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Cohen-Glashow VSR, theoretical motivations

Special Relativity (SR): physical theories are
invariant under the Poincaré group, Lorentz
transformation plus space-time translations.

Extensions of Poincaré algebra? Maximal
extension conformal group so(4, 2), not a
symmetry of the particle physics models due
to the presence of massive particles.

There is of course extension of Poincaré by
spinor generators, the SUSY...
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Cohen-Glashow VSR, theoretical motivations

Other extension of Poincaré group (or
algebra): addition of the discrete symmetries
of space and time inversion P, T ,

in particle physics, also with charge
conjugation C, leading to SL(2,C), to also
incorporate antiparticles.

Physics models and their Hilbert spaces are
hence also taken to be CPT invariant.
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Cohen-Glashow VSR, observational motivations

No decisive observational or experimental
signal for Lorentz symmetry violation as yet.

Many precision tests are underway, see the
review V. A. Kostelecky and N. Russell, Rev.
Mod. Phys. 83, 11 (2011).

Various particle physics and gravity wave
observations have been used to constrain the
Lorentz violation parameters of LV SME:
deformation of SM by all possible Lorentz
violating, but gauge invariant, operators.
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Cohen-Glashow VSR, observational motivations

LV can happen in matter, photon, neutrino
and gravity sectors.

LV operators may be arranged by their scaling
dimension and behavior under discrete
symmetries, C,P, T or any combinations of
them.

Several works, for example by Glashow et al
and Kostelecky et al have been devoted to
studying tests of LV SME.

But all are phenomenological models and not
based on a rigorous theory.
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Cohen-Glashow VSR, Motivations

How to put these phenomenological high
energy surveys and analysis in a firmer
theoretical framework?!

Formulation of these ideas?!

One possibility:

the Cohen-Glashow Very Special Relativity
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Cohen-Glashow VSR, Motivations

At very low energy (QED+QCD regime) P
and T are conserved, while at higher energy,
e.g. SM scale or above, P or T are violated.

In a high energy theory Poincaré symmetry
may also be violated.

The main idea behind the VSR:

P or T and possible Poincaré violations are
caused by the same source.
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Cohen-Glashow VSR, Motivations

Other relevant ideas:

Poincaré group is the symmetry, the isometry,
of the Minkowski space.

Poincaré symmetry could be lost (at some
higher energy scale), however, a part of
Lorentz group plus translations could still
remain an exact symmetry of the more
fundamental theory.
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Plan of the Talk

A Review on the Cohen-Glashow Very
Special Relativity (VSR).

Realization of VSR’s as symmetry groups of a
“deformed” (noncommutative) Minkowski
space.

Setting the stage for formulation of physical
theories and models realizing VSR.

Bounds on the scale of VSR deformation.
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Cohen-Glashow VSR, A Brief Review

VSR is a symmetry group involving spacetime
translations + a proper subgroup of Lorentz
group such that

upon addition of the space and time inversion
P, T this subgroup is enhanced to the full

Lorentz group so(3, 1).
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Cohen-Glashow VSR, A Brief Review

Smallest VSR is the two parameter Abelian
subgroup of Lorentz T (2), generated by

T1 = Kx + Jy , T2 = Ky − Jx .

Evidently, [T1, T2] = 0.

T1, T2 together with four momenta Pµ form the
smallest VSR.

T (2) VSR, has six generators (out of ten of
the Poincaré ).
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T (2) Cohen-Glashow VSR

T (2) is the translation group on a hypothetical
two dimensional plane.

Upon action of parity P ,

T1 −→ T P
1
= −Kx + Jy , T2 −→ T P

2
= −Ky − Jx .

Algebra obtained from T1, T2, T
P
1

and T P
2

closes on the whole Lorentz group.

Other VSR’s obtained by adding one or more
of the Lorentz generators to T (2).

– p. 12/47



Other Cohen-Glashow VSR’s

There are only three other VSR’s:

E(2) VSR: Jz added to T1 and T2.

HOM(2) VSR: Kz added to T (2).

SIM(2) VSR: generated by T1, T2, Kz, Jz.

