
System under study: heterotic string theory

compactified on T5 × S1.

We consider a BPS string state carrying w u-

nits of winding and n units of momentum along

S1.

The degeneracy of this states ∼ e4π
√
nw for

large n,w.

→ Sstat = ln(degeneracy) ' 4π
√
nw

The goal is to see if we get the same expression

for the Bekenstein-Hawking entropy by con-

sidering a BPS black hole of same mass and

charge.



Analysis of the BPS black hole solution of the

low energy effective field theory gives zero area

of the event horizon.

However, analysis of the solution near the hori-

zon shows that for large n and w the α′ correc-
tions to the supergravity action are important

near the horizon although string loop correc-

tions are small.

After taking into account a class of higher

derivative terms in the action which represent

holomorphic correction to the prepotential, we

found that the modified black hole entropy is

given by:

SBH = 4π
√
nw

→ matches the statistical entropy.

However, even within this approximation we

encountered a subtlety during our analysis.



After appropriate symmetry transformation the

black solution under study can be brought to

the general form:

d̂s
2
string = −f1(r)

f3(r)
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f2(r)

f3(r)
(dr2 + r2dΩ2

2)

Ŝ = f3(r) ,

T̂ = f4(r) ,

F̂
(1)
rτ = f5(r) ,

F̂
(2)
rτ = f6(r) .

f1, . . . f6 are universal functions without any pa-

rameter.

Field equations, BPS conditions and require-

ment of correct asymptotic behaviour gives con-

straints on the functions f1, . . . f6.



These constraints on f1, . . . f6 may be summa-

rized as:
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h satisfies the differential equation:
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.



At large r the equation for h admits a solution:

h = ln
r

2

f1, . . . f6 calculated from this gives us back the

supergravity results.

For small r the equation for h admits a solu-

tion:

h = 2 ln
r

2

This gives the correct formula for SBH.

However, h(r) satisfies a second order differ-

ential equation.

A second order differential equation has two

integration constants.

Thus there is no guarantee a priori that a solu-

tion that has the small r behaviour h = 2 ln(r/2)

will approach the asymptotic form h = ln(r/2)

at large r.



Study small fluctuations about the solution h =

ln(r/2) at large r.

Result:

h ' ln
r

2
+A cos

(
r

2
+B

)
+ O(A2)

A, B: integration constants

Thus for a generic initial condition we expect

the solution to oscillate about h = ln(r/2).

Numerical results show that this is exactly what

happens. (AS; Hubeny, Maloney, Rangamani)
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In order to interprete this result we need to

analyse the origin of the oscillatory solutions

around h = ln(r/2) for large r.

The fi’s computed from h = ln(r/2) represent

a flat (locally) background for large r.

(All field strengths fall off to zero as r → ∞.)

Thus for small A

h ' ln
r

2
+A cos

(
r

2
+B

)

represents solution of the linearized equations

of motion for various fields around flat back-

ground.

The r dependence of the oscillatory part indi-

cates as if we have fields of mass2 = −1
4.

How is this possible?



Origin of the negative mass2 modes:

In the presence of higher derivative terms in

the action, typically there are additional solu-

tions of the equations of motion even at the

linearized level.

Example: Take a scalar field ψ with action:

1

2

∫
d4xψ ∂µ∂

µ
(
1 −M−2 ∂µ∂µ

)
ψ .

The equations of motion for ψ has solutions:

ψ = Aeik.x

with

k2 = 0 or k2 = −M2

Similarly, in the presence of higher derivative

terms, the equations of motion of the string

effective action will also have these additional

oscillatory solutions even at the linearized level.

→ responsible for the oscillations seen in our

analysis.



Quantization of these additional solutions will

give rise to additional states in the spectrum

which are not present in the string spectrum.

Solution (Zwiebach):

We must try to remove these higher derivative

terms by field redefinition.

In the scalar field example we take:

ψ̃ =
(
1 −M−2∂µ∂

µ
)1/2

ψ

This gives the standard kinetic term for ψ̃.

This maps ψ = Aeik.x with k2 = −M2 to

ψ̃ = 0



The generalization of this construction to gauge

field, metric etc. will remove the higher deriva-

tive terms from the action at the quadratic lev-

el and map the additional oscillatory solutions

to zero.

For example, for the metric, this will require

defining a new metric

g̃µν = gµν + aRµν + bR gµν + . . .

The coefficients a, b, . . . have to be chosen ap-

propriately to remove higher derivative terms

from the quadratic term in the action.

These new fields are the correct ones to be

used in describing string theory.



Once we use these right field variables, the

oscillatory part of the solution will get mapped

to zero.

As a result our solution should approach the

correct asymptotic form at large r.

Can we explicitly carry out this field redefini-

tion and verify this?

This requires reformulating the supergravity ac-

tion in terms of a new set of variables.

This has not been done yet.

Presumably when we use the correct field vari-

ables, the second order differential equation for

h will be replaced by an ordinary equation with

unique solution.



Generalization to other heterotic string com-

pactifications.

Heterotic on K5 × S1.

K5: any manifold / orbifold, possibly with back-

ground gauge fields etc., that preserves at least

N = 2 supersymmetry.

(N = 2 supersymmetry is needed to get the

BPS states.)

