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Cohen-Glashow VSR, theoretical motivations

» Special Relativity (SR): physical theories are
iInvariant under the Poincaré group, Lorentz
transformation plus space-time translations.

» Extensions of Poincaré algebra? Maximal
extension conformal group so(4, 2), not a
symmetry of the particle physics models due
to the presence of massive particles.

# There iIs of course extension of Poincaré by

spinor generators, the SUSY...



Cohen-Glashow VSR, theoretical motivations

» Other extension of Poincaré group (or
algebra): addition of the discrete symmetries
of space and time inversion P, T,

»# In particle physics, also with charge
conjugation C, leading to SL(2,C), to also
Incorporate antiparticles.

» Physics models and their Hilbert spaces are
hence also taken to be CPT Invariant.
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Cohen-Glashow VSR, observational motivations

» No decisive observational or experimental
signal for Lorentz symmetry violation as yet.

o Many precision tests are underway, see the
review V. A. Kostelecky and N. Russell, Rev.
Mod. Phys. 83, 11 (2011).

»# Various particle physics and gravity wave
observations have been used to constrain the
Lorentz violation parameters of LV SME:
deformation of SM by all possible Lorentz

violating, but gauge invariant, operators. I



Cohen-Glashow VSR, observational motivations

o LV can happen in matter, photon, neutrino
and gravity sectors.

# LV operators may be arranged by their scaling
dimension and behavior under discrete
symmetries, C, P,’T’ or any combinations of
them.

o Several works, for example by Glashow et al
and Kostelecky et al have been devoted to
studying tests of LV SME.

» But all are phenomenological models and not
based on a rigorous theory. I



Cohen-Glashow VSR, Motivations

» How to put these phenomenological high
energy surveys and analysis in a firmer
theoretical framework?!

» Formulation of these ideas?!

» One possibility:
the Cohen-Glashow Very Special Relativity
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Cohen-Glashow VSR, Motivations

» Atvery low energy (QED+QCD regime) P
and T" are conserved, while at higher energy,
e.g. SM scale or above, P or T are violated.

» In a high energy theory Poincaré symmetry
may also be violated.

# The main idea behind the VSR:
P or T" and possible Poincaré violations are

caused by the same source.



Cohen-Glashow VSR, Motivations

» Other relevant ideas:

# Poincaré group is the symmetry, the isometry,
of the Minkowski space.

o Poincaré symmetry could be lost (at some
nigher energy scale), however, a part of
_orentz group plus translations could still
remain an exact symmetry of the more

fundamental theory.




Plan of the Talk

» A Review on the Cohen-Glashow Very
Special Relativity (VSR).

» Realization of VSR’s as symmetry groups of a
“deformed” (noncommutative) Minkowski
space.

» Setting the stage for formulation of physical
theories and models realizing VSR.

#» Bounds on the scale of VSR deformation.
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Cohen-Glashow VSR, A Brief Review

# VSR is a symmetry group involving spacetime
translations + a proper subgroup of Lorentz
group such that

upon addition of the space and time inversion
P, T this subgroup is enhanced to the full
Lorentz group so(3,1).
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Cohen-Glashow VSR, A Brief Review

# Smallest VSR Is the two parameter Abelian
subgroup of Lorentz 7'(2), generated by

=K, +J,., Ty=K,—J,.
Evidently, [T, T,] = 0.

» T3, T, together with four momenta P, form the
smallest VSR.

» T'(2) VSR, has six generators (out of ten of

the Poincaré ). I



T(2) Cohen-Glashow VSR

» T(2) is the translation group on a hypothetical
two dimensional plane.

» Upon action of parity P,
nn—T =-K.,+J,, Th—Ty =—K,—J,.

» Algebra obtained from Ty, Ty, T and Ty
closes on the whole Lorentz group.

» Other VSR’s obtained by adding one or more

of the Lorentz generators to T'(2).



Other Cohen-Glashow VSR’s

» There are only three other VSR’s:
s E(2) VSR: J, added to T} and T5s.
» HOM(2) VSR: K, added to T'(2).
s SIM(2) VSR: generated by 17, 15, K,, J..

