Chronology Protection Conjecture in String Theory

M.S.Costa, C.H., J.Penedones, N.Sousa Nucl. Phys. B728 (2005) 148-178 [hep-th/0504102]

Carlos Herdeiro Physics Department, University of Porto, Portugal

@ IPM String School & Workshop, Tehran, 16/04/2006

Chronology Protection Conjecture in String Theory – p.

• Introduction to Closed Causal Curves (CCCs)

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold
 - Geometry

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold
 - Geometry
 - Classical and Quantum Particle Dynamics

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold
 - Geometry
 - Classical and Quantum Particle Dynamics
 - Classical and Quantum String Dynamics

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold
 - Geometry
 - Classical and Quantum Particle Dynamics
 - Classical and Quantum String Dynamics
 - Partition function and Hagedorn divergence

- Introduction to Closed Causal Curves (CCCs)
- The O-plane orbifold
 - Geometry
 - Classical and Quantum Particle Dynamics
 - Classical and Quantum String Dynamics
 - Partition function and Hagedorn divergence
- A stringy Chronology Protection Conjecture

Whenever there are CCCs through any point, the Cauchy problem is ill-defined.

Whenever there are CCCs through any point, the Cauchy problem is ill-defined.

* We cannot get rid of them just by requiring "good matter" (energy conditions);

Whenever there are CCCs through any point, the Cauchy problem is ill-defined.

* We cannot get rid of them just by requiring "good matter" (energy conditions);

★ Maybe we cannot <u>create</u> them:

Whenever there are CCCs through any point, the Cauchy problem is ill-defined.

* We cannot get rid of them just by requiring "good matter" (energy conditions);

***** Maybe we cannot <u>create</u> them:

Hawking (1992) considers quantum fields driving evolution in "quasi-static" process; shows 2-point correlators and $\langle \hat{T}_{\mu\nu} \rangle$ blow up along Closed Null Curve;

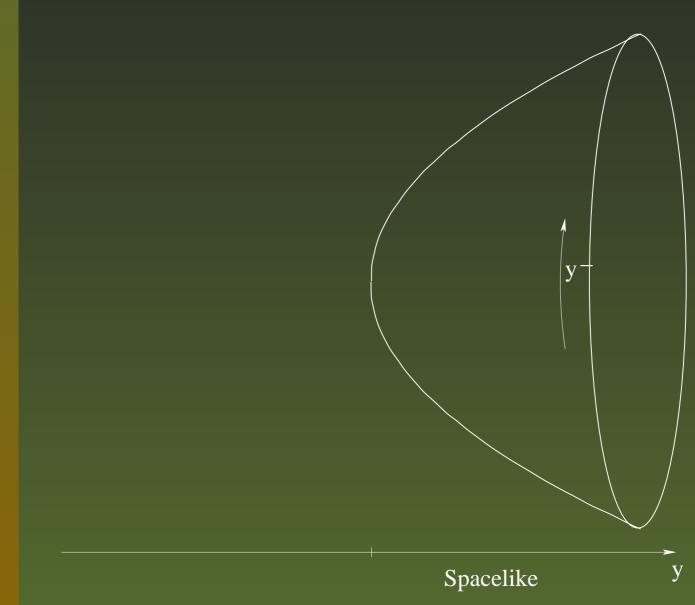
But String Theory provides a UV completion of GR with very different behaviour from ordinary QFT;

But String Theory provides a UV completion of GR with very different behaviour from ordinary QFT;

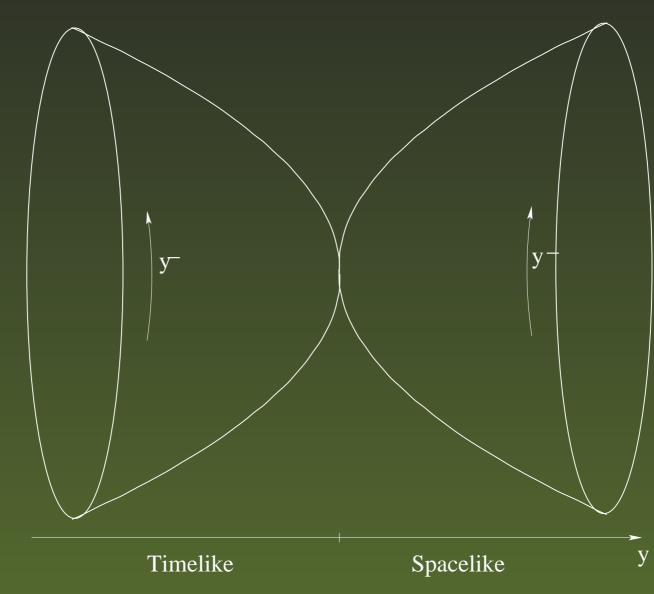
We will build a toy model with CCCs (O-plane orbifold), and suggest that string theory will not allow CCCs... but for a very different reason from Hawking's proposal:

