$

Transverse asymmetries:

$$A_{T}^{(1)}(q^{2}) = \frac{-2\Re(A_{\parallel}A_{\perp}^{*})}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}} \qquad A_{T}^{(2)}(q^{2}) = \frac{|A_{\perp}|^{2} - |A_{\parallel}|^{2}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}$$
$$A_{T}^{(3)}(q^{2}) = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad A_{T}^{(4)}(q^{2}) = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$
$$A_{Im}^{(q^{2})} = -2\operatorname{Im}\left(\frac{A_{\parallel}A_{\perp}^{*}}{|A_{\perp}|^{2} + |A_{\parallel}|^{2}}\right) \qquad S_{3}(q^{2}) = \frac{1}{2}(1 - F_{L}(q^{2}))A_{T}^{(2)}(q^{2})$$

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 000000 0000		
$B ightarrow K^* \mu^+ \mu^-$ –	SM predict	ions			

Observable	SM value	(FF)	(SL)	(QM)	(CKM)	(Scale)
$10^7 imes BR(B ightarrow K^* \mu^+ \mu^-)_{[1,6]}$	2.32	±1.34	±0.04	$^{+0.04}_{-0.03}$	+0.08 -0.13	+0.09 -0.05
$\langle A_{FB}(B ightarrow K^* \mu^+ \mu^-) angle_{[1,6]}$	-0.06	±0.04	±0.02	± 0.01	—	—
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle_{[1,6]}$	0.71	±0.13	± 0.01	± 0.01	—	—
$q_0^2(B ightarrow K^* \mu^+ \mu^-)/{ m GeV}^2$	4.26	±0.30	± 0.15	$^{+0.14}_{-0.04}$	_	$^{+0.02}_{-0.04}$

FM, S. Neshatpour, J. Orloff, JHEP 1208 (2012) 092

Main uncertainties from:

- form factors
- 1/mb subleading corrections
- parametric uncertainties (m_b, m_c, m_t)
- CKM matrix elements
- scales

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000 00000 0000		
$B ightarrow K^* \mu^+ \mu^-$ –	Experiment	al results from LHC	Cb		

LHCB-CONF-2012-008

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000000000 000		
Other rare deca	ys				

Inclusive branching ratio of $B \rightarrow X_s \gamma$

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			000000000000000000000000000000000000000		
Other rare deca	ys				

Inclusive branching ratio of $B \rightarrow X_s \gamma$

Experimental values (HFAG 2012): ${
m BR}(\bar{B} o X_s \gamma) = (3.43 \pm 0.21 \pm 0.07) imes 10^{-4}$

SM prediction: ${
m BR}(ar{B}
ightarrow X_s \gamma) = (3.08 \pm 0.23) imes 10^{-4}$

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			000000000000000000000000000000000000000		
$B o X_s \gamma$					

NNLO calculations available for the SM

$$\begin{aligned} & \mathrm{BR}(\bar{B} \to X_{s}\gamma)_{E_{\gamma} > E_{0}} = \mathrm{BR}(\bar{B} \to X_{c}e\bar{\nu})_{\mathrm{exp}} \left| \frac{V_{ts}^{*}V_{tb}}{V_{cb}} \right|^{2} \frac{6\alpha_{\mathrm{em}}}{\pi C} \left[P(E_{0}) + N(E_{0}) \right] \\ & P(E_{0}) = P^{(0)}(\mu_{b}) + \alpha_{s}(\mu_{b}) \left[P_{1}^{(1)}(\mu_{b}) + P_{2}^{(1)}(E_{0},\mu_{b}) \right] \\ & + \alpha_{s}^{2}(\mu_{b}) \left[P_{1}^{(2)}(\mu_{b}) + P_{2}^{(2)}(E_{0},\mu_{b}) + P_{3}^{(2)}(E_{0},\mu_{b}) \right] + \mathcal{O}\left(\alpha_{s}^{3}(\mu_{b})\right) \end{aligned}$$