» Evidently by the action of parity and/or time
reversal all of the above four VSR’s enlarge to

the whole Poincaré group.



Comments on.Cohen-Glashow VSR’s

» E(2) Is the iIsometry group of two dim.
Euclidian plane:

Ty, T =0, [J.,T\] =—iTy, [J.,Ts) =+iT} .

» HOM(2) is the group of homotheties of two
dimensional plane:

1, T =0, [K, T]=—ilh, [K, T =—1l.
» SIM(2) is the similitude group of 2d plane:
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Comments on.Cohen-Glashow VSR’s

» As subgroups of Poincare, VSR's keep the
Minkowski metric 5, Invariant.

» T'(2) VSR has an invariant vector
n, = (1,0,0,1) & an invariant two form.

» n, =(1,0,0,1) is also invariant vector of the
E(2) VSR.

» E(2) does not have any invariant two form.

» HOM((2) and SIM(2) VSR’s do not admit any

Invariant vector or tensors other than those of
Lorentz algebra.



Difficulties with Formulating Cohen-Glashow VSR’s

» All of irreps of the VSR are also reps of the
Lorentz group but the converse is not true.

# The reps of VSR’s are one dimensional.
o How to label the states in VSR QFTs?

# Spin statistics? notion of fermions and
bosons? and CPT theorem?

# Does VSR symmetry remain anomaly free

VSR QFT's?



Formulating Cohen-Glashow VSR

o Torealize T'(2) or E(2) VSR’s: spontaneous
Lorentz symmetry breaking and give VEV’s to
a vector or a tensor Cohen and Glashow
[PRL97:021601].

» Formulation of HOM (2) and SIM (2) invariant
theories should be done in some other ways.

» The SIM(2) case as the largest VSR has
been studies more

» General Ver Special relativity based on

SIM(2) has also been discussed (with Finsler
geometry approach). I



VSR particle physics models

» Relaxing Lorentz and demanding only VSR
Invariance, we can have Lepton number
conserving neutrino mass terms without the
need for sterile (right-nanded) states. Cohen
& Glashow arXiv:0605036.

»# [n this model, Neutrinoless double beta decay
Is forbidden, and

» VSR effects can be significant near the beta
decay endpoint where neutrinos are not

ultra-relativistic.



VSR particle physics models

# VSR allows for particular electric dipole
moment for charged leptons.

» SU(2) invariance may then relate such dipole
moments to neutrino masses

dlepton ™~ (mu/ml)Q(e/ml)-

» With m, ~ 10~*eV we are close to current

bounds....



Some reference on Cohen-Glashow VSR

J. Fan, W. Skiba, W. Goldberger, PLB649 (2007) 186;
A. Cohen, D. Freedman, SUSY VSR, JHEP 0707, 039.

A. Bernardini, VSR neutrino mass and modification in
p-decay end points, Phys. Rev. D 75, 097901 (2007).; O.
Bertolami and A. Bernardini, PRD77:085032 (2008).

G. W. Gibbons, J. Gomis and C. N. Pope, General Very
Special Relativity, Phys. Rev. D 76, 081701 (2007).

Many papers in the midst of OPERA ....

The (exotic?!) ELKO dark matter, D. Ahluwalia, S. Horvath, I
JHEP 1011, 078.



Problems with Cohen-Glashow proposal

# This does not answer questions we posed
about reps and CPT.

# |tis very phenomenological and introduces
many parameters in the theory.

o More fundamental setup/theory?!
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Realization of Cohen-Glashow VSR’'s, the notion of twist

» Given a Lie group, like Poincaré , one can
construct irreps.

# In QFT actions we use not only these irreps,
but also their products.

» One can twist product of two irreps by an
element made out of the algebra itself, and
construct a twisted co-product [V. Drinfel'd,

1983].
|



Realization of Cohen-Glashow VSR’s, the notion of twist

» Givenirreps Ry, Ro, l.e.