Evidently by the action of parity and/or time
reversal all of the above four VSR’s enlarge to
the whole Poincaré group.
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Comments on Cohen-Glashow VSR’s

E(2) is the isometry group of two dim.
Euclidian plane:

[T1, T2] = 0, [Jz, T1] = −iT2, [Jz, T2] = +iT1 .

HOM(2) is the group of homotheties of two
dimensional plane:

[T1, T2] = 0, [Kz, T1] = −iT1, [Kz, T2] = −iT2 .

SIM(2) is the similitude group of 2d plane:
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Comments on Cohen-Glashow VSR’s

As subgroups of Poincaré, VSR’s keep the
Minkowski metric ηµν invariant.

T (2) VSR has an invariant vector
nµ = (1, 0, 0, 1) & an invariant two form.

nµ = (1, 0, 0, 1) is also invariant vector of the
E(2) VSR.

E(2) does not have any invariant two form.

HOM(2) and SIM(2) VSR’s do not admit any
invariant vector or tensors other than those of
Lorentz algebra.
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Difficulties with Formulating Cohen-Glashow VSR’s

All of irreps of the VSR are also reps of the
Lorentz group but the converse is not true.

The reps of VSR’s are one dimensional.

How to label the states in VSR QFTs?

Spin statistics? notion of fermions and
bosons? and CPT theorem?

Does VSR symmetry remain anomaly free
VSR QFT’s?
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Formulating Cohen-Glashow VSR

To realize T (2) or E(2) VSR’s: spontaneous
Lorentz symmetry breaking and give VEV’s to
a vector or a tensor Cohen and Glashow
[PRL97:021601].

Formulation of HOM(2) and SIM(2) invariant
theories should be done in some other ways.

The SIM(2) case as the largest VSR has
been studies more

General Ver Special relativity based on
SIM(2) has also been discussed (with Finsler
geometry approach).
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VSR particle physics models

Relaxing Lorentz and demanding only VSR
invariance, we can have Lepton number
conserving neutrino mass terms without the
need for sterile (right-handed) states. Cohen
& Glashow arXiv:0605036.

In this model, Neutrinoless double beta decay
is forbidden, and

VSR effects can be significant near the beta
decay endpoint where neutrinos are not
ultra-relativistic.
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VSR particle physics models

VSR allows for particular electric dipole
moment for charged leptons.

SU(2) invariance may then relate such dipole
moments to neutrino masses

dlepton ∼ (mν/ml)
2(e/ml).

With mν ∼ 10−4eV we are close to current
bounds....
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Some reference on Cohen-Glashow VSR

J. Fan, W. Skiba, W. Goldberger, PLB649 (2007) 186;

A. Cohen, D. Freedman, SUSY VSR, JHEP 0707, 039.

A. Bernardini, VSR neutrino mass and modification in
β-decay end points, Phys. Rev. D 75, 097901 (2007).; O.
Bertolami and A. Bernardini, PRD77:085032 (2008).

G. W. Gibbons, J. Gomis and C. N. Pope, General Very
Special Relativity, Phys. Rev. D 76, 081701 (2007).

Many papers in the midst of OPERA ....

The (exotic?!) ELKO dark matter, D. Ahluwalia, S. Horvath,
JHEP 1011, 078.
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Problems with Cohen-Glashow proposal

This does not answer questions we posed
about reps and CPT.

It is very phenomenological and introduces
many parameters in the theory.

More fundamental setup/theory?!

– p. 21/47



Realization of Cohen-Glashow VSR’s, the notion of twist

Given a Lie group, like Poincaré , one can
construct irreps.

In QFT actions we use not only these irreps,
but also their products.

One can twist product of two irreps by an
element made out of the algebra itself, and
construct a twisted co-product [V. Drinfel’d,
1983].

– p. 22/47



Realization of Cohen-Glashow VSR’s, the notion of twist

Given irreps R1, R2, i.e.

R1

⊗

twist

R2 = R1e
iλab

←−
T a

⊗−→
T b

R2,

T a are generators of the Lie algebra and λab
are twist parameters.