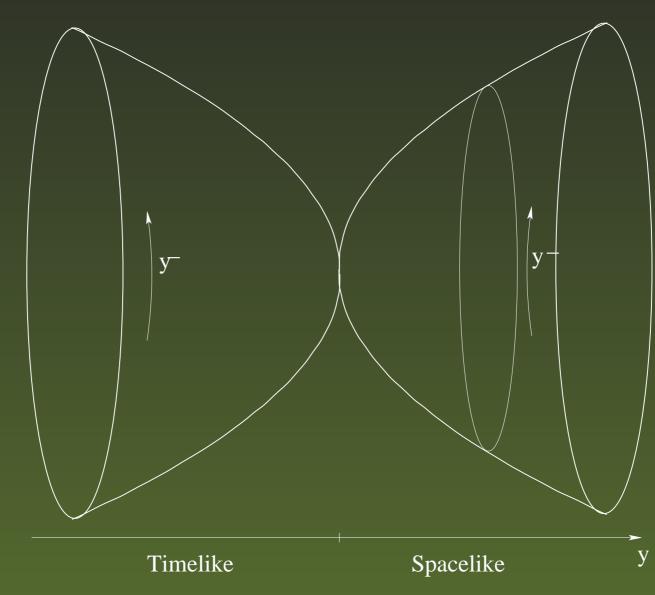
But String Theory provides a UV completion of GR with very different behaviour from ordinary QFT;

We will build a toy model with CCCs (O-plane orbifold), and suggest that string theory will not allow CCCs... but for a very different reason from Hawking's proposal: it is an *Infrared effect*.

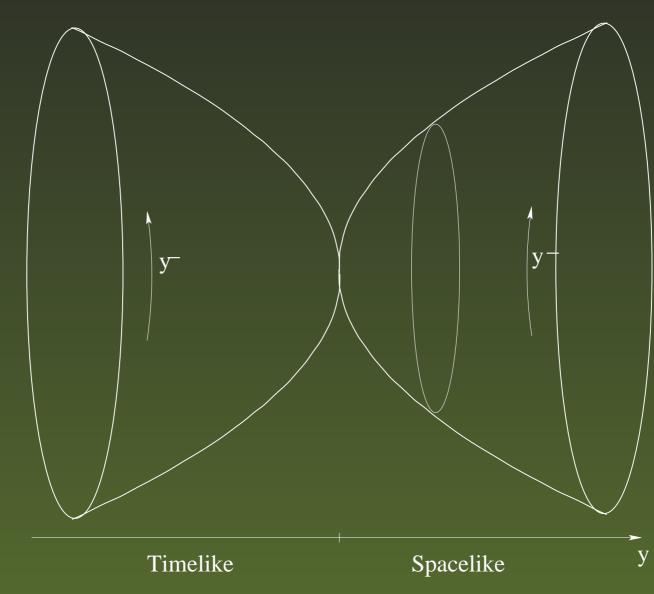


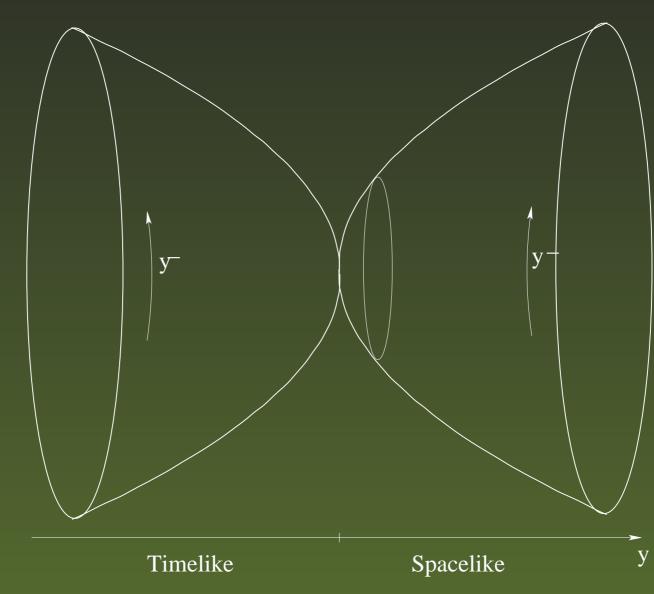
Chronology Protection Conjecture in String Theory – p.:

