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Motivation:

Quantization of a relativistic string gives an

infinite tower of massive states.

The degeneracy of these states grow rapidly

with mass.

Thus it seems natural to define a ‘statistical

entropy’ associated with elementary string s-

tates:

Sstat(M, ~Q) = ln d(M, ~Q)

d(M, ~Q) = degeneracy of elementary string s-

tates with a given mass M and charges ~Q =

(Q1, Q2, . . .).



Since string theory includes gravity, one might

expect that a string of very large mass behaves

like a black hole.

One can assign an ‘entropy’ to these black

holes via the Bekenstein-Hawking formula:

SBH(M, ~Q) = A/(4GN)

A: area of the event horizon

GN : Newton’s constant

Question: Do these two different ways calcu-

lating entropy of an elementary string agree?

’t Hooft, Susskind

Is Sstat(M, ~Q) = SBH(M, ~Q)?



In order to make a meaningful comparison we

must ensure that the parameters M and ~Q ap-

pearing in the arguments of Sstat and SBH refer

to the physical mass and charge.

Usually SBH is computed as a function of the

physical mass (ADM mass).

But Sstat is calculated as a function of the tree

level mass of the elementary string state.

The physical mass is related to the tree lev-

el mass via a large but finite renormalization

effect. Susskind

Due to this renormalization effect it is difficult

to figure out how Sstat depends on the physical

mass of the black hole.

This makes the comparison of Sstat and SBH
difficult.



In supersymmetric theories, this problem in prin-

ciple can be avoided by considering BPS states

which do not suffer from any mass renormal-

ization.

For these states the mass is determined in

terms of the charges carried by the state.

As a result Sstat, calculated as a function of

the tree level mass, gives Sstat as a function of

the physical mass of the string.



Consider heterotic string theory compactified

on T5 × S1.

Use α′ = 16 unit

→ String tension = (2πα′)−1 = (32π)−1

R: radius of S1 in string metric

g: string coupling constant

coordinate radius of S1 =
√
α′ = 4



The spectrum of tree level heterotic string the-

ory is generated by 24 sets of left-moving boson-

ic oscillators ᾱI−n, 8 sets of right moving boson-

ic oscillators αi−n and 8 sets of right moving

fermionic oscillators ψi−n

1 ≤ I ≤ 24, 1 ≤ i ≤ 8, 1 ≤ n <∞

A generic state:

ᾱ
I1
−n1

. . . ᾱIs−nsα
i1
−m1

. . . αir−mr
ψ
j1
−p1 . . . ψ

jt
−pt| ~Q〉

~Q: labels the momentum, winding number and

various gauge charges carried by the state.

Define

NL =
s∑

k=1

nk, NR =
r∑

k=1

mr +
t∑

k=1

pk



Consider an elementary string state wound w

times along S1 and carrying n units of momen-

tum along S1.

Suppose the string has level NL left-moving

oscillator excitations and level NR right-moving

oscillator excitations.

m: Mass of the string measured in the canon-

ical Einstein metric

m2 = g2
[(
n

R
+
wR

16

)2

+ 4

(
NR − 1

2

)]

= g2
[(
n

R
− wR

16

)2

+ 4(NL − 1)

]

This formula is valid for bosonic states, but

due to supersymmetry for every bosonic state

there will be a fermionic state with the same

mass and charge.



m2 = g2
[(
n

R
+
wR

16

)2

+
1

4

(
NR − 1

2

)]

= g2
[(
n

R
− wR

16

)2

+
1

4
(NL − 1)

]

NR = 1
2 → BPS states

These states are invariant under half of the

space-time supersymmetry transformations.

→ NL = 1 + nw

Thus nw ≥ −1 for BPS states.

The degeneracy dnw for these states can be

calculated by knowing the number of different

ways we can get level NL = nw+1 excitations.



Formula for dnw:

∞∑

N=0

dN−1q
N = 16

∞∏

n=1

(1 − qn)−24

For large nw:

dnw ∼ exp(4π
√
nw)



Goal:

1) Construct the BPS black hole solution car-

rying the same mass and charge quantum num-

bers as the elementary string state.

2) Calculate its Bekenstein-Hawking entropy

and compare with ln dnw.

To carry out this goal we begin by writing down

the low energy effective field theory describing

heterotic string theory on T 5 × S1.



Relevant massless fields in ten dimension:

G
(10)
MN , B

(10)
MN and Φ(10), 0 ≤M,N ≤ 9

The dynamics of this theory is described by

N = 1 supergravity theory in (9+1) dimen-

sions.

