
System under study: heterotic string theory

compactified on T5 × S1.

We consider a BPS string state carrying w u-

nits of winding and n units of momentum along

S1.

The degeneracy of this states ∼ e4π
√
nw for

large n,w.

→ Sstat = ln(degeneracy) ' 4π
√
nw

The goal is to see if we get the same expression

for the Bekenstein-Hawking entropy by con-

sidering a BPS black hole of same mass and

charge.



Analysis of the BPS black hole solution of the

low energy effective field theory gives zero area

of the event horizon.

However, analysis of the solution near the hori-

zon shows that for large n and w the α′ correc-
tions to the supergravity action are important

near the horizon although string loop correc-

tions are small.

Using various symmetries of the tree level ef-

fective action one can show that the form of

the black hole entropy after including α′ cor-

rections have the form

SBH = a
√
nw

a is a numerical constant.

Question: Can we compute a and show that it

is 4π?



A brief history of subsequent developments

1. Strominger and Vafa computed the statis-

tical entropy Sstat of BPS black holes in five di-

mensions carrying three different types of charges

by describing them as configurations of D-branes.

The corresponding black hole solutions have fi-

nite area event horizon and hence finite Bekenstein-

Hawking entropy SBH even without taking into

account α′ corrections.

In the limit of large charges

SBH = Sstat

2. This result was generalized to many other

examples including black holes in four dimen-

sional heterotic string theories carrying both

electric and magnetic charges, in the limit where

all charges are large.



3. For a special class of these four dimension-

al black holes, Maldacena, Strominger, Witten

computed the subleading (in 1/charges) cor-

rections to Sstat.

4. For these black holes, subleading correc-

tions to SBH were computed by Cardoso, de

Wit, Mohaupt + Kapelli by taking into account

a special class of higher derivative terms in the

action.

It was found that including these subleading

corrections we get

SBH = Sstat

In computing the subleading corrections to SBH
we had to take into account modification of

the Bekenstein-Hawking formula due to Wald.



5. Given the expression for the entropy of the

black hole as a function of electric and mag-

netic charges, we can now set the magnetic

charges to zero to compute entropy of black

holes carrying electric charges (n,w).

In the leading approximation the answer van-

ishes.

However the full expression including the sub-

leading corrections do not vanish.

Result for heterotic string wound on S1:

SBH = 4π
√
nw → a = 4π

→ Exact agreement with Sstat. Dabholkar



Instead of reviewing the detailed analysis we

shall now give a brief outline of the steps which

are involved in the computation of a.

(Lopes Cardoso, de Wit, Kappeli, Mohaupt;

Dabholkar; AS; Hubeny, Maloney, Rangamani)

Tree level heterotic string effective action con-

tains a term

1

16π

∫
d4x

√
−det g S RµνρσR

µνρσ

Supersymmetrization of this term gives many

other terms.

These constitute a special class of higher deriva-

tive terms which are ‘holomorphic’.

The analysis leading to the computation of a

takes into account only these higher derivative

corrections to the effective action.



Given this modified action we proceed as fol-

lows in order to determine the modified solu-

tion describing the heterotic string configura-

tion carrying charges (n,w).

1. First we note that the modified solution de-

scribing the heterotic string configuration un-

der study must satisfy the modified field equa-

tions derived from the new action.



2. We can also use the fact that we are trying

to describe a BPS state that is invariant un-

der a certain set of space-time supersymmetry

transformations.

As a result the field configuration describing

this state must also be invariant under these

space-time supersymmetry transformations.

These give constraints on the field configura-

tions.

3. Boundary condition: At large distance where

higher derivative corrections are negligible, the

solution must approach the leading order solu-

tion found earlier.



Now recall the general form of the ‘hatted so-

lution’:

d̂s
2
string = −f1(r)

f3(r)
dτ2 +

f2(r)

f3(r)
(dr2 + r2dΩ2

2)

Ŝ = f3(r) ,

T̂ = f4(r) ,

F̂
(1)
rτ = f5(r) ,

F̂
(2)
rτ = f6(r) .