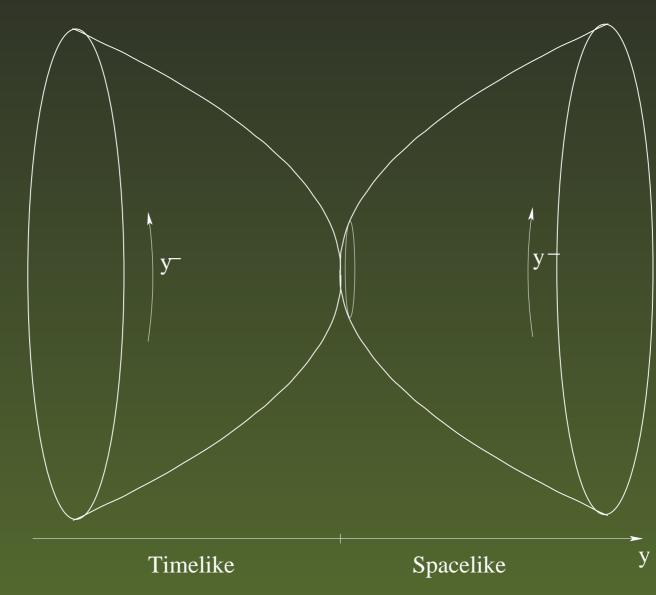


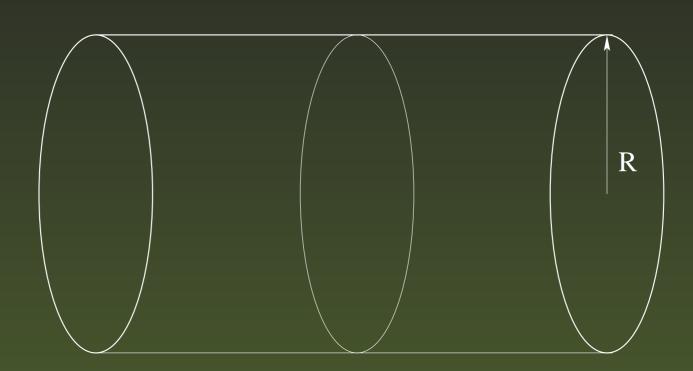


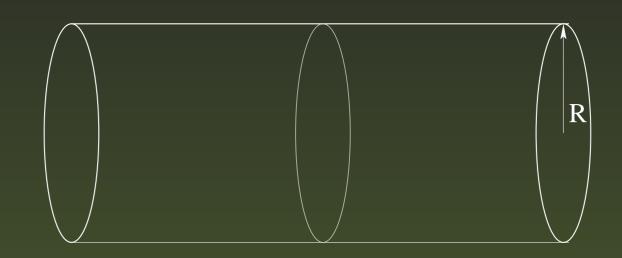
Chronology Protection Conjecture in String Theory – p.:

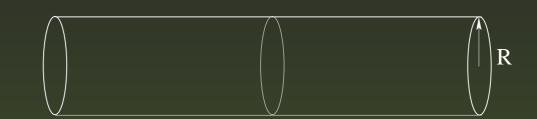


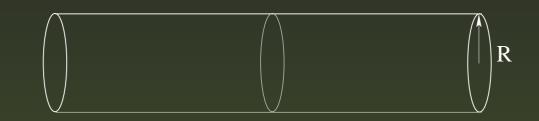




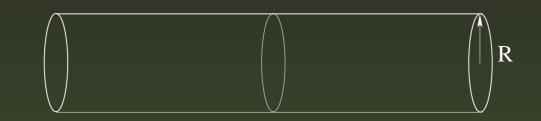








When $R \sim \ell_s$ new massless modes appear in the string spectrum and the oscillator sum in the partition functions diverges - *Hagedorn behaviour*



When $R \sim \ell_s$ new massless modes appear in the string spectrum and the oscillator sum in the partition functions diverges - *Hagedorn behaviour*

It has been suggested that such winding tachyons could lead to topology changes (E.Silverstein and collaborators).

