# Testing the Standard Model with the lepton g-2

Massimo Passera INFN Padova

IPM International School & Workshop on Particle Physics (IPP13) May 5th 2013 School of Physics - IPM, Tehran, Iran

# **Preamble: today's values**



0.24 parts per billion !! (Hanneke et al., PRL100 (2008) 120801)

# a<sub>μ</sub> = 116592089 (63) x 10<sup>-11</sup>

0.5 parts per million !! (E821 – Final Report: PRD73 (2006) 072003)

 $a_{\tau} = -0.018 (17)$ 

Well, not much yet.... (PDG 2012)

# Outline

- I. Lepton magnetic moments: the basics
- **2.**  $\mu$ : The muon g-2: a quick update
- 3. e: Testing new physics with the electron g-2
- $\bigcirc$  4.  $\tau$ : The tau g-2: opportunities & challenges (fantasies?)

# 1. Lepton magnetic moments: the basics

• Uhlenbeck and Goudsmit in 1926 proposed:

$$\vec{\mu} = g \frac{e}{2mc} \vec{s}$$
$$g = 2 \pmod{1!}$$

• Dirac 1928:

$$(i\partial_{\mu} - eA_{\mu})\gamma^{\mu}\psi = m\psi$$

• A Pauli term in Dirac's eq would give a deviation...

$$a \frac{e}{2m} \sigma_{\mu\nu} F^{\mu\nu} \psi \quad \to \quad g = 2(1+a)$$

...but there was no need for it! g=2 stood for ~20 yrs.

M. Passera IPP13 Tehran May 5 2013

• Kusch and Foley 1948:

$$\mu_e^{\rm exp} = \frac{e\hbar}{2mc} \ (1.00119 \pm 0.00005)$$

Schwinger 1948 (triumph of QED!):

$$\mu_e^{\rm th} = \frac{e\hbar}{2mc} \left(1 + \frac{\alpha}{2\pi}\right) = \frac{e\hbar}{2mc} \times 1.00116$$

Keep studying the lepton-y vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p')\Big[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2}) + \dots\Big]u(p)$$

$$F_1(0) = 1$$
  $F_2(0) = a_l$ 

A pure "quantum correction" effect!

# 2. The muon g-2: a quick update

#### **The experiment E821**



# E821 @ BNL

## The experiment E821 (II)



#### The muon g-2: the experimental result



• Today:  $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5ppm].$ 

Future: new muon g-2 experiments proposed at:

- Fermilab (E989), aiming at 0.14ppm
- J-PARC aiming at 0.1 ppm

ppm

See B.Lee Roberts & T. Mibe @ Tau2012, September 2012

Are theorists ready for this (amazing) precision? No(t yet)

Sep 2012: CD0 approval! Data in 2017?

#### The muon g-2: the QED contribution

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$ 

Schwinger 1948

# + 0.765857425 (17) (α/π)<sup>2</sup>

Sommerfield; Petermann; Suura & Wichmann '57; Elend '66; MP '04

# + 24.05050996 (32) (α/π)<sup>3</sup>

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr,Taylor & Newell '08

# + 130.8796 (63) (α/π)<sup>4</sup>

Kinoshita & Lindquist '81, ... , Kinoshita & Nio '04, '05; Aoyama, Hayakawa, Kinoshita & Nio, 2007, Kinoshita et al. 2012

### + 753.29 (1.04) (α/π)<sup>5</sup> COMPLETED!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio '06, Kinoshita et al. 2012

# Adding up, we get:





#### The muon g-2: the electroweak contribution



#### One-loop plus higher-order terms:



#### The muon g-2: the hadronic LO contribution (HLO)



The overall agreement of all e<sup>+</sup>e<sup>-</sup> data looks reasonably good, some discrepancies exist.

Energy scan: Agreement between the CMD2 & SND  $\pi^+\pi^-$  data at VEPP-2M. Prelim results presented in Sep 2012 by CMD3 & SND at the new VEPP-2000 collider in Novosibirsk. See Shwartz @ Tau2012

Initial State Radiation Method (ISR): Collider operates at fixed energy but  $s_{\pi}$  can vary continuously. Important independent method made possible by strong th & exp interplay.

Solution KLOE: The "small angle" (2008) and "large angle" (2010)  $\pi^+\pi^-$ ISR analyses agree. Sep 2012: new measure by the  $\pi\pi\gamma/\mu\mu\gamma$  ratio presented. It confirms their earlier results. See Mandaglio @ Tau2012

Seasonable agreement between KLOE and CMD2-SND (especially below the  $\rho$ ). The contributions to  $a_{\mu}^{HLO}$  agree.