Substitute these into the field equations / BPS

conditions.

This gives constraints on f1, . . . f6.



For large r the solution must match the so-

lution of the low energy effective field theory

found earlier.

This gives, for large r,

f1(r) ' r

2
, f2(r) ' 2

r

f3(r) ' 2

r
, f4(r) ' 1

f5(r) ' 1

4
, f6(r) ' 1

4



Define h(r) = ln(f1(r)).

Then the constraints on f1, . . . f6 may be ex-

pressed as:

f1(r) = eh(r) ,

f2(r) = e−h(r) ,

f3(r) =
2

r

1
√

1 + 4(h′(r))2
,

f4(r) =
1

√
1 + 4(h′(r))2

,

f5(r) =
1

2
∂r

(
eh(r)

√
1 + 4(h′(r))2

)
,

f6(r) =
1

2
∂r

(
eh(r)

√
1 + 4(h′(r))2

)
.

h satisfies the differential equation:

h′
(
1 + 4(h′)2

)
+ r h′′

=
r2

8
e−h

(
1 + 4(h′)2

)3/2 − r

4

(
1 + 4(h′)2

)
.



At large r the equation for h admits a solution:

h = ln
r

2

f1, . . . f6 calculated from this gives us back the

supergravity results.



For small r the equation for h admits a solu-

tion:

h = 2 ln
r

2

Thus f2(r) = e−h = 4/r2

This gives the naive entropy associated with

the hatted solution:

a =
π

2
lim
r→0

(r2f2(r)) = 2π

→ finite area of the event horizon but wrong

answer!

However due to higher derivative terms in the

action the Bekenstein-Hawking formula itself

gets modified (Wald)



Wald’s formula for spherically symmetric black

holes:

SBH = 2π
∫

H
dθ dφ

∂L
∂Rµνρσ

εµν ερσ
√

deth

H: the horizon

L: Lagrangian density

εrt = −εtr =
√
−grrgtt

εµν = 0 otherwise

hαβ: Metric along the horizon

Using this formula we get:

a = 4π

in exact agreement with the statistical entropy.



However our analysis is not complete yet.

h(r) satisfies a second order differential equa-

tion.

It admits a solution h = ln(r/2) for large r that

gives the correct asymptotic behaviour.

It admits a solution h = 2 ln(r/2) at small r

that gives the correct entropy.

However a second order differential equation

has two integration constants.

Thus there is no guarantee a priori that a solu-

tion that has the small r behaviour h = 2 ln(r/2)

will approach the asymptotic form h = ln(r/2)

at large r.



Study small fluctuations about the solution h =

ln(r/2) at large r.

Result:

h ' ln
r

2
+A cos

(
r

2
+B

)
+ O(A2)

A, B: integration constants

Thus for a generic initial condition we expect

the solution to oscillate about h = ln(r/2).

Numerical results show that this is exactly what

happens. (AS; Hubeny, Maloney, Rangamani)
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Interpretation of these oscillations:

In the presence of higher derivative terms in

the action, typically there are additional solu-

tions of the equations of motion even at the

linearized level.

Example: Take a scalar field ψ with action:

1

2

∫
d4xψ ∂µ∂

µ
(
1 −M−2 ∂µ∂µ

)
ψ .

The equations of motion for ψ has solutions:

ψ = Aeik.x

with

k2 = 0 or k2 = −M2

Similarly, in the presence of higher derivative

terms, the equations of motion of the string

effective action will also have these additional

oscillatory solutions even at the linearized level.

→ responsible for the oscillations seen in our

analysis.



Quantization of these additional solutions will

give rise to additional states in the spectrum

which are not present in the string spectrum.

Solution (Zwiebach):

We must try to remove these higher derivative

terms by field redefinition.

In the scalar field example we take:

ψ̃ =
(
1 −M−2∂µ∂

µ
)1/2

ψ

This gives the standard kinetic term for ψ̃ and

maps ψ = Aeik.x with k2 = −M2 to 0.

