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Entanglement entropy (EE) is hard to compute for a subsystem. It
requires the replica trick and replica wormholes in gravity.

If a system has symmetries, EE of subregions are bounded below by
simple observables related to charges, namely the fluctuation entropy

SR ≥ Sf

In this talk

The fluctuation entropy leads to the violation of global symmetry in the
black hole background.

It also bounds the gauge coupling in certain toy models.
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Outline

Fluctuation entropy and symmetry resolved entropy

Fluctuation entropy in JT gravity

Bound on a gauge coupling

Non-perturbative corrections

Ensemble average resolution
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Symmetry reolution of Entanglement

For any region R, the charge QR =
∫
R j0

if [Qtot , ρtot ] = 0 ⇒ [QR , ρR ] = 0 ⇒ ρR =
∑
q

pR(q)ρR(q) (1)

Fluctuation entropy: Sf = −
∑

q pR(q) log pR(q)

Symmetry resolved entropy: SR(q) = −Tr [ρR(q) log ρR(q)]

SR =
∑
q

pR(q)SR(q) + Sf ⇒ SR ≥ Sf

Fluctuation entropy: Correlation between charges of subsystems

Symmetry resolved entropy: Correlations among configurations of
given charged subsystems
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Symmetry reolution of Entanglement

S , Sf have UV divergences. The volume dependence is unaffected.

To compute probabilities (for an example of U(1)):

pR(q) =
1

2π

∫ +π

−π
dαe−iαq〈e iαQR 〉,

which is a replica-free!
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Example: Massless Dirac fermion in 1+1 D

Bosonization technique

jµ ∝ εµν∂νφ ⇒ QR ∝ (φ(x2)− φ(x1))

〈e iαQR 〉 = 〈e iαφ(x2)e−iαφ(x1)〉

For large intervals l � β at finite temperature, probabilities are
Gaussian,

Sf =
1

2
log

(
2πl

β

)
+O(l0)
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EE for a single interval (Dirac fermion) in finite temperature
SR = π

3β l +O(l0). For large intervals, Sf ≤ SR is trivially satisfied.

For U(1)c , the fluctuation entropy is Sf = c
2 log(2πlβ ) +O(l0).

Non-Abelian symmetries: U(N) level k WZW models in a particular
large l and large N limit. see also [Calabrese, et al’21]

Sf =
N2

4
log

(
k

2πl

β

)
+O(l0)
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Fluctuation entropy in JT gravity

East coast model [AMM’19, AHMST’19]

I = −S0χ(M)−
∫
M
φ(R + 2)− 2

∫
∂M

φbK + ICFT

ICFT : CFT action with central charge c with U(1)c symmetry

working in the regime

c →∞, S0/c = fixed and kind of large,
φr
βc
≥ 1

EE of Hawking radiation in region R at late times:

S(R) ≈ 2S0 +
4πφr
β
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Fluctuation entropy in JT gravity

Z1(α) ∼ 〈e−iαφ(P1)e iαφ(P2)〉 ∼
t�β

exp

[
−α

2

πβ
t

]

Sf = −
∑
q

pR(q) log pR(q) =
c

2
log(2πt/β) +O(1)

t? ∼ βe4S0/c+
8πφr
βc ×O(1)

Around t = t?, the fluctuation entropy exceeds the EE of Hawking
radiation and the black hole coarse-grained entropy which is a
contradiction.
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Taking large subsystems in the bra-ket wormholes gives a similar
contradiction when l & βe4S0/c [Chen, Gorbenko, Maldacena’20].

S island
R ≈ 2S0

Sf (R) ≈ c

2
log(πl/β)
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Adding gauge fields

What happens if the matter has a gauge symmetry?

Presumably gauge symmetries are allowed.
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Adding gauge fields

We can either consider the gauge field everywhere or in the
gravitational region only.

If the gauge field is everywhere, EE is defined as
SR =

∑
q pR(q)SR(q) + Sf .
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Adding gauge fields

The matter content: 1 + 1D massless Dirac fermions coupled to YM
gauge fields with the coupling g0

L =
1

2g2
0

F 2 + ψ̄(∂z + Az)ψ + (anti-chiral)

Extra subtleties:

Fermions are not free

Propagating gauge d.o.f

Extra holonomy d.o.f in the path integral

Excitations are massive in massless Schwinger model with a lowest mass
m = g0√

π
.