It is an orbifold of $\mathbb{M}^{2,1}$. Consider light cone coordinates (x^-, x, x^+) and the flat metric $ds^2 = -2dx^+dx^- + dx^2$. It is an orbifold of $\mathbb{M}^{2,1}$. Consider light cone coordinates (x^-, x, x^+) and the flat metric $ds^2 = -2dx^+dx^- + dx^2$.

The orbifold group element $\Omega = e^{\kappa}$ is generated by the Killing vector

$$\kappa = 2\pi i \left(RP_{-} + \Delta J \right)$$

where

$$iJ = x_+ \frac{\partial}{\partial x} - x \frac{\partial}{\partial x^+}, \quad iP_- = \frac{\partial}{\partial x^-}.$$

It is an orbifold of $\mathbb{M}^{2,1}$. Consider light cone coordinates (x^-, x, x^+) and the flat metric $ds^2 = -2dx^+dx^- + dx^2$.

The orbifold group element $\Omega = e^{\kappa}$ is generated by the Killing vector

$$\kappa = 2\pi i \left(RP_{-} + \Delta J \right)$$

where

$$iJ = x_+ \frac{\partial}{\partial x} - x \frac{\partial}{\partial x^+}, \quad iP_- = \frac{\partial}{\partial x^-}.$$

$$\vec{x} \equiv \begin{pmatrix} x^- \\ x \\ x^+ \end{pmatrix} \sim \begin{pmatrix} x^- + 2\pi R \\ x - 2\pi \Delta x^- - 2\pi^2 R \Delta \\ x^+ - 2\pi \Delta x + 2\pi^2 \Delta^2 x^- + \frac{4}{3} \pi^3 R \Delta^2 \end{pmatrix}$$

We can introduce coordinates (y^-, y, y^+) in which the orbifold action becomes trivial:

We can introduce coordinates (y^-, y, y^+) in which the orbifold action becomes trivial:

$$x^{-} = y^{-}$$

$$x = y - \frac{E}{2}(y^{-})^{2}$$

$$x^{+} = y^{+} - Eyy^{-} + \frac{E^{2}}{6}(y^{-})^{3},$$

where $E = \Delta/R$.

We can introduce coordinates (y^-, y, y^+) in which the orbifold action becomes trivial:

$$x^{-} = y^{-}$$

$$x = y - \frac{E}{2}(y^{-})^{2}$$

$$x^{+} = y^{+} - Eyy^{-} + \frac{E^{2}}{6}(y^{-})^{3},$$

where $E = \Delta/R$. The orbifold identification and metric become

$$y^- \sim y^- + 2\pi R$$
, $ds^2 = -2dy^-dy^+ + 2Ey(dy^-)^2 + dy^2$

We can introduce coordinates (y^-, y, y^+) in which the orbifold action becomes trivial:

