Neutrinoless double beta decay: an experimental overview

- What is so special in neutrinoless double beta decay $(\beta\beta 0\nu)$?
- The 1998 revolution: a change of perspective in $\beta\beta0\nu$ searches
- $\beta\beta0\nu$, cosmology and direct searches
- The main experimental challenges
 - •Source: what is the "best" double beta emitter?
 - •Detector: source=detector versus external source approaches
 - •Background
- A look to the current generation of experiments (GERDA, CUORE, EXO-200, Kamland-Zen, NEMO3)
- •Conclusions

F. Terranova, Univ. of Milano-Bicocca and INFN sez. di Milano-Bicocca

Double Beta Decay

2v Double Beta Decay allowed by the Standard Model already observed $-\tau \sim 10^{18} - 10^{21}$ y

Neutrinoless Double Beta Decay (bb0v) never observed (except a discussed claim) lifetime $> 10^{25}$ years

violation of total lepton number conservation

② is a very sensitive tests to new physics since the phase space term is much larger for them than for the standard process

interest for $\beta\beta0\nu$ lasts for 70 years ! Goeppert-Meyer proposed the standard process in 1935 Racah proposed the neutrinoless process in 1937

But experimental physics is plenty of "sensitive tests of new physics" ③ What makes the search for $\beta\beta0\nu$ decay a milestone in contemporary neutrino physics?

A deep connection with standard neutrino physics

1930	1956		1998	now
	I			`
Pauli's proposal of "neutrinos"	First observation on neutrinos	of	Discovery of neutrino oscillations	Precision oscillation physics
1937	1938	1977	1982	now
Proposal of Majorana neutrinos	ββ0v as a probe of Majorana neutrinos	The see-saw mechanism	The Shechter- Valle theorem	High sensitivity ββ0v searches

The link is due to one (not demonstrated O) ansatz: neutrinoless double beta decay is mostly caused by

A deep connection with standard neutrino physics

a LH neutrino (L=1) is absorbed at this vertex

a RH antineutrino (L=-1) is emitted at this vertex _

With **massless neutrinos**, **the process is forbidden** because neutrino has no correct helicity / lepton number to be absorbed at the second vertex

- IF neutrinos are massive DIRAC particles:
 Helicities can be accommodated thanks to the finite mass,
 BUT Lepton number is rigorously conserved
- IF neutrinos are massive MAJORANA particles:
 Helicities can be accommodated thanks to the finite mass,
 AND Lepton number is not relevant

All this info fixes where to look for $\beta\beta0\nu$ with reasonable chances of seeing positive results

Mass of lightest neutrino (eV)

Choice of the isotope

Isotopes where single beta decay is forbidden (or strongly suppressed) due to energy conservation (some Z-even , A-Z even nuclei) and - possibly - the "normal" bb2v decay has a long lifetime

Isotope	Q value (MeV)	Abundance (%)
⁴⁸ Ca	4.271	0.187
⁷⁶ Ge	2.039	7.8
⁸² Se	2.995	9.2
⁹⁶ Zr	3.350	2.8
¹⁰⁰ Mo	3.034	9.6
¹¹⁰ Pd	2.013	11.8
¹¹⁶ Cd	2.802	7.5
¹²⁴ Sn	2.228	5.64
¹³⁰ Te	2.533	34.5
¹³⁶ Xe	2.457	8.9
¹⁵⁰ Nd	3.367	5.6

Signal

No outcoming neutrinos, i.e. no missing energy \rightarrow a monochromatic peak corresponding to the Q value of the decay

Background

Intrinsic background: $\beta\beta2\nu$

- Energy resolution plays a key role: germanium detectors or bolometers: FWHM O(0.1%)
- Choice of isotopes with long lifetime of 2ν double beta decay (¹³⁶Xe)

Alpha/beta contamination

- Radiopurity of the chosen material/detector
- Capability of tagging alpha/beta particles and veto external charged particles

Gamma contamination

- Radiopurity of the chosen material/detector
- Choice of isotopes with large Q-value (Nd, Ca, Se, Mo)
- •Coincidence methods

Muon and neutron induced background

- Passive shielding and neutron absorbers
- Active muon veto

Experimental strategies

- \otimes constraints on detector materials
- very large masses are possible demonstrated: up to ~ 100 kg proposed: up to ~ 1000 kg
- with proper choice of the detector, very high energy resolution

Ge-diodes bolometers

- in gaseous/liquid xenon detector, indication of event topology
- $\ensuremath{\mathfrak{S}}$ it is difficult to get large source mass
- © neat reconstruction of event topology
- © several candidates can be studied with the same detector

A. Giuliani@ Numass 2013

Gerda @ LNGS: Background reduction

Graded shielding against ambient radiation

Rigorous material selection, avoid exposure above ground for detectors

The Gerda experiment for the search of 0v88 decay in 76Ge Eur. Phys. J. C (2013) 73:2330

R. Brugnera @ Nutel 2013

Measurement of T^{2v}1/2: Result

Signal to background: 4:1

Binned maximum likelihood

Parameters:

- Active detector masses (6+1) nuisance parameter
- Fraction enrichment in ⁷⁶Ge (6) nuisance parameter
- Background contributions (3×6) *nuisance parameter*
- $T^{2\nu}_{1/2}$ common to all the detectors (1)