Note that we have not deformed the algebra.
We can still use the same basic irreps.

Twisted co-product is specified by λab which is
a tensor in the original algebra.
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The notion of twist, Cont’d

The twist deformation reduces the symmetry
to a subgroup which keeps λab invariant, i.e.
the stability group of twisted Poincaré algebra.

M. Chaichian, P. Kulish, K. Nishijima and A.
Tureanu, PLB604 (2004) 98;

See also M. Chaichian, P. Pres̆najder and A.
Tureanu, PRL94 (2005) 151602
for physical implications of the twisted
Poincaré .
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The notion of twist, Cont’d

Further discussions on the notion of twist and
deformation may be found in

V. Chari and A. Pressley, Camb. Uni. Press, 1994;

S. Majid, Cambridge Uni. Press, 1995;

M. Chaichian and A. Demichev, World Scientific
Singapore, 1996.

For twisted Poincaré algebras and their
classification e.g. see
A. Tureanu, arXiv:0706.0334 [hep-th] and
references therein.
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Realization of Cohen-Glashow VSR’s on NC spaces

Our idea:

To realize VSRs through twist deformations of
Poincaré algebra.

If realized, it provides a very natural and
consistent setting for formulation VSR’s.

Here we show that
VSR subgroups of Lorentz fit within the
classification of the twisted Poincaré &
The VSR’s can be realized as symmetries
(“isometries”) of Noncommutative Spaces.
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Realization of Cohen-Glashow VSR’s on NC spaces

A noncommutative (NC) space can be
defined by

[xµ, xν ] = iθµν(x)

where θµν(x) is a two form.

For a given θµν the Lorentz (and Poincaré )
symmetry is broken to a subgroup which
keeps θµν invariant (covariant, for the more
general x-dependent case).

For the special case of constant θµν we are
dealing with the Moyal NC space.
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De tour: Classification of NC spaces

Depending on the values of the two Lorentz
invariants made out of θµν

Λ4 ≡ θµνθµν, L4 ≡ ǫµναβθ
µνθαβ

there are nine possibilities: either of Λ4 and
L4 can be positive, zero or negative.

It has been argued that (at least for constant
θµν case) the L4 6= 0 does not lead to a
unitary field theory [O. Aharony, J. Gomis and
T. Mehen, JHEP0009:023 (2000)].
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De tour: Classification of NC spaces, Cont’d

However, it has been argued that the
Doplicher-Fredenhagen-Roberts [hep-th/0303037]
“quantum space-time” (Λ = 0, L 6= 0), leads to unitary
QFT’s [D. Bahns, S. Doplicher, K. Fredenhagen, G.
Piacitelli, PLB533 (2002) 178, hep-th/0201222; CMP237

(2003) 221, hep-th/0301100].

Focusing on the L = 0 case, we remain with three
possibilities

Λ4 > 0, the space-like noncommutativity,

Λ4 = 0, the light-like noncommutativity,

Λ4 < 0, the time-like noncommutativity.
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De tour: Classification of NC spaces, Cont’d

For constant θµν quantum field theories on spaces with
time-like noncommutativity suffer from non-unitarity
[M. Chaichian, A. Demichev, P. Presnajder and A.
Tureanu, EPJC20 (2001) 767; J. Gomis and T. Mehen,
NPB 591 (2000) 265 ].

However, the light-like noncommutative case is unitary
[O. Aharony, J. Gomis and T. Mehen, JHEP0009:023
(2000); L. Alvarez-Gaumè, J. Barbòn and R. Zwicky,
JHEP0105:057 (2001), ; MMSh-J. and A. Tureanu,
Phys. Lett. B 697, 63 (2011)] .
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De tour: Classification of Twisted Poincaré algebras

There are only three choices for θµν which the deformation
can also appear as a twist in the Poincaré co-algebra:

Constant θµν; the Moyal space:

[xµ, xν ] = iθµν

where θµν is a constant tensor.

Linear θµν ; the Lie-algebra type:

[xµ, xν ] = iCµν
ρ xρ.