**BaBar: ISR**  $\pi^+\pi^-$  result from 0.3 to 3 GeV (2009). Discrepancy between the results of BaBar and KLOE. See Davier @ Tau2012

- Solution The tau data of ALEPH, CLEO & OPAL are higher than the CMD2/SND/KLOE ones, particularly above the  $\rho$ . The 2008  $a_{\mu}^{\pi\pi}$  tau data result of Belle agrees with Aleph-Cleo-Opal (some deviations from Aleph's spectral functions).
- **Revisited analysis in 2011:** (Davier et al, EPJ C71 (2011) 1515)

 $a_{\mu}^{HLO}$  = 7015 (47) x 10<sup>-11</sup>

Belle's data included + IB corrections revisited & updated (Marciano & Sirlin '88; Cirigliano, Ecker, Neufeld '01-'02, Flores-Baez et al. '06&'07)

- The discrepancy with e<sup>+</sup>e<sup>-</sup> data decreased. Are there inconsistencies in e<sup>+</sup>e<sup>-</sup> or T data? All possible isospin-breaking (IB) effects taken into account?
- Claims exist that tau data are actually consistent with e<sup>+</sup>e<sup>-</sup> ones after IB effects & vector meson mixings considered! (Benayoun et al., 2007, 2009 and EPJC72 (2012)1848, Jegerlehner & Szafron 2011).



 $O(\alpha^3)$  contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

#### **Only tiny shifts if** T **data are used instead of the e<sup>+</sup>e<sup>-</sup>ones** Davier & Marciano '04.

M. Passera IPP13 Tehran May 5 2013

The muon g-2: the hadronic HO contributions (HHO) - LBL



Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

"Bound" a<sub>µ</sub><sup>HHO</sup>(IbI) < ~ 160 x 10<sup>-11</sup> Erler&Sanchez '06, Pivovarov '02; also Boughezal&Melnikov'11
 Lattice? Very hard... in progress.
 Large "by far not complete" calculation: 188 x 10<sup>-11</sup> Fischer et al, PRD87(2013)034013
 Had IbI is likely to become the ultimate limitation of the SM prediction.

#### The muon g-2: SM vs. Experiment

Adding up all contributions, we get the following SM predictions and comparisons with the measured value:

a<sub>μ</sub><sup>EXP</sup> = 116592089 (63) x 10<sup>-11</sup>

E821 – Final Report: PRD73 (2006) 072 with latest value of  $\lambda = \mu_{\mu}/\mu_{p}$  (CODATA'06)

| $a_{\mu}^{\rm SM} 	imes 10^{11}$ | $(\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}) \times 10^{11}$ | $\sigma$ |
|----------------------------------|--------------------------------------------------------------------------------|----------|
| $\fbox{[1]} 116591783(59)$       | 306 (86)                                                                       | 3.5      |
| $[2] \ \ 116\ 591\ 803\ (49)$    | 286(80)                                                                        | 3.6      |
| [3] 116591829(50)                | 260 (80)                                                                       | 3.2      |
| [4] 116591895(54)                | 194 (83)                                                                       | 2.3      |
| [4] 116591895(54)                | 194 (83)                                                                       | 2.3      |

with  $a_u^{HHO}(IbI) = 105 (26) \times 10^{-11}$ 

- [1] F. Jegerlehner, A. Nyffeler, Phys. Rept. 477 (2009) 1
- [2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar and KLOE10  $2\pi$ )
- [3] HLMNT11: Hagiwara et al, JPG38 (2011) 085003 (incl BaBar and KLOE10  $2\pi$ )
- [4] Davier et al, Eur.PJ C71 (2011) 1515, T data.

#### Note that the th. error is now about the same as the exp. one

- $\Delta a_{\mu}$  can be explained in many ways: errors in LBL, QED, EW, HHO-VP, g-2 EXP, HLO; or, we hope, New Physics!
- Can  $\Delta a_{\mu}$  be due to hypothetical mistakes in the hadronic  $\sigma(s)$ ?
- An upward shift of  $\sigma(s)$  also induces an increase of  $\Delta \alpha_{had}^{(5)}(M_z)$ .
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} &\to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} &\to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta\sigma(s) = \epsilon\sigma(s)$$

 $(\epsilon > 0)$ , in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right]$$

#### The muon g-2: connection with the SM Higgs mass

• How much does the  $M_H$  upper bound from the EW fit change when we shift  $\sigma(s)$  by  $\Delta\sigma(s)$  [and thus  $\Delta\alpha_{had}^{(5)}(M_Z)$ ] to accommodate  $\Delta a_{\mu}$ ?