Action = S

(
G

(10)
MN , B

(10)
MN ,Φ

(10), · · ·
)

· · · denote other bosonic and fermionic fields

which will be set to zero in our analysis of clas-

sical solution describing the elementary string

state.



xµ: non-compact directions (0 ≤ µ ≤ 3)

x4: coordinate along S1

For constructing the black hole solution de-

scribing the elementary string described above,

we need non-trivial:

G
(10)
µν , B

(10)
µν , G

(10)
4µ , G

(10)
44 , B

(10)
4µ , Φ(10)

All other fields are set to zero.

Furthermore we take all fields to be indepen-

dent of the compact directions.



Define ‘four dimensional fields’

Φ = Φ(10) − 1

2
ln(G

(10)
44 ) ,

S = e−Φ , T =

√
G

(10)
44 ,

Gµν = G
(10)
µν − (G

(10)
44 )−1G

(10)
4µ G

(10)
4ν ,

gµν = e−ΦGµν ,

A
(1)
µ =

1

2
(G

(10)
44 )−1G

(10)
4µ ,

A
(2)
µ =

1

2
B

(10)
4µ ,

Bµν = B
(10)
µν − 2(A

(1)
µ A

(2)
ν −A

(1)
ν A

(2)
µ ) .

Gµν: string metric

gµν: canonical metric



The low energy effective action is given by:

S =
1

32π

∫
d4x

√
−det g

[
Rg −

1

2S2
gµν ∂µS∂νS

− 1

T2
gµν ∂µT∂νT

− 1

12
S2gµµ

′
gνν

′
gρρ

′
HµνρHµ′ν′ρ′

−ST2 gµν gµ
′ν′ F (1)

µµ′ F
(1)
νν′

−ST−2 gµν gµ
′ν′ F (2)

µµ′ F
(2)
νν′

]
,

where

F
(a)
µν = ∂µA

(a)
ν − ∂νA

(a)
µ , a = 1,2 ,

Hµνρ =

[
∂µBνρ + 2

(
A

(1)
µ F

(2)
νρ +A

(2)
µ F

(1)
νρ

)]

+cyclic permutations of µ, ν, ρ .

In this normalization convention the Newton’s

constant is given by

GN = 2 .



We now want to construct an extremal black

hole solution satisfying the following proper-

ties:

• It should have the same mass and charge as

the elementary string state carrying quan-

tum numbers (n,w).

• It should be a solution of the classical field

equations.

• It should be invariant under half of the

space-time supersymmetry transformation-

s.



The extremal black hole solution:

ds2c ≡ gµνdx
µdxν

= −(F (ρ))−1/2ρdt2

+(F (ρ))1/2 ρ−1
(
dρ2 + ρ2dΩ2

2

)
,

F (ρ) = (ρ+ gwR/2)(ρ+ 8gnR−1) ,

dΩ2
2 ≡ dθ2 + sin2 θ dφ2 ,

S = g−2 (F (ρ))1/2 ρ−1 ,

T =
1

4
R
√

(ρ+ 8gnR−1)/(ρ+ gwR/2) ,

F
(1)
ρt =

16g2R−2n

(ρ+ 8gnR−1)2
,

F
(2)
ρt =

1

16

g2wR2

(ρ+ gwR/2)2
,

Hµνρ = 0 ,

ds2string ≡ Gµνdx
µdxν = S−1ds2c

= −g2 ρ2 (F (ρ))−1dt2 + g2 d~x2 .

‘Horizon’ is at ρ = 0.

Area of the horizon = 0



Naively this would imply that the Bekenstein-

Hawking entropy of the black hole is zero!

However it turns out that near the horizon the

curvature of space-time is large and hence we

cannot ignore the higher derivative corrections

to the effective action.

In order to study the effect of higher derivative

terms we need to study the the solution in the

‘near horizon region’:

ρ << gwR/2,8gnR−1

We achieve this by taking the limit of large n

and w at fixed ρ.



Define:

r = g ρ, τ = g−1 t/
√
nw

In this coordinate system the ‘near horizon’ so-

lution takes the form:

ds2string = −r
2

4
dτ2 + dr2 + r2 dΩ2

2

S =
2
√
nw

r
,

T =

√
n

w
,

F
(1)
rτ =

1

4

√
w

n
,

F
(2)
rτ =

1

4

√
n

w
.

Curvatures in string metric are small for r >> 1

but of order 1 for r ∼ 1.

→ higher derivative terms become important

for r ∼ 1.



