
arXiv:2110.14670 with Evan Coleman, Edward A. Mazenc, Vasudev Shyam,
Ronak M Soni, Gonzalo Torroba, Sungyeon Yang

+ earlier works with Alishahiha et al, …,Dong, Gorbenko, Lewkowycz, Liu, Torroba…

+ (time permitting): 

in M theory as uplift of  
arXiv 2104.13380 with B. De Luca and G. Torroba



Gravitational calculations suggest a thermodynamic 
interpretation of the de Sitter observer horizon, somewhat 
analogous to black hole thermodynamics
Gibbons-Hawking …  Anninos et al (logarithmic corrections)



Suggests theory with a finite Hilbert space captures 
observer patch.

Today’s talk:  at the `pure gravity’ level, we find that the 
real dressed spectrum of the universal and solvable  

deformation
Zamalodchikov et al, Dubovsky et al, Cavaglia et al … Gorbenko ES Torroba ‘18

of a CFT on a cylinder captures the microstates and 
the geometry of the observer patch





Deformed energy spectrum computed precisely: 
Smirnov-Zamolodchikov, Cavaglia et al, Dubovsky et al…Gorbenko et al… 

(pressure), … 



We will be interested in a seed CFT with a sparse light 
spectrum (in particular a holographic CFT)

Hartman Keller Stoica et al



General solution:

Fix integration constant and branch via appropriate boundary 
conditions for a given trajectory in theory space.

We will do two key examples, where the deformed energy 
matches the Brown-York energy for a given patch of dS, via a 
trajectory which is continuous for the corresponding band of 
energies.  



With cylinder slices, a subset of the Einstein equations 
imply the above differential equation for  

with dictionary

Brown-York (quasilocal) stress-energy 





Gorbenko ES Torroba ‘18



At 𝑦 = 𝑦଴, the near horizon patches are identical 



As we vary y, we capture precisely the geometry of the dS patch



Propagation is causal in the bulk.  Propagation between points 
on the boundary may be faster in the bulk or boundary:  

Faster through bulk 
(subluminal in ଶ description) 

Faster along the boundary 
(subluminal in ଶ description) 



Count of states goes along
for the ride 
(`integrable deformation’)



Other states:  

௖

଺
states:  dressed energies formally  become complex, discarded in a 

unitary version of the theory => Finite dimensional Hilbert space with 
count of states agreeing with Gibbons-Hawking   

௖

଺
states:   subdominant at large c, model-dependent (details require 

additions to the deformation)

=> Real spectrum of the ଶ deformation captures the finite 
dimensional Hilbert space (i) agreeing with Gibbons-Hawking and 
(ii) building up the geometry of the dS observer patch   



Sen (AdS BTZ case) … Anninos Denef Law Sun (dS)

Count of states goes along
for the ride (`integrable deformation’),
subleading check agrees:



Further generalizations of ୢ valid at large c:   
M. Taylor;   Hartman Kruthoff Shaghoulian Tajdini ’18

(1)  Local bulk matter (model-dependent, subleading in entropy) requires similar 
term for each low-energy field: cf Guica et al

(2)  Higher dimensions & curvature: 



dS/dS case:
Alishahiha et al ‘04, …, Dong ES Torroba ‘18, … 
Gorbenko ES Torroba ’18, Shyam ‘21





ீு ாா ் ത்ାஃమ
Dong ES Torroba ’18                             Coleman Mazenc ES Shyam Soni Torroba Yang ‘21

The static patch Hamiltonian is the Modular Hamiltonian K for dS/dS

with the reduced density matrix for 1 of the 2 dS/dS warped throats 



In the canonical ensemble (fixed temperature and L:  Euclidean torus), 
our system exhibits an intriguing remnant of modular invariance

A 2d theory on a torus is invariant under 

But our theory, without the complex levels, is a 1d
(quantum mechanics) theory, unitary but not fully local.  
Nonetheless, we find a remnant of modular invariance:  

Seed CFT for c >> 1: 

Deformation ( <L) : 

Hartman Keller Stoica et al

The deformed levels propagate in the direct channel.  
Shyam ‘21: this modular transformation starting from the pole patch spectrum yields ீு





Can in principle double and glue the two patches together to get global dS:



Next steps/questions for this part:

• d+1=4 dimensional case and black hole states (at and below Hawking 
Page level)

• Chaos/complexity:  square root with ଶcannot be expanded in 
fundamental (seed CFT) variables:  not k-local  cf Susskind ’21

• Relation to string theoretic de Sitter(=dS quantum gravity)?    Late time 
physics (metastable decay)?  



• Power-law stabilization 

--(D-Dc), O-planes, flux, asymmetric 
orbifold (large-D expansion) ’01-’02

(…other examples…)
--hyperbolic space,  Casimir, flux ‘21 

--including explicit uplifts of AdS/CFT 
[D1-D5 theory -> dS3 ‘10,  
M2 brane theory -> dS4 ‘21]

KK scale SUSY breaking

• Non-perturbative stabilization

--GKP ‘01/KKLT ’03 and many 
followups, e.g.