W.J. Marciano, A. Sirlin, MP, 2008 & 2010

- Given the quoted exp. uncertainty of  $\sigma(s)$ , the possibility to explain the muon g-2 with these very large shifts  $\Delta\sigma(s)$ appears to be very unlikely.
- Solution Also, given a 125 GeV SM Higgs, these hypothetical shifts  $\Delta\sigma(s)$  could only occur at very low energy (below ~ 1 GeV).
- Vice versa, assuming we now have a SM Higgs with M<sub>Higgs</sub> = 125 GeV, if we bridge the M<sub>Higgs</sub> discrepancy in the EW fit via changes in the low-energy hadronic cross section, the muon g-2 discrepancy increases.

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

# 3. Testing new physics with the electron g-2

G.F. Giudice, P. Paradisi, MP

JHEP 1211 (2012) 113

#### The QED prediction of the electron g-2

|            | $\rho = + (1/2)(\alpha/\pi) - 0.328 478 444 002 55(33) (\alpha/\pi)^2$                  |       |
|------------|-----------------------------------------------------------------------------------------|-------|
|            | Schwinger 1948 Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; CODATA Mai        | r '12 |
|            | $A_1^{(4)} = -0.328 478 965 579 193 78$                                                 |       |
|            | $A_2^{(4)} (m_e/m_\mu) = 5.197\ 386\ 68\ (26)\ x\ 10^{-7}$                              |       |
|            | $A_2^{(4)} (m_e/m_{\tau}) = 1.83798 (33) \times 10^{-9}$                                |       |
|            | + 1.181 234 016 816 (11) $(\alpha/\pi)^3$                                               |       |
|            | Kinoshita, Barbieri, Laporta, Remiddi,, Li, Samuel; MP '06; GPP 2012                    |       |
|            | $A_1^{(6)} = 1.181\ 241\ 456\ 587$                                                      |       |
|            | $A_2^{(6)}$ (m <sub>e</sub> /m <sub>µ</sub> ) = -7.373 941 62 (27) x 10 <sup>-6</sup>   |       |
|            | $A_2^{(6)} (m_e/m_{\tau}) = -6.5830 (11) \times 10^{-8}$                                |       |
| (an)       | $A_3$ , $(\mu_e/\mu_\mu, \mu_e/\mu_\tau) = 1.303.02 (34) \times 10^{-10}$               | (aa)  |
|            | $(-1.9097(20)(\alpha/\pi)^4$                                                            | 6     |
|            | Kinoshita & Lindquist '81,, Kinoshita & Nio '05; Aoyama, Hayakawa, Kinoshita & Nio, May | 2012  |
|            | + 9.16 (58) $(\alpha/\pi)^5$ (12672 mass independent diagrams!)                         |       |
| M. Passera | Aoyama, Hayakawa, Kinoshita, Nio, 2012<br>IPP13 Tehran May 5 2013                       | 23    |

#### The SM prediction of the electron g-2



#### The electron g-2 gives the best determination of alpha

 The 2008 measurement of the electron g-2 is: a<sub>e</sub><sup>EXP</sup> = 11596521807.3 (2.8) × 10<sup>-13</sup> Hanneke et al, PRL100 (2008) 120801

 vs. old (factor of 15 improvement, 1.8 σ difference): a<sub>e</sub><sup>EXP</sup> = 11596521883 (42) × 10<sup>-13</sup> Van Dyck et al, PRL59 (1987) 26

• Equate  $a_e^{SM}(\alpha) = a_e^{EXP} \rightarrow best$  determination of alpha (2012):

 $\alpha^{-1}$  = 137.035 999 173 (34) [0.25 ppb]

Compare it with other determinations (independent of a<sub>e</sub>):

#### Excellent agreement → beautiful test of QED at 4-loop level!

#### Old and new determinations of alpha



Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902 Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801 Bouchendira et al, PRL106 (2011) 080801 The electron g-2: SM vs. Experiment

Using α = 1/137.035 999 049 (90) [<sup>87</sup>Rb, 2011], the SM prediction for the electron g-2 is



The EXP-SM difference is:

$$\Delta a_e = a_e^{EXP} - a_e^{SM} = -10.5 (8.1) \times 10^{-13}$$

The SM is in very good agreement with experiment (1.3 $\sigma$ ). NB: The 4-loop contrib. to  $a_e^{QED}$  is -5.56 x 10<sup>-11</sup> ~ 70  $\delta \Delta a_e$ ! (the 5-loop one is 6.2 x 10<sup>-13</sup>)

- The present sensitivity is  $\delta \Delta a_e = 8.1 \times 10^{-13}$ , ie (10<sup>-13</sup> units):  $(0.6)_{\text{QED4}}, (0.4)_{\text{QED5}}, (0.2)_{\text{HAD}}, (7.6)_{\delta \alpha}, (2.8)_{\delta a_e^{\text{EXP}}}$  $(0.7)_{\text{TH}} \leftarrow \text{may drop to } 0.2 \text{ or } 0.3$
- The (g-2)<sub>e</sub> exp. error may soon drop below 10<sup>-13</sup> and work is in progress for a significant reduction of that <u>induced by δα</u>.
- $\rightarrow$  a sensitivity of 10<sup>-13</sup> may be reached with ongoing exp work.