Derive $T^{2\nu}_{1/2}$ after the fit integrating over nuisance parameters

 $\begin{array}{ll} 2\nu\beta\beta~(80\%) & {}^{42}\mathrm{K}~(14\%) \\ {}^{214}\mathrm{Bi}~(4\%) & {}^{40}\mathrm{K}~(2\%) \end{array}$

 $T^{2\nu}_{1/2} = (1.84^{+0.09} + 0.11)_{-0.08 \text{ fit}} + 0.06 \text{ syst}) \cdot 10^{21} \text{ yr}$

The GERDA collaboration J. Phys. G 40 (2013) 035110

R. Brugnera @ Nutel 2013

Region of Interest

Background rate in ROI ($Q_{BB} \pm 100$ keV, blinded window excluded)

CUORE: the bolometric approach to $\beta\beta0\nu$

Bolometric 0vDBD experiment evolution

NME from F.Simkovic et al. Phys.Rev. C77 - J.Suhonen et al. Int.Jou.Mod.Phys.E17 -J.Menendez et al. Nucl. Phys.A818 - J.Barea et al. Phys. Rev. C79

CUORE

Cuoricino result and CUORE 1 σ sensitivity overlaid on plots that show the bands preferred by neutrino oscillation data (inner region: best-fit data; outer region: at 3σ). Both normal (red) and inverted (green) hierarchies are shown.

$$T_{1/2} = 1.6 \times 10^{26} \text{ y}$$

 $m_{\beta\beta} = 41-95 \text{ meV}$

Construction of the experiment

Assembly clean room area

Underground Storage Area

300 K shield installation

- Hut and clean room: fully equipped
- Detector assembly line: fully ready
- Radon abatement system: installed
- Cryostat: commissioning of first 3 vessels (of 6) on-going at LNGS
- Cryostat Dilution Unit: commissioning started, T<8 mK reached in stable conditions in a test cryostat
 5.5 mK now!!
- Calibration system: commissioning started
- Copper parts: being machined and cleaned, delivered by end 2013
- Crystals: all stored underground at LNGS. Some will be reconditioned
- Thermistors: production on-going, final delivering in the next few months

Dilution Unit Commissioning

CUORE-0

1 CUORE-like tower of 13 planes - 4 crystals each 52 TeO₂ 5x5x5 cm³ crystals (750 g each) Detector Mass: 39 kg TeO₂ ¹³⁰Te mass (natural i.a.): 11 kg of ¹³⁰Te

 All detector components manufactured, cleaned and stored with protocols defined for CUORE
 Assembled with the same procedures foreseen for CUORE

GOALS:

- Proof of Concept for CUORE detector in all stages
- Test and debug the CUORE assembly line
- Test of the CUORE DAQ and analysis framework
- High statistics check of the improved uniformity of bolometric response
- High statistics test of the background reduction achievable
- Extend the physics reach beyond CUORICINO while CUORE is being assembled and confirm the potential of CUORE for DM and Axion detection

CUORE-0

From pure calorimetric techniques to tracking

136Xe loaded LS in mini-balloon 320 kg (2.4 % by weight) 90 % enriched ²³⁸U: 1.3×10⁻¹⁶ g/g ²³²Th: 1.8×10⁻¹⁵ g/g

Kamland-Zen

EXO

NEMO3 SuperNEMO

[Ackerman et al Phys Rev Lett 107 (2001) 212501]

In significant disagreement with previous limits: T_{1/2} > 1.0·10²² yr (90% C.L.) (R. Bernabei *et al.* Phys. Lett. B 546 (2002) 23) T_{1/2} > 8.5·10²¹ yr (90% C.L.) (Yu. M. Gavriljuk *et al.*, Phys. Atom. Nucl. 69 (2006) 2129)

Later confirmed by KamLAND-ZEN T_{1/2}=(2.38 ± 0.02stat ± 0.14sys)·10²¹ yr [A.Gando et al. Phys Rev C 85 (2012) 045504]

G. Gratta @ Nutel 2013

¹³⁶Xe: EXO-200

Region-of-interest closeup

Full spectrum

M. Auger et al., Phys. Rev. Lett. 109 032505 (2012)

¹³⁶Xe: KamLAND-Zen

Full spectrum

A. Gando et al., Phys. Rev. Lett 110 062502 (2013)

¹⁰⁰Mo: NEMO-3

A.S. Barabash et al., Phys. Atom. Nucl. (2011) 74 312.

Conclusions

• Neutrinoless double beta decay is no more a corner in the "exotic searches" of physics beyond the Standard Model. Oscillation data and cosmology define uniquely where we expect such rare decay to occurr, <u>if neutrinos are Majorana particles</u>

The current generation of experiments mostly explore the degenerate region of neutrino masses. We are presently testing the anomaly reported by Klaptor et al. in ⁷⁶Ge. Early data already challenge this claim and the issue will be set soon
The experiments under construction will start <u>exploring the inverted hierarchy region</u> but a complete test of Majorana neutrinos in the Inverted Hierarchy hypothesis requires new techniques and/or scaling toward the 1ton target

• If accelerator experiments confirm the inverted hierarchy, this search will become the top priority in neutrino physics

• To explore the Normal Hierarchy region, we need novel experimental techniques and be prepared to "accidental cancellations" of the effect due to parameter conspiracy