$$x^{-} = y^{-}$$

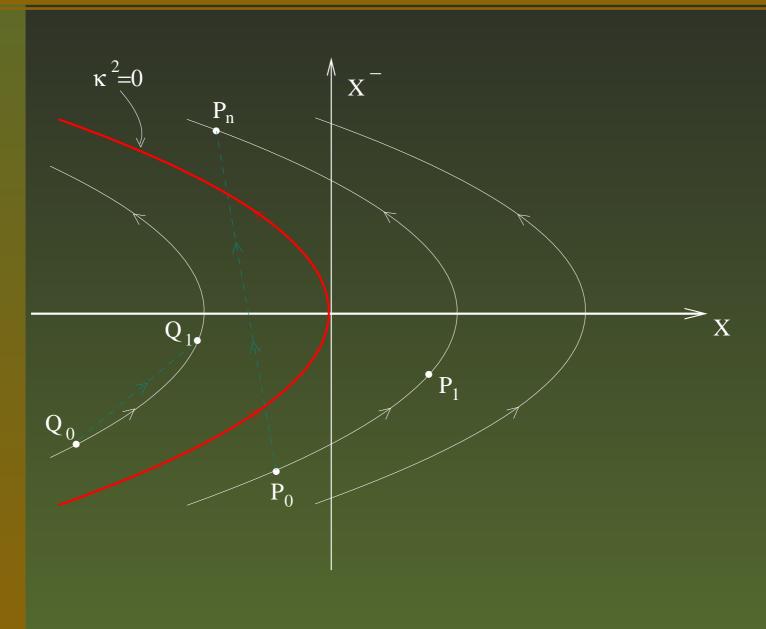
$$x = y - \frac{E}{2}(y^{-})^{2}$$

$$x^{+} = y^{+} - Eyy^{-} + \frac{E^{2}}{6}(y^{-})^{3}$$

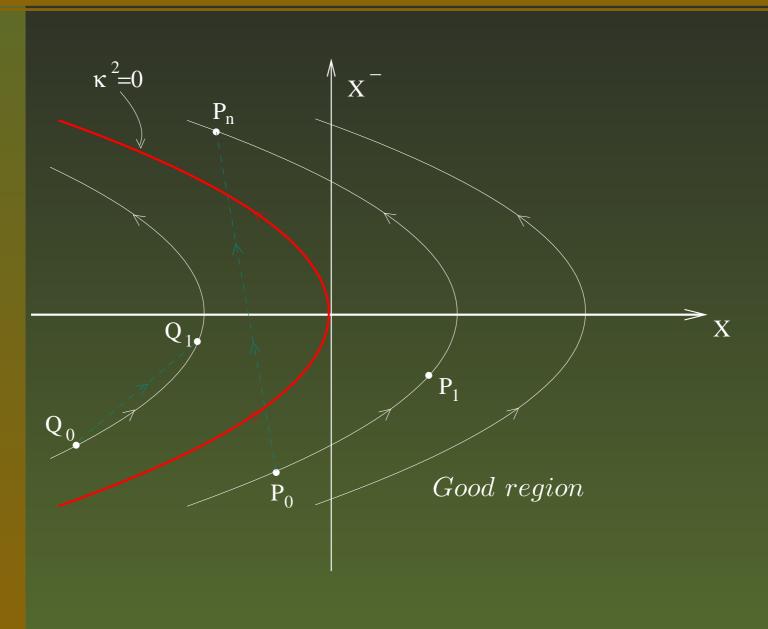
where $E = \Delta/R$. The orbifold identification and metric become

$$y^- \sim y^- + 2\pi R$$
, $ds^2 = -2dy^-dy^+ + 2Ey(dy^-)^2 + dy^2$
 $\kappa \operatorname{is} \begin{cases} spacelike \text{ for } y > 0 \\ null \text{ for } y = 0 \\ timelike \text{ for } y < 0 \end{cases}$
Chronology Protection Conjecture in String Theory - p.5

