Irrelevant current-current deformations

and holography

Monica Guica

IphT, CEA Saclay

Motivation

- novel UV behaviour in QFT relevant to e.g. QCD flux tubes Dubovsky et al.
- holography beyond AdS → near-horizon dynamics of generic black holes

Motivation

• e.g. dipole-deformed N=4 SYM

Motivation

- Smirnov-Zamolodchikov deformations (TT & JT) and their properties
- holographic interpretation of TT & JT deformed CFTs (double-trace)

 \rightarrow mixed boundary conditions for dual AdS₃ metric

 \rightarrow concrete field theory realisation of alternate boundary conditions in AdS₃ (test ASG)

• single-trace $T\overline{T}$ and $J\overline{T}$ – deformed CFTs and their holographic interpretation

→ non-AdS holography

• infinite symmetries of $T\overline{T}$ and $J\overline{T}$ – deformed CFTs

Smirnov-Zamolodchikov deformations

• irrelevant deformations of 2d QFTs \rightarrow bilinears of two (higher spin) conserved currents J^A , J^B

• define
$$\mathcal{O}_{J^A J^B}$$
:

$$\lim_{y \to x} e^{\alpha \beta} J^A_{\alpha}(x) J^B_{\beta}(y) = \mathcal{O}_{J^A J^B} + \text{derivative terms} \qquad \text{Zamolodchikov '04} \qquad \text{SZ '16}$$
ince factorization properties
• deformation:

$$\frac{\partial S(\mu)}{\partial \mu} = \int d^2 x \, \mathcal{O}_{J^A J^B}(\mu)$$
• examples:
universal

$$\frac{T\bar{T}: J^A_{\alpha} = T_{\alpha}{}^A, \quad J^B_{\beta} = T_{\beta}{}^B \quad (\times \epsilon_{AB})$$

$$J\bar{T}: J^A_{\alpha} = J_{\alpha}, \quad J^B_{\beta} = T_{\beta z} \quad \text{torentz}$$
• highly tractable : exact finite -size spectrum, S-matrix, preserves integrability
• deformed theory non-local (scale $\mu^{\#}$) but argued UV complete

QFT

Sample results in $T\overline{T}$

• universal deformation of 2d QFT

$$\begin{array}{ll} \text{ion of 2d QFTs} & \frac{\partial S}{\partial \mu} = \int d^2 z \; \underbrace{(T_{zz} T_{\overline{z}\overline{z}} - T_{z\overline{z}}^2)_{\mu}}_{\text{``T}\overline{T}\text{''} \; \text{Cavaglia et al. '16}} \end{array}$$

- in compact space (R) \rightarrow energy levels continuously deformed
- deformed energies $E_{\mu}(R)$ determined solely by initial spectrum ($\partial_{\mu}E_n = \langle n|T\bar{T}|n\rangle$)

e.g. seed CFT

$$E_{\mu}(R) = \frac{R}{2\mu} \left(\sqrt{1 + \frac{4\mu E_0}{R} + \frac{4\mu^2 P^2}{R^2}} - 1 \right)$$

 $T_H = R_{min}^{-1}$

 $\mu > 0$: ground state energy $E_0 = -\frac{c}{12R}$ becomes complex for $R < R_{min} = \#\sqrt{\mu c}$

- Hagedorn behaviour
$$S \propto E$$
 at high energy $S(E)$

$$E(E) = \sqrt{\frac{2\pi c E_0 R}{3}} = \sqrt{\frac{2\pi c (ER + \mu E^2)}{3}}$$

μ

 $E \bullet$

 $\mu < 0$: all states with $E_0 > \frac{R}{4|\mu|}$ acquire imaginary energies \rightarrow no sense in compact space (CTC) Cooper, Dubovsky, Moshen

Sample results in $T\overline{T}$

- S-matrix: $S_{\mu} = e^{i\mu \sum_{i,j} \epsilon_{\alpha\beta} p_i^{\alpha} p_j^{\beta}} S_0$ related to deformed spectrum via TBA Dubovsky et al. Tateo et al., SZ
- $n T\bar{T}$ deformed free bosons = Nambu-Goto action for string in n+2 dim'l target space in static

$$\rightarrow n = 1 \qquad (\partial \phi)^2 \qquad \rightarrow \qquad \frac{1}{\mu} (\sqrt{1 + \mu(\partial \phi)^2} - 1) \qquad \qquad X^0 = t$$