2 @)% - BT BT,

twist

T are generators of the Lie algebra and A
are twist parameters.

» Note that we have not deformed the algebra.
We can still use the same basic irreps.

» Twisted co-product is specified by A, which is

a tensor Iin the original algebra. I



The notion of twist, Cont'd

» The twist deformation reduces the symmetry
to a subgroup which keeps A\, Invariant, i.e.
the stability group of twisted Poincaré algebra.

M. Chaichian, P. Kulish, K. Nishijima and A.
Tureanu, PLB604 (2004) 98;

See also M. Chaichian, P. Presnajder and A.
Tureanu, PRL94 (2005) 151602

for physical implications of the twisted
Poincare .
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The notion of twist, Cont’d

® Further discussions on the notion of twist and
deformation may be found In

s V. Chari and A. Pressley, Camb. Uni. Press, 1994;

» S. Majid, Cambridge Uni. Press, 1995;

» M. Chaichian and A. Demichev, World Scientific
Singapore, 1996.

» For twisted Poincaré algebras and their
classification e.g. see
A. Tureanu, arXiv:0706.0334 [hep-th] and

references therein. I



Realization of Cohen-Glashow VSR’s on NC spaces

» Our idea:

To realize VSRs through twist deformations of
Poincaré algebra.

» |f realized, it provides a very natural and
consistent setting for formulation VSR’s.

» Here we show that

s VSR subgroups of Lorentz fit within the
classification of the twisted Poincaré &

s The VSR’s can be realized as symmetries

(“isometries”) of Noncommutative Spaces. I



Realization of Cohen-Glashow VSR’s on NC spaces

# A noncommutative (NC) space can be
defined by

ot x¥] = 10" (x)

where 6 (z) is a two form.

» For a given 6** the Lorentz (and Poincaré )
symmetry Is broken to a subgroup which
keeps 6*" invariant (covariant, for the more
general x-dependent case).

o For the special case of constant 6/ we are
dealing with the Moyal NC space. I



De tour: Classification of NC spaces

# Depending on the values of the two Lorentz
Invariants made out of 6/

A*=0"0,,,  L*=e€a0"0"
there are nine possibilities: either of A* and
L* can be positive, zero or negative.

» |t has been argued that (at least for constant

0"V case) the L* # 0 does not lead to a
unitary field theory [O. Aharony, J. Gomis and

T. Mehen, JHEP0009:023 (2000)].



De tour: Classification of NC spaces, Cont’d

» However, it has been argued that the
Doplicher-Fredenhagen-Roberts [hep-th/0303037]
“guantum space-time” (A = 0, L = 0), leads to unitary
QFT’s [D. Bahns, S. Doplicher, K. Fredenhagen, G.
Piacitelli, PLB533 (2002) 178, hep-th/0201222; CMP237
(2003) 221, hep-th/0301100].

#® Focusing on the L = 0 case, we remain with three
possibilities
s A% > 0, the space-like noncommutativity,
s A =0, the light-like noncommutativity,

s A% <0, the time-like noncommutativity. I




De tour: Classification of NC spaces, Cont’d

# For constant 0#¥ quantum field theories on spaces with
time-like noncommutativity suffer from non-unitarity
[M. Chaichian, A. Demichev, P. Presnajder and A.
Tureanu, EPJC20 (2001) 767; J. Gomis and T. Mehen,
NPB 591 (2000) 265 ].

#» However, the light-like noncommutative case is unitary
[O. Aharony, J. Gomis and T. Mehen, JHEP0009:023
(2000); L. Alvarez-Gaume, J. Barbon and R. Zwicky,
JHEP0105:057 (2001), ; MMSh-J. and A. Tureanu,

Phys. Lett. B 697, 63 (2011)] .