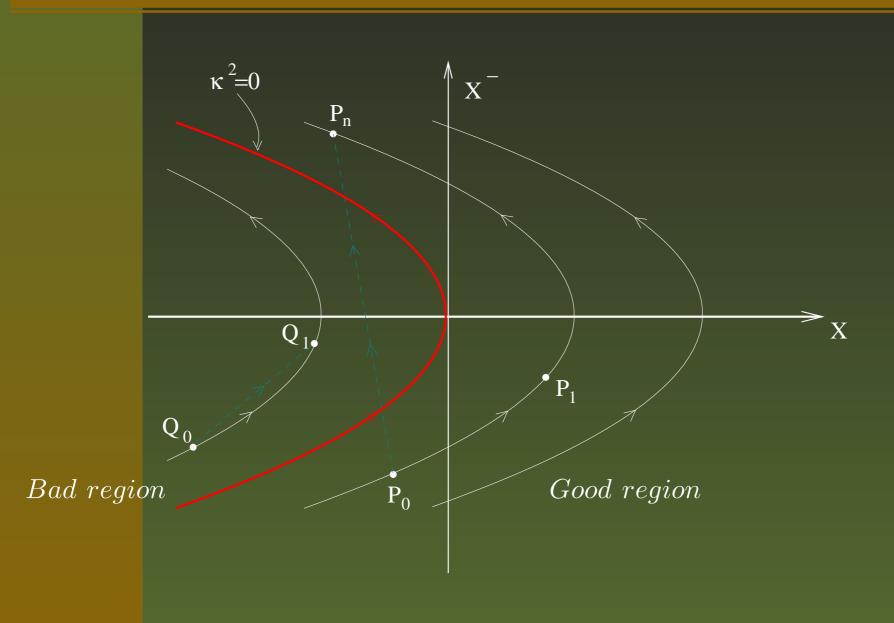
O-plane as a Parabolic orbifold



O-plane as a Parabolic orbifold



O-plane as a Parabolic orbifold



Hamiltonian for particle dynamics in y-coordinates

 $\mathcal{H} = q^2 + V(y) , \qquad V(y) \equiv -2Eq_+^2y - 2q_+q_-$

Hamiltonian for particle dynamics in y-coordinates

 $\mathcal{H} = q^2 + V(y) , \qquad V(y) \equiv -2Eq_+^2y - 2q_+q_-$

• There is a linear potential \Leftrightarrow constant (inertial) force because y-coordinates are accelerating.

Hamiltonian for particle dynamics in y-coordinates

 $\mathcal{H} = q^2 + V(y) , \qquad V(y) \equiv -2Eq_+^2 y - 2q_+q_-$

• There is a linear potential \Leftrightarrow constant (inertial) force because y-coordinates are accelerating.

• The Hamiltonian is a constant of motion $\mathcal{H} = q_{\mu}q^{\mu} = -M^2$.

Hamiltonian for particle dynamics in y-coordinates

 $\mathcal{H} = q^2 + V(y) , \qquad V(y) \equiv -2Eq_+^2 y - 2q_+q_-$

• There is a linear potential \Leftrightarrow constant (inertial) force because y-coordinates are accelerating.

• The Hamiltonian is a constant of motion $\mathcal{H} = q_{\mu}q^{\mu} = -M^2$.

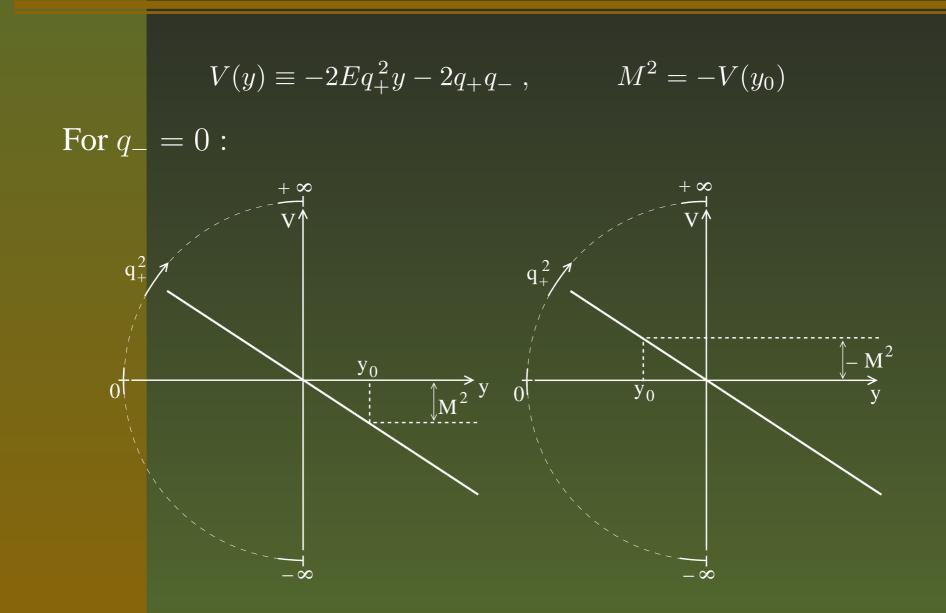
• Mass-shell condition in terms of: the classical turning point y_0 , light-cone energy q_+ and Kaluza-Klein momentum q_-