- \rightarrow $T\bar{T}$ deformation = change of gauge in the NG action (conformal \rightarrow static)
- → deformed and undeformed theories related by a field-dependent coordinate transformation Dubovsky et al.
- non-perturbative definition of the TT deformation in terms of coupling QFT to topological (JT) gravity
- does TT yield a theory of 2d quantum gravity ?
 - rel. to worldsheet of the bosonic string
 - $\mathcal{S} = e^{i\mu s}$ gravitational -> minimum length

Dubovsky et al.

off-shell obsevables

flow eqn for correlation functions Cardy

0000

 $X^1 = \sigma$

- Virasoro symmetry
 - $pprox \,$ non-local QFT (CFT)

Sample results in JT - deformed CFTs

- universal deformation of 2d QFTs/CFTs with a $U(1)\,$ current $\,$ MG $^{\prime}$ 17

$$\frac{\partial S_{J\bar{T}}}{\partial \lambda} = \int d^2 z \left(J_z T_{\bar{z}\bar{z}} - J_{\bar{z}} T_{z\bar{z}} \right)_{\lambda} \qquad [\lambda] = length$$

"J \bar{T} " (1,2)
$$\lambda^{\mu} \partial_{\mu} \propto \partial_{\bar{z}}$$

- breaks Lorentz invariance $T_{z\bar{z}} \neq T_{\bar{z}z} (= 0)$
- preserves $SL(2,\mathbb{R})_L \times U(1)_R \leftarrow \text{simpler than TT}$ local & conformal non-local! $CFT_1!$ • finite-size spectrum $E_R = \frac{4\pi}{\lambda^2 k} \left(R - \lambda Q_0 + \sqrt{(R - \lambda Q_0)^2 - \lambda^2 kR E_R^{(0)}} \right)$ CFT CFT CFT CFT CFT CFT CFT CFT CFTCFT

 $J\bar{T}$ -

Giveon et al. '18 • off-shell observables: correlation functions of operators in mixed basis $\mathcal{O}(z, \bar{p})$ CFT₁ correlators with non-local QFT $h(\lambda) = h + \lambda q \bar{p} + \frac{k}{2} \lambda^2 \bar{p}^2$ $q(\lambda) = q + \frac{k}{2} \lambda \bar{p}$ MG'19

$$n(n) = n + nqp + \frac{1}{4} \qquad \qquad n + \frac{1}{2} \qquad \qquad 2$$

→ spectral flow with momentum-dependent parameter

Holographic interpretation

Double-trace deformations in AdS/CFT

- in AdS/CFT parlance, the Smirnov-Zamolodchikov deformations are double-trace
- mixed boundary conditions for dual bulk fields
- e.g. scalar • undeformed CFT : $\Phi = \phi_{(0)} z^{d-\Delta} + \ldots + \phi_{(\Delta)} z^{\Delta} + \ldots$ • undeformed CFT : source \mathcal{J} (fixed) vev $\langle \mathcal{O} \rangle$ (fluctuates) • $I_{\mu} = I_{CFT} + \mu \int \mathcal{O}^2$ • only uses large N field theory 1. variational principle (equivalent to Hubbard-Stratonovich at large N)

$$\begin{split} \delta S_{\mu} &= \delta S_{CFT} - \delta \left(\mu \int \mathcal{O}^2 \right) = \int \mathcal{O} \delta \mathcal{J} - \mu \int \delta \mathcal{O}^2 = \int \underbrace{\mathcal{O} \delta (\mathcal{J} - 2\mu \mathcal{O})}_{\text{New vev}} \\ & \text{new source } \tilde{\mathcal{J}} \end{split}$$

2. interpret result in terms of bulk field data

$$\tilde{\mathcal{J}} = \phi_{(0)} - 2\mu\phi_{(\Delta)}$$
 = fixed (mixed b.c.) $\langle \tilde{\mathcal{O}} \rangle = \phi_{(\Delta)}$