De tour: Classification of Twisted Poincareé algebras

There are only three choices for 6** which the deformation
can also appear as a twist in the Poincare co-algebra:
# Constant *7; the Moyal space:
at x¥| = 0"
where 6" Is a constant tensor.
® Linear 0*7; the Lie-algebra type:
', x¥| = 1Ol x

#® Quadratic 6*7; the quantum group type:

1
o, 2] = — R\ TP’
q
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Realization of Cohen-Glashow VSR’s on NC spaces, Cont'd

# Formulation of QFT’s on all the above NC space-times
have originally been studied in
[M. Chaichian, A. Demichev and P. Presnajder ,
NPB567 (2000) 360; J. Lukierski and M. Woronowicz,
PLB 633 (2006) 116 ].

#® The linear and quadratic #** cases the translational
iInvariance is lost and hence they do not lead to a VSR
model. (Recall that by definition the VSR theory has a

subgroup of Lorentz plus four translations.)



Realization of Cohen-Glashow VSR’s on NC spaces, Cont'd

# Therefore, only the constant ##¥ Moyal space case is
suitable for realization of VSR’s.

#» As argued

s In the Moyal case the part of the Lorentz group
which keeps the noncommutativity tensor 6+
Invariant is left over.

» Moreover, only the T'(2) VSR admits invariant two
tensor. Hence we have a natural setting to

formulate T'(2) VSR invariant theories.



T(2) VSRon Light-like Moyal Space

# It is straightforward to show that the anti-symmetric two
tensor which remains invariant under 7, 75, can only
have the following non-zero components

A" = —6% i=1,2.

#» Note that invariance under 17, 75 does not restrict the
r-dependence of 6.

» With the above we see that
A*=0, L*=0

that is, Invariance under 77, T, demands a light-like

noncommutativity. I



T(2) VSRon Light-like Moyal Space, Cont'd

# In the light-cone frame
vt =(t+2%/2, 2, i=1,2
6~ is the only non-zero component and
gt — v — g3
(9+i — )t = PY — 0).
# In the light-cone frame one may think of z* as

light-cone time and x~ as light-cone space direction.

#» Without any loss of generality one can still rotate the
frame in the (z!, %) plane to only keep the 6! = 6

Nnon-Zero. I



E(2), HOM(2) and SIM(2) Invariant NC spaces

#» As discussed invariance under 17,15 implies the
light-like noncommutativity with - £ 0.

#» Although one loses translational invariance when 6+
has x-dependence, for specific z-dependent 6 we
can have invariance under larger VSR Lorentz
subgroups.

#® The E(2) and STM(2) Lorentz subgroups have such a

realization on a NC space.

De tour to these cases......



E(2) Invariant NC space

E(2) is made up of T1,T5, J,.
T are invariant under J,.
0;; and ¢;; are the (only) two invariant tensors under J,.

Therefore, 67" = le;;27 and 07" = (2" lead to E(2)
Invariant space.

© o o o

e

That Is a space with
(27, 2" = ilega?, OR [z7,2'] =ila".

#» With the above it is evident that translation along z*

plane is lost. I



E(2) Invariant NC spaces, Cont’d

® The [z, 2] = ile;;27 case is a noncommutative

cylinder. To see this let us adapt the coordinates
peﬂqﬁ =2t +ir? .
# In this coordinate system we have
27, p] =0, [27,e5?] = £, [p, e =0.

#» At any given fixed p the above describes a NC cylinder
of radius p with the axis along the =~ direction.

#» ) Is the deformation parameter and Is the shortest
length we can measure along the x~ direction.

® [r,x'] = ilz’ corresponds to a less familiar case and

In the above cylindrical coordinates takes the form
@7, e =0, [27,p] =ilp, [p,e?] =0 I



SIM(2) Invariant NC spaces

# Recalling that K, is acting on z~ as scaling while
keeping z* invariant, and that HOM (2) does not have
an invariant vector, it is impossible to realize HOM (2)
in the NC setting as we did for E(2) case.

» SIM(2)is, however, possible with the following
commutation relations
27, 2" =isin&e’ {a7, 27}, or [z7,2'| =ising {27, 2"}
#» In the cylindrical coordinate system the above can be
recast in the form of the Manin plane.