The generalization of this construction to gauge

field, metric etc. will remove the higher deriva-

tive terms from the action at the quadratic lev-

el and map the additional oscillatory solutions

to zero.

These new fields are the correct ones to be

used in describing string theory.



Thus we see that once we use these right field

variables, our solution should approach the cor-

rect asymptotic form at large r.

Presumably when we use the correct field vari-

ables, the second order differential equation for

h will be replaced by an ordinary equation with

unique solution.

Can we explicitly carry out this field redefini-

tion and verify this explicitly?

This requires reformulating the supergravity ac-

tion in terms of a new set of variables.



Generalization to other heterotic string com-

pactifications.

Heterotic on K5 × S1.

K5: any manifold / orbifold, possibly with back-

ground gauge fields etc., that preserves at least

N = 2 supersymmetry.

(N = 2 supersymmetry is needed to get the

BPS states.)

Consider a heterotic string wrapped on S1 with

winding number w and carrying n units of mo-

mentum along S1.



In the limit of large nw, the statistical entropy

associated with this state is still given by:

Sstat = 4π
√
nw

(This is controlled by the central charge of the

conformal field theory describing the heterotic

string compactification.)

→ does not depend on the choice of K5.



The classical solution describing this heterotic

string involves background fields along S1 and

the non-compact directions.

The tree level effective field theory involving

these fields is independent of the choice of K5

to all orders in α′.

As a result the classical solution describing the

black hole solution does not depend on the

choice of K5.

→ we get the same entropy of the black hole:

SBH = 4π
√
nw

→ The agreement between Sstat and SBH con-

tinues to hold. AS



The full ten dimensional space factorizes as:

K5 ×M5

with dilaton and other fields depending on the

coordinates of M5.

Thus the conformal field theory describing string

propagation in this background is a direct sum

of two conformal field theories:

1. The one associated with K5, and

2. The one associated with M5.

Note: The CFT associated with M5 is a uni-

versal CFT without any parameters.

A detailed analysis of this CFT is likely to gen-

erate new insight into the black holes that they

describe.



Finite charge corrections:

One of the advantages of working with the

elementary string states is that we know their

degeneracy very precisely.

The degeneracy dnw of BPS states carrying

charge quantum numbers (n,w) is determined

from the formula

∞∑

N=0

dN−1q
N = 16

∞∏

n=1

(1 − qn)−24

For large nw this gives:

dnw ∼ exp(4π
√
nw)

However we can calculate the corrections to

this formula.

Sstat = ln(dnw) = 4π
√
nw − 27

2
ln(

√
nw) + O(1)

Question: Can we reproduce these corrections

by keeping track of non-leading contribution to

SBH?



Note: The field S is of order
√
nw near the

horizon.

→ string coupling ∼ S−1/2 ∼ (nw)−1/4 near the

horizon.

→ in the limit of large nw we can ignore the

string loop corrections to the effective action

and focus on the tree level contribution.

However this is no longer the case if we wan-

t to study the non-leading corrections to the

entropy (in inverse powers of nw).

We need to take into account quantum correc-

tions to the string effective action, and then

repeat the whole analysis.



The procedure is difficult due to the presence

of ‘holomorphic anomaly’, but the answer was

guessed by Cardoso, de Wit, Mohaupt.

Up to non-perturbative corrections involving

powers of e−π
√
nw, SBH is given by:

SBH = π
nw

S0
+ 4π S0 − 12 ln [2S0]

where S0 is the solution of the equation:

−πnw
S2
0

+ 4π − 12

S0
= 0

From this for large nw, we get

SBH = 4π
√
nw − 12 ln

√
nw+ O(1)



SBH = 4π
√
nw − 12 ln

√
nw+ O(1)

Compare with

Sstat = 4π
√
nw − 27

2
ln(

√
nw) + O(1)

The two expressions do not seem to agree.

However, while considering finite ‘size’ correc-

tions, the definition of the statistical entropy

depends crucially on the choice of the ensem-

ble.

Even if the relation between SBH and Sstat ex-

tends beyond the leading order, it can only

hold for some particular choice of ensemble.