Consider a heterotic string wrapped on S1 with

winding number w and carrying n units of mo-

mentum along S1.



In the limit of large nw, the statistical entropy

associated with this state is still given by:

Sstat ' 4π
√
nw

(This is controlled by the central charge of the

conformal field theory describing the heterotic

string compactification.)

→ does not depend on the choice of K5.



The classical solution describing this heterotic

string involves background fields along S1 and

the non-compact directions.

The tree level effective field theory involving

these fields is independent of the choice of K5

to all orders in α′.

As a result the classical solution describing the

black hole solution does not depend on the

choice of K5.

→ we get the same entropy of the black hole:

SBH = 4π
√
nw

→ The agreement between Sstat and SBH con-

tinues to hold. AS



Some open problems

1. We have seen that after appropriate symme-

try transformations, the near horizon limit of

the classical black solution representing an el-

ementary string is independent of any external

parameter or the choice of compactification.

Thus string propagation in this background is

described by a universal conformal field theory.

A detailed analysis of this CFT is likely to gen-

erate new insight into the black holes that they

describe.



2. One could try to carry out a similar analysis

for heterotic string compactified on T n×S1 for

other values of n.

This requires studying entropy of higher di-

mensional black holes.

The argument showing that the SBH has the

form a
√
nw can be generalized to higher di-

mensions. (Peet)

Can we compute a by taking into account the

higher derivative corrections?

This might be possible if we can find supersym-

metrization of the curvature2 term in (9+1)

dimensions.

We could then compactify this theory on T n

and study black hole solutions describing ele-

mentary string states.



3. The analysis described here takes care of

only part of the higher derivative corrections

which come from supersymmetrizing the cur-

vature square terms.

These terms are somewhat special in the sense

that they come from holomorphic corrections

to the generalized prepotential.

However since at r ∼ 1 the curvature is of order

1, other higher derivative terms will also be

important.

Is there some kind of non-renormalization the-

orem that tells us that only the holomorphic

corrections affect the value of a?



4. Generalization to type II compactification

The scaling argument can be generalized to

type II theory on T 5 × S1

→ the black hole entropy for fundamental string

wrapped on S1 with winding number w and n

units of momentum has

SBH = a′
√
nw

a′ is some universal constant

On the other hand, counting of degeneracy of

elementary string states give

Sstat = 2
√

2π
√
nw

Q. Can we calculate a′ by the same method as

in the case of heterotic string?



Unfortunately tree level type II theories have no

curvature2 corrections to the effective action.

Thus a computation similar to the one for het-

erotic string gives

a′ = 0

Thus here if we want to reproduce the statis-

tical entropy we must take into account other

higher derivative corrections.



Q. What is the basic difference between het-

erotic and type II?

Most likely this method of computing black

hole entropy gives some sort of ln(index) rather

than ln(degeneracy).

This is not surprising in view of the fact that

in our analysis we have taken into account on-

ly a very special class of terms (holomorphic)

terms.

For heterotic string index may be of order de-

generacy whereas for type II the index may van-

ish.

What exactly is the index that is being com-

puted by our method?



5. Finite charge corrections:

One of the advantages of working with the

elementary string states is that we know their

degeneracy very precisely.

The degeneracy dnw of BPS states carrying

charge quantum numbers (n,w) is determined

from the formula

∞∑

N=0

dN−1q
N = 16

∞∏

n=1

(1 − qn)−24

For large nw this gives:

dnw ∼ exp(4π
√
nw)

However we can calculate the corrections to

this formula.

Sstat = ln(dnw) = 4π
√
nw − 27

2
ln(

√
nw) + O(1)

Question: Can we reproduce these corrections

by keeping track of non-leading contribution to

SBH?



Note: The field S is of order
√
nw near the

horizon.

→ string coupling ∼ S−1/2 ∼ (nw)−1/4 near the

horizon.

→ in the limit of large nw we can ignore the

string loop corrections to the effective action

and focus on the tree level contribution.

However this is no longer the case if we wan-

t to study the non-leading corrections to the

entropy (in inverse powers of nw).

We need to take into account quantum correc-

tions to the string effective action, and then

repeat the whole analysis.



There is however an ambiguity in carrying out

this comparison.

The definition of various thermodynamic quan-

tities is idependent of the ensemble we use for

large charges, but depends on the ensemble

when we considers non-leading corrections.

It is not a priori clear which definition of sta-

tistical entropy we should compare with SBH.

(Ooguri, Strominger, Vafa)



For example consider the following alternative

definition of statistical entropy. AS

First define a ‘free energy’ through a kind of

‘grand canonical’ ensemble:

eF(µ) =
∞∑

N=0

dN−1 e
−µ(N−1)

then define a statistical entropy through the

relation:

S̃stat = F(µ) + µnw

where µ solves the equation:

∂F
∂µ

= −nw

In the limit of large nw the entropy Sstat ≡
ln dnw computed from the microcanonical en-

semble agrees with S̃stat computed from this

‘grand canonical’ ensemble.

But non-leading corrections to Sstat and S̃stat
differ.



It turns out that in the particular example of

heterotic string compactification on torus, S̃stat
is the quantity that agrees with SBH.

What needs to be done is to do similar calcu-

lations in many other examples and come up

with a hypothesis.