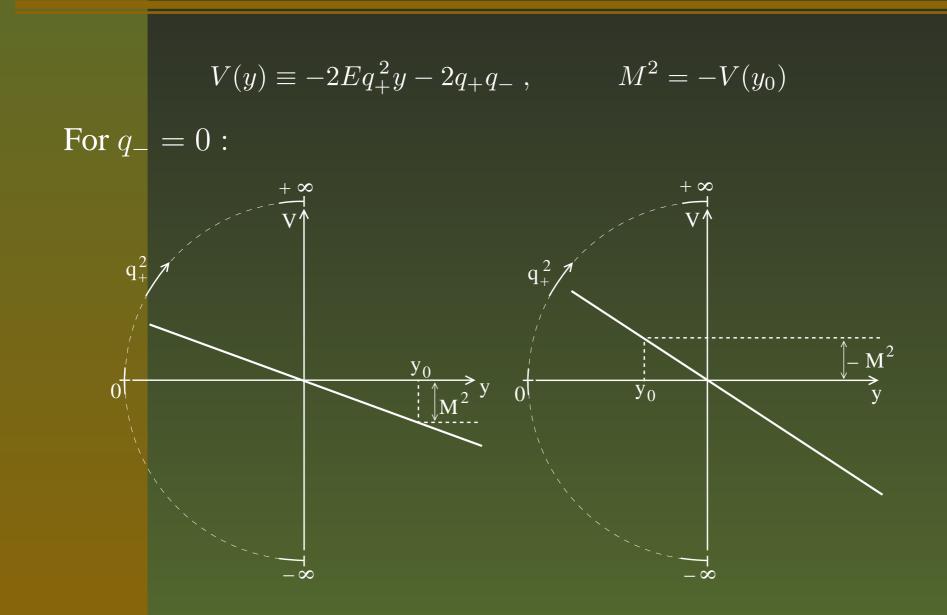
$$M^2 = 2q_+q_- + 2Eq_+^2y_0$$

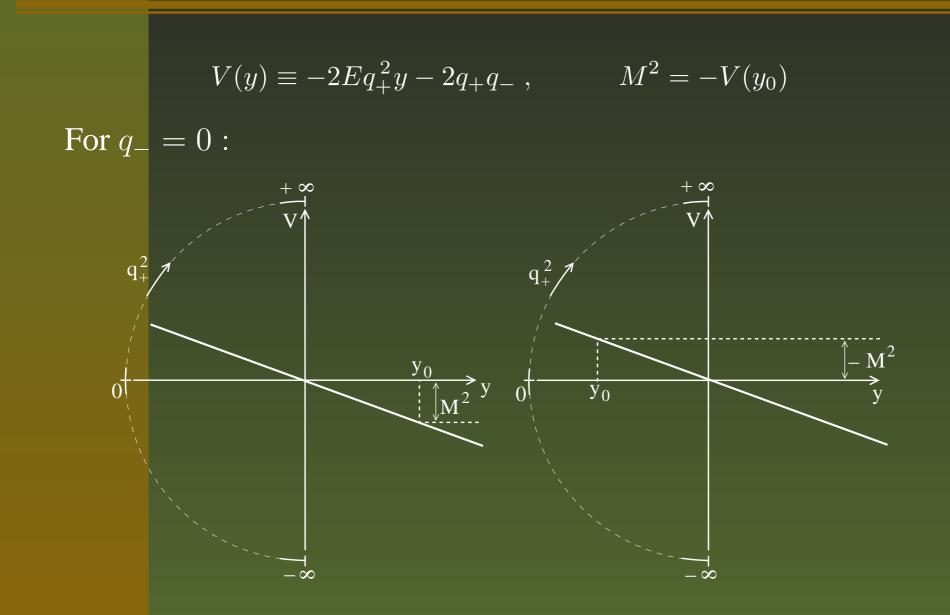
$$V(y) \equiv -2Eq_+^2y - 2q_+q_-$$
, $M^2 = -V(y_0)$