(Ooguri, Strominger, Vafa; Dabholkar)



For example consider the following alternative

definition of statistical entropy. AS

First define a ‘free energy’ through a kind of

‘grand canonical’ ensemble:

eF(µ) =
∞∑

N=0

dN−1 e
−µ(N−1)

then define a statistical entropy through the

relation:

S̃stat = F(µ) + µnw

where µ solves the equation:

∂F
∂µ

= −nw

In the limit of large nw the entropy Sstat ≡
ln dnw computed from the microcanonical en-

semble agrees with S̃stat computed from this

‘grand canonical’ ensemble.

But non-leading corrections to Sstat and S̃stat
differ.



It is not a priori clear which statistical entropy

is to be compared with SBH, but we shall go

ahead and compare SBH with S̃stat.

e−F(µ) =
∞∑

N=0

dN−1 e
−µ(N−1)

= 16 eµ
∞∏

n=1

(
1 − e−nµ

)−24

For small µ we get

−F(µ) =
4π2

µ
+ 12 ln

µ

2π
+ ln(16) + O

(
e
−4π2

µ

)

Taking a Legendre transform of F(µ) we get

S̃stat = 4π
√
nw − 12 ln

√
nw+ O(1)

Compare with

SBH = 4π
√
nw − 12 ln

√
nw+ O(1)



One can in fact do better and show that up

to an additive constant of ln(16) and non-

perturbative correction involving powers of e−π
√
nw,

SBH and S̃stat agree exactly.

This is done by comparing the equations de-

termining S̃stat and SBH up to exponentially

suppressed terms.



S̃stat = −F(µ) + µnw

=
4π2

µ
+ 12 ln

µ

2π
+ µnw

with µ determined from the equation:

∂F
∂µ

= nw → −4π2

µ2
+

12

µ
+ nw = 0

Compare this with the equation determining

SBH:

SBH = π
nw

S0
+ 4π S0 − 12 ln [2S0]

where S0 is the solution of the equation:

−πnw
S2
0

+ 4π − 12

S0
= 0

These two sets of equations are identical up

to an additive constant of ln(16) in S̃stat if we

identify:

µ = π/S0



Is this a coincidence?

One way to check this would be to repeat the

analysis for various other compactifications of

the heterotic string theory on manifolds of type

K5 × S1 and check if S̃stat agrees with SBH in

all cases.



Other Open problems:

1) Generalization to elementary string states
in dimension > 4.

The generalization of the scaling argument ex-
ists (Peet)

2) Role of other higher derivative corrections

This analysis takes care of only part of the
higher derivative corrections which come from
supersymmetrizing the curvature square terms.

These terms are somewhat special in the sense
that they come from holomorphic corrections
to the generalized prepotential.

However since at r ∼ 1 the curvature is of order
1, other higher derivative terms will also be
important.

Is there some kind of non-renormalization the-
orem that tells us that only the holomorphic
corrections affect the value of a?



3) Generalization to type II compactification

The scaling argument can be generalized to

type II theory on T 5 × S1

→ the black hole entropy for fundamental string

wrapped on S1 with winding number w and n

units of momentum has

SBH = a′
√
nw

a′ is some universal constant

On the other hand, counting of degeneracy of

elementary string states give

Sstat = 2
√

2π
√
nw

Q. Can we calculate a′ by the same method as

in the case of heterotic string?



Unfortunately tree level type II theories have no

curvature2 corrections to the effective action.

Thus a computation similar to the one for het-

erotic string gives

a′ = 0

Thus here if we want to reproduce the statis-

tical entropy we must take into account other

higher derivative corrections.



Q. What is the basic difference between het-

erotic and type II?

Most likely this method of computing black

hole entropy gives some sort of ln(index) rather

than ln(degeneracy).

This is not surprising in view of the fact that

in our analysis we have taken into account on-

ly a very special class of terms (holomorphic)

terms.

For heterotic string index may be of order de-

generacy whereas for type II the index may van-

ish.

What exactly is the index that is being com-

puted by our method?