In a broad class of BSM theories, contributions to a<sub>l</sub> scale as

$$\frac{\Delta a_{\ell_i}}{\Delta a_{\ell_i}} = \left(\frac{m_{\ell_i}}{m_{\ell_i}}\right)^2$$

This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

- The experimental sensitivity in ∆a<sub>e</sub> is not far from what is required to test whether the discrepancy in (g-2)<sub>µ</sub> also manifests itself in (g-2)<sub>e</sub> under the naive scaling hypothesis.
- BSM scenarios exist which violate Naive Scaling leading to larger effects in  $\Delta a_e$  (&  $\Delta a_{\tau}$ ).

# 4. The tau g-2: opportunities & challenges

Work in progress in collaboration with S. Eidelman, D. Epifanov, M. Fael, L. Mercolli & C. Ng arXiv:1301.5302

#### The SM prediction of the tau g-2



- The very short lifetime of the tau makes it very difficult to determine a<sub>T</sub> measuring its spin precession in a magnetic field.
- DELPHI's result, from e<sup>+</sup>e<sup>-</sup> → e<sup>+</sup>e<sup>-</sup>T<sup>+</sup>T<sup>-</sup> total cross-section measurements at LEP 2 (the PDG value):



a<sub>T</sub> = -0.018 (17) PDG 2011

 With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

> -0.004 < a<sub>T</sub><sup>NP</sup> < 0.006 (95% CL) Escribano & Massó 1997 -0.007 < a<sub>T</sub><sup>NP</sup> < 0.005 (95% CL) Gonzáles-Sprinberg et al 2000

• Bernabéu et al, propose the measurement of  $F_2(q^2=M_{\gamma}^2)$  from  $e^+e^- \rightarrow \tau^+\tau^-$  production at B factories. NPB 790 (2008) 160

#### The tau g-2 via its radiative leptonic decays: a proposal

 $\begin{aligned} \frac{d^{3}\Gamma}{dx\,dy\,d\cos\theta} &= \frac{\alpha\,M_{\tau}^{5}\,G_{F}^{2}\,y\,\sqrt{x^{2}-4r^{2}}}{2\pi(4\pi)^{6}}\,G_{0}(x,y,\cos\theta,r)\\ \text{Kinoshita \& Sirlin PRL2(1959)177; Kuno \& Okada, RMP73(2001)151}\\ \frac{\Gamma(\tau^{-} \rightarrow e^{-}\,\bar{\nu}_{e}\,\nu_{\tau}\,\gamma)}{\Gamma_{\text{total}}}\Big|_{E_{\gamma} > 10 \text{MeV}} = \underbrace{\begin{array}{c} 1.823\% \quad \text{vs} \quad 1.75(18)\% \\ \text{CLEO 2000} \\ 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.364\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.364\% \quad \text{vs} \quad 0.364\% \quad \text{vs} \quad 0.361(38)\% \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.36\% \quad \text{vs} \quad 0.36\% \quad \text{vs} \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.36\% \quad \text{vs} \quad 0.36\% \quad \text{vs} \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.36\% \quad \text{vs} \quad 0.36\% \quad \text{vs} \end{array}}_{0.36\%} x = \underbrace{\begin{array}{c} 0.$ 

 Add the contribution of the effective coupling and the QED corrections:

$$G_0 \to G_0 + \tilde{a}_\tau G_a + \frac{\alpha}{\pi} G_{\rm RC}$$

 Measure d<sup>3</sup>Γ precisely and get ã<sub>τ</sub> ! [see also Laursen, Samuel, Sen, PRD29 (1984) 2652]





# **Conclusions**

- The lepton g-2 provide beautiful examples of interplay between theory and experiment.
- The discrepancy Δa<sub>µ</sub> is ~3.5σ (with e<sup>+</sup>e<sup>-</sup> data; 2.3σ with tau data). Is it NP? Sep 2012: CD0 approval for new g-2 exp! KLOE new measure presented: it agrees with KLOE 08 & 10! Future of LBL?
- Sould  $\Delta a_{\mu}$  be due to mistakes in the hadronic  $\sigma(s)$ ? Very unlikely. Also, given a 125 GeV SM Higgs, these hypothetical shifts  $\Delta \sigma(s)$  could only occur at very low energies (below ~ 1GeV).
- The sensitivity of the electron g-2 has improved! It may soon be possible to test whether Δa<sub>µ</sub> manifests itself in the electron g-2. A robust and ambitious exp program is needed to improve α & a<sub>e</sub>.
- The tau g-2 is essentially unknown: we propose to measure it at Belle II via its radiative leptonic decays.

# The End