We see that S ∼ √
nw for r ∼ 1

S = Inverse string coupling2

→ string coupling ∼ (nw)−1/4 for r ∼ 1.

Thus for large nw we can ignore string loop

corrections to the effective action.

The relevant corrections come from higher deriva-

tive terms in the effective action appearing at

string tree level.



The effective action at string tree level has an

exact symmetry:

G
(10)
44 → e2βG

(10)
44 , G

(10)
4µ → eβG

(10)
4µ ,

B
(10)
4µ → eβB

(10)
4µ

This corresponds to changing the radius of S1.

In terms of four dimensional fields this be-

comes:

T → eβT , A
(1)
µ → e−βA(1)

µ ,

A
(2)
µ → eβA

(2)
µ



Choosing eβ =
√
w/n we can map the near

horizon solution to the ‘checked solution’:

ďs2string = −r
2

4
dτ2 + dr2 + r2dΩ2

2

Š =
2
√
nw

r
,

Ť = 1 ,

F̌
(1)
rτ =

1

4
,

F̌
(2)
rτ =

1

4
.

The ‘checked’ solutions have the same entropy

as the original solution.



Under another transformation

S → K S, T → T, Gµν → Gµν, F
(a)
µν → F

(a)
µν

the tree level effective action gets multiplied

by K.

This leaves the equations of motion unchanged.



Choosing K = 1/
√
nw we can map the checked

solution to the ‘hatted solution’:

d̂s
2
string = −r

2

4
dτ2 + dr2 + r2dΩ2

2

Ŝ =
2

r
,

T̂ = 1 ,

F̂
(1)
rτ =

1

4
,

F̂
(2)
rτ =

1

4
,

The hatted solution has K times the entropy

of the ‘checked’ solution.

Note that this solution is completely universal,

independent of any external parameter.



The modification of the hatted solution for

r ∼ 1 by higher derivative terms will be com-

pletely universal, independent of any external

parameter.

d̂s
2
string = −f1(r)

f3(r)
dτ2 +

f2(r)

f3(r)
(dr2 + r2dΩ2

2)

Ŝ = f3(r) ,

T̂ = f4(r) ,

F̂
(1)
rτ = f5(r) ,

F̂
(2)
rτ = f6(r) .

fi(r): universal functions

The entropy computed from this modified so-

lution is also going to be a purely numerical

constant a.

Naively,

a =
Ahorizon
4GN

=
π

2
lim
r→0

(r2f2(r)) .



We can now make inverse transformations to

go back to the checked and then to the original

solution.

The original solution:

ds2string = −f1(r)
f3(r)

dτ2 +
f2(r)

f3(r)
(dr2 + r2dΩ2

2)

S =
√
nw f3(r) ,

T =

√
n

w
f4(r) ,

F
(1)
rτ =

√
w

n
f5(r) ,

F
(2)
rτ =

√
n

w
f6(r) .



It is also easy to calculate the entropies asso-

ciated with the checked and the original solu-

tions in terms of a.

The entropy associated with the checked so-

lution

=
√
nw× the entropy associated with the hat-

ted solution

= a
√
nw

The entropy SBH associated with the original

solution

= entropy associated with the checked solution

= a
√
nw



SBH = a
√
nw

On the other hand

Sstat ≡ ln dnw ' 4π
√
nw

for large nw.

Thus we see that SBH and Sstat has same de-

pendence on n, w, g and R. (AS)

Q. Can we compute a?



A brief history of subsequent developments

1. Strominger and Vafa computed the statis-

tical entropy Sstat of BPS black holes in five di-

mensions carrying three different types of charges

by describing them as configurations of D-branes.

The corresponding black hole solutions have fi-

nite area event horizon and hence finite Bekenstein-

Hawking entropy SBH.

In the limit of large charge

SBH = Sstat

2. This result was generalized to many other

examples including black holes in four dimen-

sional heterotic string theories carrying both

electric and magnetic charges, in the limit where

all charges are large.



3. For a special class of these four dimension-

al black holes, Maldacena, Strominger, Witten

computed the subleading (in 1/charges) cor-

rections to Sstat.

4. For these black holes, subleading correc-

tions to SBH were computed by Cardoso, de

Wit, Mohaupt + Kapelli by taking into account

a special class of higher derivative terms in the

action.

It was found that including these subleading

corrections we get

SBH = Sstat

In computing the subleading corrections to SBH
we had to take into account modification of

the Bekenstein-Hawking formula due to Wald.