Holographic dictionary for $T\overline{T}$ - deformed CFTs

• variational principle (incrementally in μ) \rightarrow relation between new and old sources and vevs

$$\begin{aligned} \gamma_{\alpha\beta}(\mu) &= \gamma_{\alpha\beta}(0) - \mu \hat{T}_{\alpha\beta}(0) + \mu^2 \hat{T}_{\alpha}{}^{\gamma} \hat{T}_{\gamma\beta}(0) \\ \hat{T}_{\alpha\beta}(\mu) &= \hat{T}_{\alpha\beta}(0) - \mu \hat{T}_{\alpha}{}^{\gamma} \hat{T}_{\gamma\beta}(0) \\ T_{\alpha\beta} - \gamma_{\alpha\beta} T \end{aligned}$$

- both signs of $\,\mu$
- other (matter) vevs can be on
- only uses large N field theory
- holographic interpretation (large N, large gap) → Fefferman Graham expansion for AdS3 metric

$$ds^{2} = \frac{\ell^{2}d\rho^{2}}{4\rho^{2}} + \left(\underbrace{\frac{g_{\alpha\beta}^{(0)}}{\rho} + g_{\alpha\beta}^{(2)}}_{\text{universal}} + \ldots\right) dx^{\alpha}dx^{\beta} \qquad \qquad g_{\alpha\beta}^{(0)} \leftrightarrow \gamma_{\alpha\beta}(0) , \qquad g_{\alpha\beta}^{(2)} \leftrightarrow 8\pi G\ell \,\hat{T}_{\alpha\beta}(0)$$

• $\gamma_{\alpha\beta}(\mu)$ fixed \leftrightarrow mixed non-linear boundary conditions for the AdS3 metric MG, Monten '19

$$\gamma_{\alpha\beta}(\mu) = g^{(0)}_{\alpha\beta} - \frac{\mu}{4\pi G\ell} g^{(2)}_{\alpha\beta} + \frac{\mu^2}{(8\pi G\ell)^2} g^{(2)}_{\alpha\gamma} g^{(0)\gamma\delta} g^{(2)}_{\delta\beta} \qquad \bullet \text{ only depend on asymptotics } \checkmark$$

- $\langle T_{\alpha\beta}(\mu) \rangle$ depends non-linearly on $g^{(0)}, g^{(2)} \rightarrow$ compute deformed energy spectrum
 - \rightarrow perfect match to field-theory formula (both signs of μ , matter field vevs on \rightarrow universal!)

Comments

- precision holography, despite the deformation being irrelevant
- mixed metric boundary conditions keep full dynamics of matter fields → unchanged b.c.
- change bnd. conditons on AdS3 metric → radical modification of the dual theory: local → non-local
- asymptotic symmetries

 \rightarrow expect: TT deformation breaks CFT conformal symmetries to $U(1)_L \times U(1)_R$

 \rightarrow find: $Virasoro(u) \times Virasoro(v)$ with same **c** as in the undeformed CFT

$$u, v \rightarrow field-dependent coordinates $U = u - \mu \int T_{vv} dv$$$

 \rightarrow suggest TT – deformed CFTs possess Virasoro symmetry, despite being non-local

Pure gravity

- the FG expansion terminates $ds^2 = \frac{\ell^2 d\rho^2}{4\rho^2} + \frac{g_{\alpha\beta}^{(0)} + \rho g_{\alpha\beta}^{(2)} + \rho^2/4 g_{\alpha}^{(2)\gamma} g_{\gamma\beta}^{(2)}}{\rho} dx^{\alpha} dx^{\beta}$ • $\gamma_{\alpha\beta}(\mu)$ coincides with the induced metric at $\rho_c = -\frac{\mu}{4\pi G\ell}$ $\mu < 0$ \approx Dirichlet at ρ_c
- $\langle T_{\alpha\beta}(\mu) \rangle$ coincides with the Brown-York stress tensor at $\rho_c : -\frac{1}{8\pi G}(K_{\alpha\beta} Kg_{\alpha\beta} \ell^{-1}g_{\alpha\beta})$
- agrees with observation that $T\overline{T}$ deformed energies coincide with energy of ``black hole in a box"

McGough, Mezei, Verlinde '16

• at $M_{max}=rac{R}{4|\mu|}$ horizon reaches the r_{μ} surface

 \rightarrow restrict to $M < M_{max}$ by imposing a hard cutoff $r < r_{\mu}$

- coincidences only hold in pure gravity
- M_{max} is not a UV cutoff & generally $\nexists r_{\mu}$ associated to the mixed b.c.