2

Reduced scale dependence:

M. Misiak et al., Phys. Rev. Lett. 98 (2007)

Nazila Mahmoudi

IPP school and workshop - May 4th, 2013

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000000000000		
B ightarrow au u					

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

$$BR(B \to \tau\nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|^2$$

$$\epsilon_0 = -\frac{2\alpha_s}{3\pi} \frac{\mu}{m_{\tilde{g}}} H_2 \left(\frac{m_Q^2}{m_{\tilde{g}}^2}, \frac{m_D^2}{m_{\tilde{g}}^2}\right), \quad H_2(x, y) = \frac{x \ln x}{(1 - x)(x - y)} + \frac{y \ln y}{(1 - y)(y - x)}$$

$$\bigstar \text{ Large uncertainty from } V_{ub} \text{ and } f_B$$

 ${\sf BR}(B o au
u)_{
m SM} = (1.15 \pm 0.29) imes 10^{-4}$ Theoretical uncertainty on ${\sf BR}(B o au
u)$: 25%

with $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3}$ and $f_B = 194 \pm 10$ MeV

Experimental average (ICHEP 2012): BR $(B \rightarrow \tau \nu) = (1.14 \pm 0.23) \times 10^{-4}$

Similar processes: $B \to D \tau \nu_{\tau}$, $D_s \to \ell \nu_{\ell}$, $D \to \mu \nu_{\mu}$, $K \to \mu \nu_{\mu}$, ...

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000000000000		
B ightarrow au u					

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

$$BR(B \to \tau\nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|^2$$
$$\epsilon_0 = -\frac{2\alpha_s}{3\pi} \frac{\mu}{m_g^2} H_2 \left(\frac{m_Q^2}{m_g^2}, \frac{m_D^2}{m_g^2}\right), \quad H_2(x, y) = \frac{x \ln x}{(1 - x)(x - y)} + \frac{y \ln y}{(1 - y)(y - x)}$$

 \triangle Large uncertainty from V_{ub} and f_B

 ${\sf BR}(B \to \tau \nu)_{\rm SM} = (1.15 \pm 0.29) \times 10^{-4}$ Theoretical uncertainty on ${\sf BR}(B \to \tau \nu)$: 25%

with $|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3}$ and $f_{B} = 194 \pm 10$ MeV

Experimental average (ICHEP 2012): BR $(B \rightarrow \tau \nu) = (1.14 \pm 0.23) \times 10^{-4}$

Similar processes: $B \to D \tau \nu_{\tau}$, $D_s \to \ell \nu_{\ell}$, $D \to \mu \nu_{\mu}$, $K \to \mu \nu_{\mu}$, ...

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
			00000000000000		
B ightarrow au u					

Tree level process, mediated by W^+ and H^+ , higher order corrections from sparticles

$$BR(B \to \tau\nu) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_\tau^2 f_B^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left|1 - \left(\frac{m_B^2}{m_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|^2$$

$$\epsilon_0 = -\frac{2\alpha_s}{3\pi} \frac{\mu}{m_{\tilde{g}}} H_2 \left(\frac{m_Q^2}{m_{\tilde{g}}^2}, \frac{m_D^2}{m_{\tilde{g}}^2}\right), \quad H_2(x, y) = \frac{x \ln x}{(1 - x)(x - y)} + \frac{y \ln y}{(1 - y)(y - x)}$$

 $\mathsf{BR}(B \to \tau \nu)_{\rm SM} = (1.15 \pm 0.29) \times 10^{-4}$ Theoretical uncertainty on $\mathsf{BR}(B \to \tau \nu)$: 25%

with $|V_{\mu b}| = (4.15 \pm 0.49) imes 10^{-3}$ and $f_{B} = 194 \pm 10$ MeV

Experimental average (ICHEP 2012): BR $(B \rightarrow \tau \nu) = (1.14 \pm 0.23) \times 10^{-4}$

Similar processes: $B \to D\tau\nu_{\tau}$, $D_s \to \ell\nu_{\ell}$, $D \to \mu\nu_{\mu}$, $K \to \mu\nu_{\mu}$, ...