Quadratic θµν; the quantum group type:

[xµ, xν ] =
1

q
Rµν

ρλ x
ρxλ.
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Realization of Cohen-Glashow VSR’s on NC spaces, Cont’d

Formulation of QFT’s on all the above NC space-times
have originally been studied in
[M. Chaichian, A. Demichev and P. Pres̆najder ,
NPB567 (2000) 360; J. Lukierski and M. Woronowicz,
PLB 633 (2006) 116 ].

The linear and quadratic θµν cases the translational
invariance is lost and hence they do not lead to a VSR
model. (Recall that by definition the VSR theory has a
subgroup of Lorentz plus four translations.)
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Realization of Cohen-Glashow VSR’s on NC spaces, Cont’d

Therefore, only the constant θµν Moyal space case is
suitable for realization of VSR’s.

As argued

in the Moyal case the part of the Lorentz group
which keeps the noncommutativity tensor θµν

invariant is left over.

Moreover, only the T (2) VSR admits invariant two
tensor. Hence we have a natural setting to
formulate T (2) VSR invariant theories.
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T(2) VSRon Light-like Moyal Space

It is straightforward to show that the anti-symmetric two
tensor which remains invariant under T1, T2 can only
have the following non-zero components

θ0i = −θ3i, i = 1, 2.

Note that invariance under T1, T2 does not restrict the
x-dependence of θµν.

With the above we see that

Λ4 = 0, L4 = 0

that is, Invariance under T1, T2 demands a light-like
noncommutativity.
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T(2) VSRon Light-like Moyal Space, Cont’d

In the light-cone frame

x± = (t± x3)/2, xi, i = 1, 2

θ−i is the only non-zero component and

θ−i = θ0i = −θ3i,

(θ+i = θ+− = θij = 0).

In the light-cone frame one may think of x+ as
light-cone time and x− as light-cone space direction.

Without any loss of generality one can still rotate the
frame in the (x1, x2) plane to only keep the θ−1 ≡ θ

non-zero.
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E(2), HOM(2) andSIM(2) Invariant NC spaces

As discussed invariance under T1, T2 implies the
light-like noncommutativity with θ−i 6= 0.

Although one loses translational invariance when θµν

has x-dependence, for specific x-dependent θµν we
can have invariance under larger VSR Lorentz
subgroups.

The E(2) and SIM(2) Lorentz subgroups have such a
realization on a NC space.

De tour to these cases......
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E(2) Invariant NC space

E(2) is made up of T1, T2, Jz.

x± are invariant under Jz.

δij and ǫij are the (only) two invariant tensors under Jz.

Therefore, θ−i = ℓǫijx
j and θ−i = ℓxi lead to E(2)

invariant space.

That is a space with

[x−, xi] = iℓǫijx
j, OR [x−, xi] = iℓxi.

With the above it is evident that translation along xi

plane is lost.
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E(2) Invariant NC spaces, Cont’d

The [x−, xi] = iℓǫijx
j case is a noncommutative

cylinder. To see this let us adapt the coordinates
ρe±iφ ≡ x1 ± ix2 .

In this coordinate system we have
[x−, ρ] = 0, [x−, e±iφ] = ±λe±iφ, [ρ, e±iφ] = 0.

At any given fixed ρ the above describes a NC cylinder
of radius ρ with the axis along the x− direction.
λ is the deformation parameter and is the shortest
length we can measure along the x− direction.
[x−, xi] = iℓxi corresponds to a less familiar case and
in the above cylindrical coordinates takes the form

[x−, e±iφ] = 0, [x−, ρ] = iℓρ, [ρ, e±iφ] = 0.
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SIM(2) Invariant NC spaces

Recalling that Kz is acting on x− as scaling while
keeping xi invariant, and that HOM(2) does not have
an invariant vector, it is impossible to realize HOM(2)

in the NC setting as we did for E(2) case.

SIM(2) is, however, possible with the following
commutation relations

[x−, xi] =i sin ξǫij{x
−, xj}, or [x−, xi] =i sin ξ {x−, xi}

In the cylindrical coordinate system the above can be
recast in the form of the Manin plane.