 $E(\mu) = \frac{R}{2|\mu|} \left(1 - \sqrt{1 - \frac{4|\mu|M}{R} + \frac{4\mu^2 J^2}{R^2}} \right)$

The JT holographic dictionary

- introduce sources: $J^{\alpha} \leftrightarrow a_{\alpha} \qquad T^{a}{}_{\alpha} \leftrightarrow e^{a}{}_{\alpha}$
- variational principle: $\delta S_{\mu} = \delta S_{CFT} - \delta S_{J\bar{T}} = \int d^{2}x \left[eT^{a}{}_{\alpha}\delta e^{\alpha}_{a} + eJ^{\alpha}\delta a_{\alpha} - \delta(\mu_{a}T^{a}{}_{\alpha}J^{\alpha}e)\right] = \int d^{2}x \tilde{e}(\tilde{T}^{a}{}_{\alpha}\delta \tilde{e}^{\alpha}_{a} + \tilde{J}^{\alpha}\delta a_{\alpha})$ new sources $\tilde{e}^{\alpha}_{a} = e^{\alpha}_{a} - \mu_{a}\langle J^{\alpha}\rangle, \quad \tilde{a}_{\alpha} = a_{\alpha} - \mu_{a}\langle T^{a}_{\alpha}\rangle$ new vevs $\tilde{T}^{a}{}_{\alpha} = T^{a}{}_{\alpha} + (e^{a}_{\alpha} + \mu_{\alpha}J^{a}) \mu_{b}T^{b}{}_{\beta}J^{\beta}, \quad \tilde{J}^{\alpha} = J^{\alpha}$

MG, Bzowski '18

Holography: $\left\{ \begin{array}{cc} (T^a{}_{\alpha}, e^a{}_{\alpha}) & \text{modelled by 3d Einstein gravity} \\ (J^{\alpha}, a_{\alpha}) & U(1) \end{array} \right\}$ non-dynamical

- AdS_3 gravity with mixed boundary conditions (CSS-like, but allowing full dynamics)
- perfect match between energies of black holes and the deformed CFT spectrum \checkmark • asymptotic symmetry group: $SL(2,\mathbb{R})_L \times U(1)_L \times U(1)_R$ non-local on-local on-local CFT! Virasoro - Kac-Moody \times Virasoro_R $f(x^- - \lambda \int J)$

Single-trace analogues of $T\overline{T}$ and $J\overline{T}$

 $N_5\,$ NS5 and $\,N_1\,$ F1 strings in the NS5 decoupling limit $g_s \to 0 \;, \;\; \alpha' \qquad {\rm fixed}$

UV: Little String Theory

non-gravitational, non-local theory with Hagedorn growth

IR: AdS_3 dual to $(\mathcal{M}_{6N_5})^{N_1}/S_{N_1}$ symmetric orbifold CFT

- can be obtained via TsT of near norizon AdS

• worldsheet σ - model : exactly marginal deformation of the $SL(2,\mathbb{R}) \times SU(2) \times U(1)^4$ WZW model

that describes the near-horizon AdS_3 by $J^-\bar{J}^-$

• expand infinitesimally around IR $AdS_3 \rightarrow$ source for (2,2) single-trace operator $\sum_i T_i \overline{T}_i$

Proposed holographic duality

$$Z_{string}[\text{NS5- F1}] = Z \left[(T\bar{T} - \text{def. } \text{CFT}_{6N_5})^{N_1} / S_{N_1} \right]$$

Giveon, Itzhaki, Kutasov '17

-) RHS is well-defined at finite deformation
 - spectrum of string excitations exactly matches $T\bar{T}$ spectrum
 - black hole entropy (Hagedorn)
 - correlation functions $\langle O(p)O(-p)\rangle$ using worldsheet

- uses free product structure in an essential way
- not clear how to deform away from this (singular) point in moduli space
- naively different behaviour from $T\bar{T}$ correlator

field-dependent?

more checks?