5. Given the expression for the entropy of the

black hole as a function of electric and mag-

netic charges, we can now set the magnetic

charges to zero to compute entropy of purely

electrically charged black holes.

In the leading approximation the answer van-

ishes.

However the full expression including the sub-

leading corrections do not vanish.

Result for heterotic string wound on S1:

SBH = 4π
√
nw → a = 4π

→ Exact agreement with Sstat. Dabholkar



Instead of reviewing the detailed analysis we

shall now give a brief outline of the steps which

are involved in the computation of a.

(Lopes Cardoso, de Wit, Kappeli, Mohaupt;

Dabholkar; AS; Hubeny, Maloney, Rangamani)

Tree level heterotic string effective action con-

tains a term

1

16π

∫
d4x

√
−det g S RµνρσR

µνρσ

Supersymmetrization of this term gives many

other terms.

These constitute a special class of higher deriva-

tive terms which are ‘holomorphic’.

The analysis leading to the computation of a

takes into account only these higher derivative

corrections to the effective action.



Given this modified action we proceed as fol-

lows in order to determine the modified solu-

tion describing the heterotic string configura-

tion carrying charges (n,w).

1. First we note that the modified solution de-

scribing the heterotic string configuration un-

der study must satisfy the modified field equa-

tions derived from the new action.



2. We can also use the fact that we are trying

to describe a BPS state that in invariant un-

der a certain set of space-time supersymmetry

transformations.

As a result the field configuration describing

this state must also be invariant under these

space-time supersymmetry transformations.

These give constraints on the field configura-

tions.

3. Boundary condition: At large distance where

higher derivative corrections are negligible, the

solution must approach the leading order solu-

tion found earlier.



Now recall the general form of the ‘hatted so-

lution’:

d̂s
2
string = −f1(r)

f3(r)
dτ2 +

f2(r)

f3(r)
(dr2 + r2dΩ2

2)

Ŝ = f3(r) ,

T̂ = f4(r) ,

F̂
(1)
rτ = f5(r) ,

F̂
(2)
rτ = f6(r) .

Substitute these into the field equations / BPS

conditions.

This gives constraints on f1, . . . f6.



Define h(r) = ln(f1(r)).

Then the constraints on f1, . . . f6 may be ex-

pressed as:

f1(r) = eh(r) ,

f2(r) = e−h(r) ,

f3(r) =
2

r

1
√

1 + 4(h′(r))2
,

f4(r) =
1

√
1 + 4(h′(r))2

,

f5(r) =
1

2
∂r

(
eh(r)

√
1 + 4(h′(r))2

)
,

f6(r) =
1

2
∂r

(
eh(r)

√
1 + 4(h′(r))2

)
.

h satisfies the differential equation:

h′
(
1 + 4(h′)2

)
+ r h′′

=
r2

8
e−h

(
1 + 4(h′)2

)3/2 − r

4

(
1 + 4(h′)2

)
.



At large r the equation for h admits a solution:

h = ln
r

2

f1, . . . f6 calculated from this gives us back the

supergravity results.



For small r the equation for h admits a solu-

tion:

h = 2 ln
r

2

Thus f2(r) = e−h = 4/r2

This gives the naive entropy associated with

the hatted solution:

a =
π

2
lim
r→0

(r2f2(r)) = 2π

→ finite area of the event horizon but wrong

answer!

However due to higher derivative terms in the

action the Bekenstein-Hawking formula itself

gets modified (Wald)

After taking these corrections into account we

get:

a = 4π

in exact agreement with the statistical entropy.



However our analysis is not complete yet.

h(r) satisfies a second order differential equa-

tion.

It admits a solution h = ln(r/2) for large r that

gives the correct asymptotic behaviour.

It admits a solution h = 2 ln(r/2) at small r

that gives the correct entropy.

However a second order differential equation

has two integration constants.

Thus there is no guarantee a priori that a solu-

tion that has the small r behaviour h = 2 ln(r/2)

will approach the asymptotic form h = ln(r/2)

at large r.



Study small fluctuations about the solution h =

ln(r/2) at large r.

Result:

h ' ln
r

2
+A cos

(
r

2
+B

)
+ O(A2)

A, B: integration constants

Thus for a generic initial condition we expect

the solution to oscillate about h = ln(r/2).

Numerical results show that this is exactly what

happens.

10 20 30 40 50
r

1

2

3

h



Interpretation of these oscillations:

In the presence of higher derivative terms in

the action, typically there are additional solu-

tions of the equations of motion even at the

linearized level.