Translational invariance in x−, xi directions is lost.
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On T(2) VSR Invariant QFT’s

The only VSR which can be realized in the NC setting
is the T (2), associated with the light-like Moyal plane.

There is a very well-established recipe for writing down
general QFT’s on the Moyal spaces:

take the commutative QFT action and replace the
product between fields with the Moyal star-product:

(φ ∗ ψ)(x) = φ(x) e
i
2
θµν
←−
∂µ
−→
∂ν ψ(x) ,

where θµν is the light-like noncommutativity parameter
and we take its only non-vanishing component to be

θ−1 = θ.
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On T(2) VSR Invariant QFT’s, Cont’d

Due to twisted Poincaré symmetry, fields carry
representations of the full Lorentz group
[M. Chaichian, P. Kulish, A. Tureanu, R. B. Zhang and
Xiao Zhang, JMP49:042302 (2008); M. Chaichian, K.
Nishijim, A. Tureanu, JHEP 0806 (2008) 078 ],

but the theory is invariant only under transformations in
the stability group of the above θµν, T (2).

NCQFT’s are CPT invariant while break C, P and T
[M.M.Sh-J, PRL.84, 5265 (2000); M. Chaichian,
K. Nishijima and A. Tureanu, PLB568 (2003) 146].
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On T(2) VSR scale

The Lorentz violation scale is set by θ.

One should make VSR model building and
compare the results with the data.

A bound comes from H-atom spectroscopy
and the Lamb shift:

θ ∼ Λ−2NC ∼ (1− 10 GeV)−2

M. Chaichian, M. M. Sheikh-Jabbari and
A. Tureanu, Phys. Rev. Lett. 86 (2001) 2716.

Stronger, less robust bounds suggest
ΛNC ∼ TeV.
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On T(2) VSR Invariant QFT’s, Cont’d

A feature of any quantum field theory on NC space is
the IR/UV mixing S. Minwalla, M. Van Raamsdonk and
N. Seiberg, JHEP 0002, 020 (2000).

The “effective cut-off” of the theory is

Λ−2eff = Λ−2 + p ◦ p

Λ: the usual UV cut-off, p: the external momentum and

p ◦ p = pµθ
µνθνρp

ρ.

So, Λeff →∞ can take place when

Λ→∞ (UV limit) or p→ 0 (the IR limit).
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On T(2) VSR Invariant QFT’s, Cont’d

We showed in
M.M.Sh-J, A. Tureanu, Phys.Lett.B 697 63 (2011),
that in the light-like noncommutativity and in T (2)
VSR QFT’s

IR/UV connection is not of the “standard” p ◦ p
form and despite the fact that DLCQ
introduces an IR cutoff and ameliorates IR/UV
mixing, it does not remove the IR/UV mixing.

Cutting rules are satisfied and perturbative
unitarity is there.
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Summary and Outlook

The light-like Moyal NC space provides a consistent
framework for T (2) Cohen-Glashow VSR.

Realization of VSR as noncommutative theories has
several advantages:

In spite of the lack of full Lorentz symmetry, fields
can still be labeled by the Lorentz representations.

For the NC QFTs we can rely on the basic notions
of fermions and bosons, spin-statistics relation and
CPT theorem. (For a more complete discussion on
the spin-statistics theorem in NCQFT [A. Tureanu,
PLB638 (2006) 296].)
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Summary and Outlook

There is a simple recipe for constructing the NC
version of any given QFT.

Noncommutativity introduces a structure, fixing the
form of the VSR-invariant action.

This VSR symmetry is not anomalous.

In the noncommutative setting we only deal with a
single possible deformation parameter. Note that we
can always choose the coordinates on (x1, x2)-plane
such that θ−2 is zero.
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Summary and Outlook

In our realization of T (2) invariant theories there is the
scale, the noncommutativity scale

Λ2
NC = 1/θ

above which the absence of full Lorentz symmetry
becomes manifest.

Studying the spectrum of Hydrogen atom in a T (2)
invariant QED one can impose bounds on ΛNC :

Λ & 3GeV.

Model building within our setup, still open......
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