• similar story holds for $J\overline{T}$: pure NS-NS string background obtained from $AdS_3 \times S^3 \times T^4$ + TsT on one AdS and one angular direction \rightarrow warped AdS_3 Apolo, Song '18, Chakraborty et al. '18

• universal near-horizon geometry of extremal black holes, with Virasoro x Virasoro ASG

$T\overline{T}$ and $J\overline{T}$ - deformed CFTs as non-local CFTs

Abstract proof of Virasoro symmetries

- ASG suggest \exists Virasoro x Virasoro symmetry in $T\overline{T}/J\overline{T} \rightarrow$ build it directly in field theory?
- both deformations smoothly deform energy eigenstates on a cylinder w/o changing Hilbert space

$$\partial_\lambda |n\rangle_\lambda = \mathcal{O}|n\rangle_\lambda$$

• define L_m^{λ} via $\partial_{\lambda}L_m^{\lambda} = [\mathcal{O}, L_m^{\lambda}]$, and which coincide with the CFT generators at $\lambda = 0$

→ satisfy Virasoro algebra by construction, same c as undeformed CFT

 $\rightarrow ~L_0^\lambda |n\rangle_\lambda = h |n\rangle_\lambda$, where ~h~ are the undeformed conformal dimensions

H

 Virasoro algebra → Virasoro symmetry → need conservation!

• universal TT – deformed spectrum
$$\rightarrow L_0^{\lambda} = f(H, P)$$
 $E_{\lambda} = \frac{1}{2\lambda} \left(\sqrt{1 + 4\lambda(h + \bar{h}) + 4\lambda^2(h - \bar{h})^2} - 1 \right)$

• can show that $[L_m^{\lambda}, H] = \alpha_m(H, P) L_m^{\lambda} \qquad \Rightarrow \qquad L_{m,S}^{\lambda}(t) \equiv e^{i\alpha_m(H, P)t} L_{m,S}(0)$

$$\Rightarrow \quad \left(\frac{\partial L_{m,S}^{\lambda}(t)}{\partial t}\right)_{H} + \frac{i}{\hbar}[H, L_{m,H}^{\lambda}] = 0$$

-» conserved vev -» Virasoro symmetries

 L_0^{λ}

LeFloch, Mezei '19

Field-dependent symmetries

- consider a 2d classical field theory with null coordinates $U,V=\sigma\pm t$

- MG, Monten '20
- consider the coordinate shifts: $U \to U + \epsilon f(u)$ $V \to V \epsilon \overline{f}(v)$ where u(U, V), v(U, V)are some possibly field-dependent coordinates
- the variation of the action is $\delta_f S = -\int dU dV \epsilon \, f'(u) \, \left(T_{UU} \partial_V u + T_{VU} \partial_U u
 ight)$
- in a 2d CFT $T_{VU} = 0$ off-shell \rightarrow for u = U, $\delta_f S = 0 \quad \forall f(u) \rightarrow$ infinite conformal symmetries
- in TT, JT deformed CFTs , still only two independent components of the stress tensor off-shell

 \rightarrow choose $u(U,V) \ni T_{UU}\partial_V u + T_{VU}\partial_U u = 0 \Rightarrow$ infinite field-dependent symmetries

- special structure of $T\overline{T}$, $J\overline{T} \rightarrow$ universal form for u(U,V), v(U,V)
 - = coordinates in terms of which the deformed dynamics trivializes to that of the original CFT
 - \rightarrow field-dependent symmetries = original CFT symmetries (∞) seen through the prism of these coord.

Example: classical JT - deformed CFTs

• u = U (due to $SL(2, \mathbb{R})$), $v = V - \lambda \phi$ $J : \ U(1)$ shift current for $\ \phi$ • conserved charges $\bar{Q}_{\bar{f}} = -\int d\sigma \bar{f}(v) T_{tV} = \int d\sigma \bar{f}(v) \mathcal{H}_R$ + affine U(1) $\bar{P}_{\bar{\eta}}$ $\begin{cases} \mathcal{H}_{L,R} = \frac{\mathcal{H} \pm \mathcal{P}}{2} \\ \mathcal{J}_{\pm} = \frac{\pi \pm \phi'}{2} \end{cases}$ • charge algebra $\{\bar{Q}_{\bar{f}}, \bar{Q}_{\bar{g}}\} = \bar{Q}_{\bar{f}'\bar{a}-\bar{f}\bar{a}'} \dots$ MG. Monten '20 charges seen by ASG \rightarrow functional ('= ∂_{σ}) Witt – Kac-Moody algebra • compact space \rightarrow these charges are inconsistent with U(1) charge quantization \leftarrow z.m. of ϕ