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				0000000	

Implications

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				• 00 00000	
CMSSM					

 $\mathsf{CMSSM} = \mathsf{MSSM} \text{ with universality assumptions}$

 \rightarrow 4 parameters + 1 sign

Two possible approaches:

- Scans over 2 parameters, other parameters fixed
- Flat scans over all the parameters

Parameter	Range (in GeV)
aneta	[1, 60]
<i>m</i> 0	[50, 3500]
<i>m</i> _{1/2}	[50, 3500]
A ₀	[-10000, 10000]
$sign(\mu)$	± 1

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				0000000	
Constraints on	СМЅЅМ				

Constrained MSSM with m_0 and $m_{1/2}$ varied, $\mu > 0$, and A_0 and tan β fixed

Present situation (using the latest results):

Dashed black line: CMS exclusion limit with 1.1 $\rm fb^{-1}$ data Dashed white line: CMS exclusion limit with 4.4 $\rm fb^{-1}$ data

FM, Superlso v3.2

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				0000000	
Constraints on	CMSSM				

Constrained MSSM with m_0 and $m_{1/2}$ varied, $\mu > 0$, and A_0 and tan β fixed

Present situation (using the latest results):

Dashed black line: CMS exclusion limit with 1.1 fb^{-1} data Dashed white line: CMS exclusion limit with 4.4 fb⁻¹ data

FM, SuperIso v3.2

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				0000000	
Constraints on	CMSSM				

Flat scans over the CMSSM parameters with $\mu > 0$

Solid line: central value of the BR($B_{s} \rightarrow \mu^{+}\mu^{-}$) measurement

Dashed lines: 2σ experimental deviations

Gray points: all valid points

Green points: points in agreement with the Higgs mass constraint

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

 $BR(B_s \rightarrow \mu^+ \mu^-)$ smaller than SM and the Higgs mass constraint cannot be satisfied simultaneously!!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
				0000000	
pMSSM					

MSSM with 19 parameters, CP and R-parity conservation

Parameter	Range (in GeV)
tan β	[1, 60]
MA	[50, 2000]
M ₁	[-2500, 2500]
M ₂	[-2500, 2500]
M ₃	[50, 2500]
$A_d = A_s = A_b$	[-10000, 10000]
$A_{\boldsymbol{u}} = A_{\boldsymbol{c}} = A_{\boldsymbol{t}}$	[-10000, 10000]
$A_{e} = A_{\mu} = A_{\tau}$	[-10000, 10000]
μ	[-3000, 3000]
$M_{\tilde{e}_L} = M_{\tilde{\mu}_L}$	[50, 2500]
$M_{\tilde{e}_R} = M_{\tilde{\mu}_R}$	[50, 2500]
Μ _{τ̃L}	[50, 2500]
M _{r̃}	[50, 2500]
$M_{\tilde{q}_{1l}} = M_{\tilde{q}_{2l}}$	[50, 2500]
M _{q̃3L}	[50, 2500]
$M_{\tilde{u}_R} = M_{\tilde{c}_R}$	[50, 2500]
M _{ĨtR}	[50, 2500]
$M_{\tilde{d}_R} = M_{\tilde{s}_R}$	[50, 2500]
M _Ĩ	[50, 2500]

Flat scans over the 19 parameters

 ${\sim}100M$ points generated with Softsusy

Flavour constraints with SuperIso

Introduction	SUSY	Flavour Physics	Observables	Implications
00000	0000	0000000	00000000000000	00000000

Constraints on pMSSM from BR($B_s \rightarrow \mu^+ \mu^-$)

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Solid line: central value of the BR($B_s \rightarrow \mu^+ \mu^-$) measurement Dashed lines: 2σ experimental deviations Gray points: all valid points Green points: points in agreement with the Higgs mass constraint

Conclusion

Nazila Mahmoudi

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion		
				00000000			
Constraints on pMSSM from ${\sf BR}(B_s o \mu^+ \mu^-)$							

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Dotted vertical lines: delimit the range of C_{10} in the CMSSM Dashed lines: delimit the range of C_{10} in the pMSSM.