--large volume scenario 

Sub-KK scale SUSY breaking

dS examples:
Reviews of various aspects:  Polchinski, Baumann/McAllister,  Douglas/Kachru,

Denef, Frey, Hebecker; ES TASI ’16, …  

(Weak-coupling EFT control.  Ongoing studies of internal equations of motion in various 
cases & models, including ones with significant gradients e.g. Cordova et al, …  )



M theory on hyperbolic space and 
dS Quantum Gravity

with G. Bruno De Luca and Gonzalo Torroba

(+ Scipost)



Simple motivation:  Schematically ೎
ᇲ

give leading positive potential energy & 
rigidity, and are generic in string theory (also dual to each other and 
connected to other limits)  Hellerman-Swanson, Green Lawrence McGreevy

Morrison Adams Saltman ES

Cordova De Luca Dodelson Dong Horn Maloney Saltman
ES Strominger Tomasiello Torroba ... 

Enables simpler setups for more
explicit analysis of dS quantum 
gravity (e.g. entropy counts,  essential 
features of holographic dual) as well as
more generic mathematical structure and 
associated phenomenology.   



11d SUGRA (M-theory): No dilaton.  Geometry and 6-form potential field ଺.
Compactify on hyperbolic space H7/ with 7-form flux Casimir energy (inhomogeneous)

Mostow rigidity for Hn/ n>2, no flat directions unlike Riemann surface, Calabi-Yau which have 
moduli spaces.  

At the homogeneous level,  4d effective potential for the volume (equivalently curvature 
radius) from dimensionally reducing the 11d SUGRA Lagrangian:

Einstein-Hilbert action:  positive potential for (଻)



Negative curvature  (Kaloper et al, Saltman ES, Dong Horn ES Torroba, 
Cordova De Luca, Tomasiello, , …) 
as well as Casimir energy Arkani-Hamed Dubovsky et al (Standard Model), 
Maldacena et al (SM wormholes)...
have been useful in stabilizing various solutions previously.  

Casimir stress-energy:

e.g. for bosonic 
field component



Casimir term dominated by small circles in the geometry

e.g. filled hyperbolic cusps or other constructions with short systoles. I. Agol et al

To end the cusp, incorporate Anderson’s 
analogue of Dehn filling, one cycle smoothly 
contracts. 



4d effective potential 
Douglas ‘09

u(y) satisfies GR constraint (its equation of motion): 

Like a Schrodinger 
problem for 

ଶ ଶ ଶ



Quantized flux solution: 



`Wavefunction’ (warp factor) u is supported 
where the contributions to the naïve 4d 
potential -U are positive:  u redshifts away 
runaway instabilities like the conformal factor. 

௠௡
ଶ஻

௡௠

ோ,௡௔௜௩௘
    ହ஻ ଶ

Douglas ’09 conjecture:  the properly defined  ௘௙௙ is bounded below.

cf Yamabe problem, see also Hertog Horowitz Maeda

Effective Schr dinger problem Douglas ‘09 :



Tune small to compete with 
Casimir withℓଵଵ ≪ 𝑅௖ ≪ ℓ

Hyperbolic manifold dressed 
with warp and conformal 
factor variations





• If a is too large, increase volume of non-Casimir regions 
(e.g. via short filled cusps or covers k-fold -> (k+1)-fold)

• If a is too small, reduce flux quantum number

Work with concrete hyperbolic manifolds with comparable cusp and 
bulk volumes.   Explicit radial solution below illustrates a << 1.



Finite volume hyperbolic space ଻ constructed from gluing polytopes
Ratcliffe text; e.g. e.g. right angled polytopes Italiano et al arXiv:2010.10200[math.GT].

Gluing prescription ensures nonsingular finite volume manifold.  Resulting 
cusp volume of order Vol( ଻ ), ensuring comparable contributions 
(positive and negative) to a.  



Balance Terms in U =>

If  a sufficiently small, then all length  scales large:

a here is analogous to D>>Dcrit in supercritical 
compactification to dS ‘01, in KKLT ‘03, topological 
quantum numbers in large volume scenario and Riemann 
surface compactifications, etc.



Radial (ODE) solution illustrating background (rescaled in fig) and 0< a < 1

Positive and negative sources 
compete at large radius.  Joining
to full manifold requires PDEs:  
gluing of hyperbolic polytopes.



Directions transverse to volume:  small tadpoles away from dressed background.  

Positive Hessian
contributions come
from rigidity and
warping effects 



Summary:   

• ଷ observer patch geometry and microstates captured precisely by the 
solvable and universal ଶ deformation; other subleading effects go 
beyond pure gravity  

• ସ from uplift of M2-brane theory

Many near-future directions to pursue on both fronts…



Extra Slides



Hessian: two generally positive contributions.  First, rigidity  

Besse, 
Einstein Manifolds

+
Douglas ‘09:

Conformal mode would be negative but with
warping effects, it turns positive: 



Warping contribution to Hessian positive for small c.c.:
Schrodinger problem:
u `wavefunction’ 

In a solution:

Small c.c.:





Trial `wavefunction’ analysis

Crude estimates suggest overall positive Hessian, as suggested by positive
rigidity and warping contributions and some tests in radial solution.
(Not a complete calculation of the Hessian.)



General tadpole estimate:

in our stabilization mechanism



Warp and conformal factor equations of motion

General No Go for AdS extremum  in range:
Cf Gibbons, 
Maldacena-Nunez, 
Douglas…



With ସ a new realization of axion monodromy inflation 