eld-dependent coordinate

- fix: $v \rightarrow v_{imp} \leftarrow v$ with ϕ zero mode removed MG'20
- new (consistent) cons. charges $\bar{\mathcal{Q}}_{\bar{f}} = \int d\sigma \bar{f}(v_{imp}) \mathcal{H}_R$ & $\bar{\mathcal{P}}_{\bar{\eta}} \rightarrow \text{nonlinear modification of Witt-KM}$
- however, the non-linear combinations $R_v \bar{Q}_{\bar{f}} \lambda E_R \bar{\mathcal{P}}_{\bar{f}} + \frac{\lambda^2 E_R^2}{4} \delta_{\bar{f}=I} \quad \& \quad \bar{\mathcal{P}}_{\bar{f}} \frac{\lambda E_R}{2} \delta_{\bar{f}=I}$ do satisfy Witt - Kac-Moody \Rightarrow $(ar{L}_0^\lambda)$

Conclusions

- TT, JT are a set of well-defined and highly tractable irrelevant deformations of 2d QFTs
 - \rightarrow deformed spectrum, S-matrix, ~ correlators \rightarrow UV complete non-local QFTs
 - \rightarrow precision holography: AdS₃ with mixed bnd. conditions \rightarrow neat testing ground for ASG analyses

- there exist closely related single-trace analogues of TT, JT
 - → relevant for non-AdS holography (near-horizon dynamics of general back holes)
 - \rightarrow suggest larger set of theories similar to $T\overline{T}$, $J\overline{T}$ UV completeness, symmetries?

but more general? - universal spectrum

- TT, JT deformed CFTs correspond to non-local CFT s ← field-dependent Virasoro symmetries
 - \rightarrow other observables, e.g. correlation functions?
 - \rightarrow what are the most general non-local CFTs (at large N)?

Thank you!

Resolution

1. Solution for v determined up to a constant \rightarrow fix such that charge quantization is respected

$$v_{new} = \sigma - \lambda \phi + \frac{\lambda R_v}{R - \lambda Q_K} \widetilde{\phi}_0$$

$$\widetilde{\phi}_0 = \phi_0 - \frac{\lambda}{R_v} \int d\sigma \hat{\phi} (\mathcal{J}_- + \frac{\lambda}{2} \mathcal{H}_R)$$

generator of spectral flow in $J\overline{T}$

• modified charges $\bar{\mathcal{Q}}_n = \int d\sigma e^{-inv_{new}/R_v} \mathcal{H}_R$ are conserved and have Poisson brackets that are

consistent with semiclassical quantization

new charge algebra has guadratic terms on the RHS

fons
$$\begin{cases} \tilde{Q}_n = R Q_n - \lambda E_R K_n + \frac{\lambda^2 E_R^2}{4} \delta_{n,0}, & K_n - \frac{\lambda E_R}{2} \delta_{n,0} \\ \tilde{Q}_n = R Q_n - \lambda E_R K_n + \frac{\lambda^2 E_R^2}{4} \delta_{n,0}, & K_n - \frac{\lambda E_R}{2} \delta_{n,0} \end{cases}$$
 do satisfy Witt-Kac-Moody²

$$\tilde{\bar{\mathcal{Q}}}_n = R_v \bar{\mathcal{Q}}_n - \lambda E_R \bar{\mathcal{K}}_n + \frac{\lambda^2 E_R^2}{4} \delta_{n,0} , \qquad \bar{\mathcal{K}}_n - \frac{\lambda E_R}{2} \delta_{n,0}$$

coincide with the undeformed CFT energies $E_{L,R}^{(0)} \leftarrow$ integer-spaced spectrum **2.** $\tilde{Q}_0, \ \bar{\bar{Q}}_0$

 \rightarrow not the left/right energies in the JT – deformed CFT!

Adding matter

- difference between mixed at infinity and Dirichlet at finite radial distance for $\mu < 0$

- shell outside $\rho_c \rightarrow \text{only mixed}$ bnd. cond. give correct energy
 - \rightarrow configurations outside this surface \checkmark
 - \rightarrow 2d TT describes entire spacetime : UV completeness

integrability

- imaginary energies → breakdown of coordinate transformation
- used to make $\gamma_{lphaeta}(\mu)=\eta_{lphaeta}$, which only depends on the

asymptotic value of the metric

Take-home: universal formula for energy ↔ universal asymptotic behaviour

• McGough et al picture still holds in typical high energy states