Example: Take a scalar field ψ with action:

1

2

∫
d4xψ ∂µ∂

µ
(
1 −M−2 ∂µ∂µ

)
ψ .

The equations of motion for ψ has solutions:

ψ = Aeik.x

with

k2 = 0 or k2 = −M2

Similarly, in the presence of higher derivative

terms, the equations of motion of the string

effective action will also have these additional

oscillatory solutions even at the linearized level.

→ responsible for the oscillations seen in our

analysis.



Quantization of these additional solutions will

give rise to additional states in the spectrum

which are not present in the string spectrum.

Solution (Zwiebach):

We must try to remove these higher derivative

terms by field redefinition.

In the scalar field example we take:

ψ̃ =
(
1 −M−2∂µ∂

µ
)1/2

ψ

This gives the standard kinetic term for ψ̃ and

maps ψ = Aeik.x with k2 = −M2 to 0.

The generalization of this construction to gauge

field, metric etc. will remove the higher deriva-

tive terms from the action at the quadratic lev-

el and map the additional oscillatory solutions

to zero.

These new fields are the correct ones to be

used in describing string theory.



Thus we see that once we use these right field

variables, our solution should approach the cor-

rect asymptotic form at large r.

Presumably when we use the correct field vari-

ables, the second order differential equation for

h will be replaced by an ordinary equation with

unique solution.

Can we explicitly carry out this field redefini-

tion and verify this explicitly?

This requires reformulating the supergravity ac-

tion in terms of a new set of variables.



Generalization to other heterotic string com-

pactifications.

Heterotic on K5 × S1.

K5: any manifold / orbifold, possibly with back-

ground gauge fields etc., that preserves at least

N = 2 supersymmetry.

(N = 2 supersymmetry is needed to get the

BPS states.)

Consider a heterotic string wrapped on S1 with

winding number w and carrying n units of mo-

mentum along S1.



In the limit of large nw, the statistical entropy

associated with this state is still given by:

Sstat = 4π
√
nw

(This is controlled by the central charge of the

conformal field theory describing the heterotic

string compactification.)

→ does not depend on the choice of K5.



The classical solution describing this heterotic

string involves background fields along S1 and

the non-compact directions.

The tree level effective field theory involving

these fields is independent of the choice of K5

to all orders in α′.

As a result the classical solution describing the

black hole solution does not depend on the

choice of K5.

→ we get the same entropy of the black hole:

SBH = 4π
√
nw

→ The agreement between Sstat and SBH con-

tinues to hold. AS



The full ten dimensional space factorizes as:

K5 ×M5

with dilaton and other fields depending on the

coordinates of M5.

Thus the conformal field theory describing string

propagation in this background is a direct sum

of two conformal field theories:

1. The one associated with K5, and

2. The one associated with M5.

Note: The CFT associated with M5 is a uni-

versal CFT without any parameters.

A detailed analysis of this CFT is likely to gen-

erate new insight into the black holes that they

describe.



Finite charge corrections:

One of the advantages of working with the

elementary string states is that we know their

degeneracy very precisely.

The degeneracy dnw of BPS states carrying

charge quantum numbers (n,w) is determined

from the formula

∞∑

N=0

dN−1q
N = 16

∞∏

n=1

(1 − qn)−24

For large nw this gives:

dnw ∼ exp(4π
√
nw)

However we can calculate the corrections to

this formula.

Sstat = ln(dnw) = 4π
√
nw − 27

2
ln(

√
nw) + O(1)

Question: Can we reproduce these corrections

by keeping track of non-leading contribution to

SBH?



Note: The field S is of order
√
nw near the

horizon.

→ string coupling ∼ S−1/2 ∼ (nw)−1/4 near the

horizon.

→ in the limit of large nw we can ignore the

string loop corrections to the effective action

and focus on the tree level contribution.

However this is no longer the case if we wan-

t to study the non-leading corrections to the

entropy (in inverse powers of nw).

We need to take into account quantum correc-

tions to the string effective action, and then

repeat the whole analysis.



The procedure is difficult due to the presence

of ‘holomorphic anomaly’, but the answer was

guessed by Cardoso, de Wit, Mohaupt.

Up to non-perturbative corrections involving

powers of e−π
√
nw, SBH is given by:

SBH = π
nw

S0
+ 4π S0 − 12 ln [2S0]

where S0 is the solution of the equation:

−πnw
S2
0

+ 4π − 12

S0
= 0

From this for large nw, we get

SBH = 4π
√
nw − 12 ln

√
nw+ O(1)



SBH = 4π
√
nw − 12 ln

√
nw+ O(1)

Compare with

Sstat = 4π
√
nw − 27

2
ln(

√
nw) + O(1)

The two expressions do not seem to agree.