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Black points: all the valid pMSSM points Gray points: $123 < M_h < 129$ GeV Dark green points: in agreement with the latest BR($B_s \rightarrow \mu^+ \mu^-$) Light green points: in agreement with the ultimate LHCb BR($B_s \rightarrow \mu^+ \mu^-$) measurement Red line: excluded at 95% C.L. by the latest CMS $A/H \rightarrow \tau^+ \tau^-$ searches

troduction	SUSY

Flavour Physics

Observables

Implications

Conclusion

Constraints on pMSSM from flavour physics

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
					•
Conclusion					

- Flavour physics plays a very important role in constraining BSM scenarios
- $B_s \to \mu^+ \mu^-$ is a particularly sensive to the scalar contributions and the high tan β regime
- $B \rightarrow K^* \mu^+ \mu^-$ offers multiple sensitive observables \rightarrow complementary information!
- Theory uncertainties under control
- \bullet Regions with large $\tan\beta$ and small $\mathit{M_{A}}$ disfavoured
- With more data constraints will tighten!
- Interesting interplay also with the Higgs and Dark Matter searches!

Flavour physics can guide direct searches!

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
Backup					

Backup

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
${\sf BR}(B_{s}\to\mu^{+}\mu^{-}$)				

Theory prediction: CP-averaged quantities, effect of $B_s - \bar{B}_s$ oscillations disregarded Experimental measurement: untagged branching fraction

K. De Bruyn et al., Phys. Rev. D86, 014027; Phys. Rev. Lett. 109, 041801 (2012)

$${
m BR}(B_s o \mu^+ \mu^-)_{
m untag} = \left(rac{1 + {\cal A}_{\Delta\Gamma} y_s}{1 - y_s^2}
ight) {
m BR}(B_s o \mu^+ \mu^-)$$

with

$$y_{s} \equiv \frac{1}{2} \tau_{B_{s}} \Delta \Gamma_{s} = 0.088 \pm 0.014$$

$$\mathcal{A}_{\Delta\Gamma} = \frac{|P|^2 \cos(2\varphi_P) - |S|^2 \cos(2\varphi_S)}{|P|^2 + |S|^2}$$

S and P are related to the Wilson coefficients by:

$$S = \sqrt{1 - 4\frac{m_{\mu}^2}{M_{B_s}^2}\frac{M_{B_s}^2}{2m_{\mu}}\frac{1}{m_b + m_s}\frac{C_{Q_1} - C'_{Q_1}}{C_{10}^{SM}}}, \quad P = \frac{C_{10}}{C_{10}^{SM}} + \frac{M_{B_s}^2}{2m_{\mu}}\frac{1}{m_b + m_s}\frac{C_{Q_2} - C'_{Q_1}}{C_{10}^{SM}}}{\varphi_S = \arg(S)}, \qquad \varphi_P = \arg(P)$$

The SM expectation for this corrected branching fraction is:

 ${
m BR}(B_s o \mu^+ \mu^-)_{
m untag} = (3.87 \pm 0.46) imes 10^{-9}$

Nazila Mahmoudi

Considering 2 scenarios:

• 2011 bound from LHCb+CMS + estimated th syst:

 $BR(B_s \to \mu^+ \mu^-) < 1.26 \times 10^{-8}$

• SM like branching ratio with estimated 20% total uncertainty

Light M_A strongly constrained!