Holonomy issue does not arise in calculating the fluctuation entropy.
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case 1) small g0

The Compton length associated to g0 is larger than other scales. The
result is the same as the global symmetry case.

g0 & max
β

1

t?
=

c

φr
exp (−4S0/c)×O(1),

For U(N) YM, we find

g0
√
N &

N2

φr
exp

(
−8S0/N

2
)
×O(1)

case 2) large g0

The Compton length is small. The fluctuation entropy does not grow
with length (or time in the eternal BH) even if the gauge field only
exists in the gravity region.
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So far

Massless fermions with different global symmetries coupled to gravity
lead to a contradiction.

If the theory is coupled to gauge fields, the issue is resolved if g0 is
not too small.
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4d magnetic black holes

4d near-extremal magnetic black holes mimic the two-dimensional
setup [...,Maldacena, Milekhin, Popov’18].

To get U(1)c , we assume that a black hole is charged under separate
U(1) with unit charges.

Near-extremality conditions:

φr ∼
r3e
l2p
, S0 =

πr2e
l2p
, g0 ∝

g4d
re

re ≥
√
πclp
g4d

, ⇒ 1

g3
4d

& exp

(
−4π2

g2
4d

)
This is always satisfied in weakly-coupled theories.
The bound satisfies in the complex SYK model g0 ∼ c/φr .
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Non-perturbative corrections

The result for the fluctuation entropy relies on calculating
〈e iαφ(x2)e−iαφ(x1)〉.
The exponential decay is inconsistent with unitarity when correlators
become smaller than e−O(1)S0 [Maldacena ’01].

At late times, the contributions from higher topologies are presumably
important [Saad’19].

18 / 25



Non-perturbative corrections

〈e iαQR 〉 = 〈e iαQR 〉0 + e−2S0f (α)

p(q) = p0(q) + e−2S0 f̃ (q), |f̃ (q)| ≤ 1

p0(q) =

√
π

2l
e−

π2q2

2l

Non-perturbative corrections are small as long as1 l . e4S0 .

The calculation is valid unless there is a missing contribution around
t, l ∼ e(O(1)S0/c), for instance a saddle point of order e−2S0/c .

1In vacuum, l should be replaced with log l .
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Ensemble average resolution

If gravity is an ensemble average, usual unitarity arguments do not apply.
Two options:

Global symmetry is part of each member of ensemble.

Global symmetry is emergent only after averaging.

Is the large fluctuation entropy compatible with unitarity in the ensemble
average?
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There can be different probabilities associated to charges q and ensemble
parameter J:

conditional probability distribution: p(q|J)

averaged charge distribution p(q) ≡ [p(q|J)]J∫
dαe−iαq〈e iαQR 〉gravity = p(q)

concavity: Sf (p(q)) ≥ [Sf (p(q|J))]J

Sf (p(q)) can be unbounded while [Sf (p(q|J))]J is bounded.

However, this implies2

Sens(p(J)) ≥ Sf (p(q))− [Sf (p(q|J))]J ,

and the ensemble entropy has to be unbounded.

2For continuous distributions, this holds under an extra assumption.
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Further directions

What happens in 4d for massive charged particles? An easier exercise
is to compute the fluctuation entropy when fermions are massive in
2d.

Fluctuation entropy for higher form symmetries

Fluctuation entropy in cosmology

Understanding holonomies in the island prescription better.

Thank You!
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A puzzle about holonomies in island prescription
There are non-trivial holonomies changing the phase of fermions in
the replica manifold.

e iQRαρsemi (R ∪ I )e−iαQR 6= ρsemi (R ∪ I )

The proposal ρsemi
gauge(R ∪ I ) :=

∫ π
−π dγe

iQIγρsemi (R ∪ I )e−iQIγ . It
looks like coarse-graning!

ρsemi
gauge(R ∪ I ) has a positive

spectrum.

[ρsemi
gauge(R ∪ I ),QR ] = 0

TrIρ
semi
gauge(R ∪ I ) = ρsemi (R)

Calculating SvN(ρsemi
gauge(R ∪ I )) is hard. However, it is bounded as

max(Sf (R),Sf (I )) ≤ S(ρsemi
gauge(R ∪ I ) ≤ S(ρsemi (R ∪ I )) + min(Sf (R),Sf (I ))
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