#® Translational invariance in z—, 2* directions is lost. I



On T(2) VSR Invariant QFT’s

# The only VSR which can be realized in the NC setting
Is the T'(2), associated with the light-like Moyal plane.

#» There is a very well-established recipe for writing down
general QFT’'s on the Moyal spaces:

take the commutative QFT action and replace the
product between fields with the Moyal star-product:

(6% 0)(x) = o) e 90 ()
where 6V Is the light-like noncommutativity parameter
and we take its only non-vanishing component to be

0t =0. I



On T(2) VSR Invariant QFT’s, Cont'd

# Due to twisted Poincaré symmetry, fields carry
representations of the full Lorentz group
[M. Chaichian, P. Kulish, A. Tureanu, R. B. Zhang and
Xiao Zhang, JMP49:042302 (2008); M. Chaichian, K.
Nishijim, A. Tureanu, JHEP 0806 (2008) 078 |,

#» but the theory is invariant only under transformations in
the stability group of the above 6+, T'(2).

® NCQFT's are CPT invariant while break C, P and T’
IM.M.Sh-J, PRL.84, 5265 (2000); M. Chaichian,
K. Nishijima and A. Tureanu, PLB568 (2003) 146].
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On T(2) VSR scale

o The Lorentz violation scale is set by 6.

» One should make VSR model building and
compare the results with the data.

o A bound comes from H-atom spectroscopy
and the Lamb shift:

0~ Ayp~ (1—10GeV) ™

M. Chaichian, M. M. Sheikh-Jabbari and
A. Tureanu, Phys. Rev. Lett. 86 (2001) 2716.

o Stronger, less robust bounds suggest I
ANC ~ TeV.



On T(2) VSR Invariant QFT’s, Cont'd

#» A feature of any quantum field theory on NC space is
the IR/UV mixing S. Minwalla, M. Van Raamsdonk and
N. Seiberg, JHEP 0002, 020 (2000).

#» The “effective cut-off” of the theory is

Angf — AN ?+pop

A: the usual UV cut-off, p: the external momentum and

pop=p,0"0,,p".

® So, A.sy — oo can take place when

A — oo (UV limit) or p — 0 (the IR limit). I



On T(2) VSR Invariant QFT’s, Cont'd

We showed In

M.M.Sh-J, A. Tureanu, Phys.Lett.B 697 63 (2011),
that in the light-like noncommutativity and in 7'(2)
VSR QFT’s

o |IR/UV connection is not of the “standard” p o p
form and despite the fact that DLCQ
Introduces an IR cutoff and ameliorates IR/UV
mixing, it does not remove the IR/UV mixing.

» Cutting rules are satisfied and perturbative

unitarity Is there. I



Summary and Outlook

# The light-like Moyal NC space provides a consistent
framework for 7'(2) Cohen-Glashow VSR.

® Realization of VSR as noncommutative theories has
several advantages:

» |In spite of the lack of full Lorentz symmetry, fields
can still be labeled by the Lorentz representations.

s For the NC QFTs we can rely on the basic notions
of fermions and bosons, spin-statistics relation and
CPT theorem. (For a more complete discussion on

the spin-statistics theorem in NCQFT [A. Tureanu,
PLB638 (2006) 296].) I



Summary and Outlook

#® There is a simple recipe for constructing the NC
version of any given QFT.

# Noncommutativity introduces a structure, fixing the
form of the VSR-invariant action.

#» This VSR symmetry Is not anomalous.

# In the noncommutative setting we only deal with a
single possible deformation parameter. Note that we
can always choose the coordinates on (z!, z*)-plane

such that 62 is zero.



Summary and Outlook

# In our realization of T'(2) invariant theories there is the
scale, the noncommutativity scale
AN =1/6
above which the absence of full Lorentz symmetry
becomes manifest.

#» Studying the spectrum of Hydrogen atom in a 7'(2)
iInvariant QED one can impose bounds on Ayc:
A 2 3GeV.

#» Model building within our setup, still open......
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