However, while considering finite ‘size’ correc-

tions, the definition of the statistical entropy

depends crucially on the choice of the ensem-

ble.

Even if the relation between SBH and Sstat ex-

tends beyond the leading order, it can only

hold for some particular choice of ensemble.

(Ooguri, Strominger, Vafa; Dabholkar)



For example consider the following alternative

definition of statistical entropy. AS

First define a ‘free energy’ through a kind of

‘grand canonical’ ensemble:

eF(µ) =
∞∑

N=0

dN−1 e
−µ(N−1)

then define a statistical entropy through the

relation:

S̃stat = F(µ) + µnw

where µ solves the equation:

∂F
∂µ

= −nw

In the limit of large nw the entropy Sstat ≡
ln dnw computed from the microcanonical en-

semble agrees with S̃stat computed from this

‘grand canonical’ ensemble.

But non-leading corrections to Sstat and S̃stat
differ.



It is not a priori clear which statistical entropy

is to be compared with SBH, but we shall go

ahead and compare SBH with S̃stat.

e−F(µ) =
∞∑

N=0

dN−1 e
−µ(N−1)

= 16 eµ
∞∏

n=1

(
1 − e−nµ

)−24

For small µ we get

−F(µ) =
4π2

µ
+ 12 ln

µ

2π
+ ln(16) + O

(
e
−4π2

µ

)

Taking a Legendre transform of F(µ) we get

S̃stat = 4π
√
nw − 12 ln

√
nw+ O(1)

Compare with

SBH = 4π
√
nw − 12 ln

√
nw+ O(1)



One can in fact do better and show that up

to an additive constant of ln(16) and non-

perturbative correction involving powers of e−π
√
nw,

SBH and S̃stat agree exactly.

This is done by comparing the equations de-

termining S̃stat and SBH up to exponentially

suppressed terms.



S̃stat = −F(µ) + µnw

=
4π2

µ
+ 12 ln

µ

2π
+ µnw

with µ determined from the equation:

∂F
∂µ

= nw → −4π2

µ2
+

12

µ
+ nw = 0

Compare this with the equation determining

SBH:

SBH = π
nw

S0
+ 4π S0 − 12 ln [2S0]

where S0 is the solution of the equation:

−πnw
S2
0

+ 4π − 12

S0
= 0

These two sets of equations are identical up

to an additive constant of ln(16) in S̃stat if we

identify:

µ = π/S0



Is this a coincidence?

One way to check this would be to repeat the

analysis for various other compactifications of

the heterotic string theory on manifolds of type

K5 × S1 and check if S̃stat agrees with SBH in

all cases.



Other Open problems:

1) Generalization to elementary string states
in dimension > 4.

The generalization of the scaling argument ex-
ists (Peet)

2) Role of other higher derivative corrections

This analysis takes care of only part of the
higher derivative corrections which come from
supersymmetrizing the curvature square terms.

These terms are somewhat special in the sense
that they come from holomorphic corrections
to the generalized prepotential.

However since at r ∼ 1 the curvature is of order
1, other higher derivative terms will also be
important.

Is there some kind of non-renormalization the-
orem that tells us that only the holomorphic
corrections affect the value of a?



3) Generalization to type II compactification

The scaling argument can be generalized to

type II theory on T 5 × S1

→ the black hole entropy for fundamental string

wrapped on S1 with winding number w and n

units of momentum has

SBH = a′
√
nw

a′ is some universal constant

On the other hand, counting of degeneracy of

elementary string states give

Sstat = 2
√

2π
√
nw

Q. Can we calculate a′ by the same method as

in the case of heterotic string?



Unfortunately tree level type II theories have no

curvature2 corrections to the effective action.

Thus a computation similar to the one for het-

erotic string gives

a′ = 0

Thus here if we want to reproduce the statis-

tical entropy we must take into account other

higher derivative corrections.



Q. What is the basic difference between het-

erotic and type II?

Most likely this method of computing black

hole entropy gives some sort of ln(index) rather

than ln(degeneracy).

This is not surprising in view of the fact that

in our analysis we have taken into account on-

ly a very special class of terms (holomorphic)

terms.

For heterotic string index may be of order de-

generacy whereas for type II the index may van-

ish.

What exactly is the index that is being com-

puted by our method?