A. Arbey, M. Battaglia, FM, Eur.Phys.J. C72 (2012) 1847 A. Arbey, M. Battaglia, FM, Eur.Phys.J. C72 (2012) 1906

IPP school and workshop - May 4th, 2013

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion	
$B o {\cal K}^* \mu^+ \mu^-$ – Low q^2 vs high q^2						

Two regions of interest:

- Low $q^2 (1 6 \text{ GeV}^2)$
- High q^2 (14.18 16 GeV²)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
$D_s \to \ell \nu$					

Tree level process similar to B
ightarrow au
u

$$\begin{split} \mathcal{B}(D_{s} \to \ell \nu) &= \frac{G_{F}^{2}}{8\pi} \left| V_{cs} \right|^{2} f_{D_{s}}^{2} m_{\ell}^{2} M_{D_{s}} \tau_{D_{s}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{s}}^{2}} \right)^{2} \\ & \times \left[1 + \left(\frac{1}{m_{c} + m_{s}} \right) \left(\frac{M_{D_{s}}}{m_{H^{+}}} \right)^{2} \left(m_{c} - \frac{m_{s} \tan^{2} \beta}{1 + \epsilon_{0} \tan \beta} \right) \right]^{2} \text{ for } \ell = \mu, \tau \end{split}$$

- Competitive with and complementary to analogous observables
- Dependence on only one lattice QCD quantity
- Interesting if lattice calculations eventually prefer $f_{D_s} < 250$ MeV
- Promising experimental situation (BES-III)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
Double ratios					

Example of double ratio of leptonic decays:

$$R = \left(\frac{\mathrm{BR}(B_{s} \to \mu^{+}\mu^{-})}{\mathrm{BR}(B_{u} \to \tau\nu)}\right) / \left(\frac{\mathrm{BR}(D_{s} \to \tau\nu)}{\mathrm{BR}(D \to \mu\nu)}\right)$$

From the form factor point of view:

$$R \propto \left(\frac{f_{B_{s}}}{f_{B}}\right)^{2} \Big/ \left(\frac{f_{D_{s}}}{f_{D}}\right)^{2} \approx 1$$

R has no dependence on the form factors, contrary to each decay taken individually!

- No dependence on lattice quantities
- Interesting for V_{ub} determination
- Interesting for probing new physics
- Promising experimental situation

B. Grinstein, Phys. Rev. Lett. 71 (1993) A.G. Akeroyd, FM, JHEP 1010 (2010)

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
Constraints on	pMSSM				

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Continuous line: in agreement with the latest $BR(B_s \rightarrow \mu^+ \mu^-)$ measurement Dotted line: in agreement with the ultimate LHCb $BR(B_s \rightarrow \mu^+ \mu^-)$ measurement

Fraction of points	Current bounds	Projected bounds
		67.8%
		78.1%
Points not excluded by LHC searches	95.1%	63.3%
Points compatible at 90% C.L. with Higgs results		70.0%

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
Constraints on	pMSSM				

A. Arbey, M. Battaglia, FM, D. Martinez Santos, Phys.Rev. D87 (2013) 035026

Continuous line: in agreement with the latest $BR(B_s \rightarrow \mu^+ \mu^-)$ measurement Dotted line: in agreement with the ultimate LHCb $BR(B_s \rightarrow \mu^+ \mu^-)$ measurement

Fraction of points	Current bounds	Projected bounds
All pMSSM points	95.3%	67.8%
Accepted pMSSM points	97.7%	78.1%
Points not excluded by LHC searches	95.1%	63.3%
Points compatible at 90% C.L. with Higgs results	97.2%	70.0%

Introduction	SUSY	Flavour Physics	Observables	Implications	Conclusion
SuperIso					

- public C program
- dedicated to the flavour physics observable calculations
- various models implemented
- interfaced to several spectrum calculators
- modular program with a well-defined structure
- complete reference manuals available

http://superiso.in2p3.fr

FM, Comput. Phys. Commun. 178 (2008) 745
FM, Comput. Phys. Commun. 180 (2009) 1579
FM, Comput. Phys. Commun. 180 (2009) 1718

Introduction 00000	SUSY 0000	Flavour Physics 0000000	Observables 00000000000000	Implications	Conclusion
SuperIso					