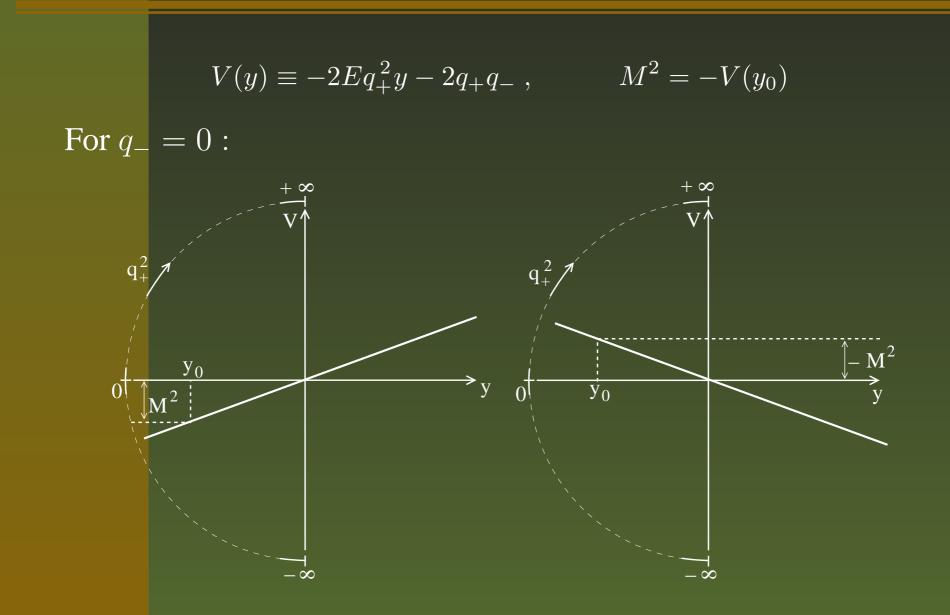
$$V(y) \equiv -2Eq_+^2 y - 2q_+q_-, \qquad M^2 = -V(y_0)$$

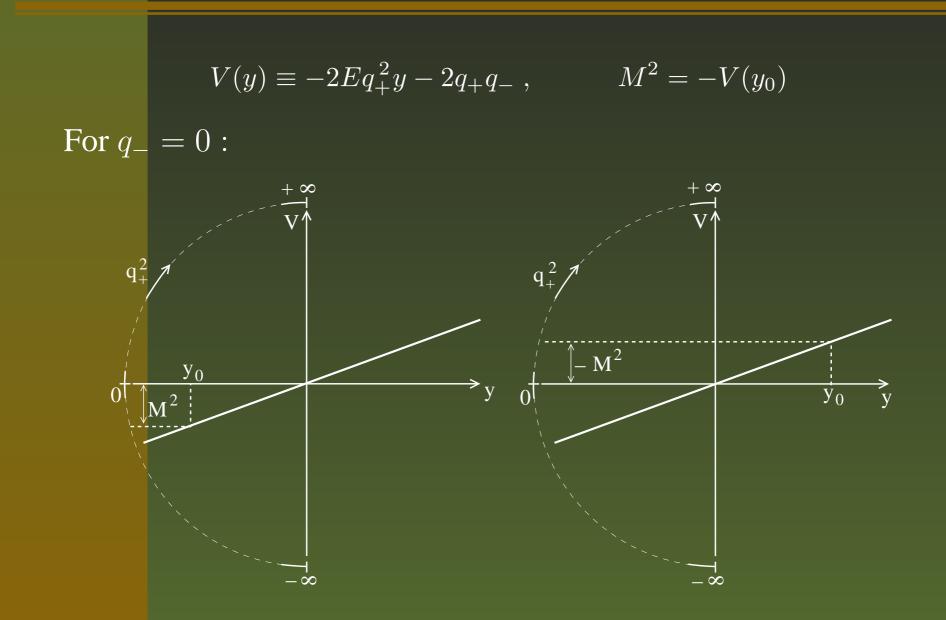
For $q_{-} = 0$:











Single particle wave functions I

The Klein-Gordon equation

$$\left(-2\partial_{+}\partial_{-}-2Ey\,\partial_{+}^{2}+\partial_{y}^{2}\right)\Phi=M^{2}\,\Phi$$

Single particle wave functions I

The Klein-Gordon equation

$$\left(-2\partial_{+}\partial_{-}-2Ey\,\partial_{+}^{2}+\partial_{y}^{2}\right)\Phi=M^{2}\,\Phi$$

is solved by

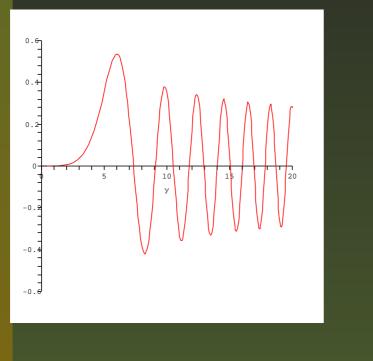
$$\Phi_{q_+,y_0,m}(\vec{y}) = \frac{|K(q_+)|^{1/3}}{\sqrt{2\pi R L_+ \rho(y_0,q_+)}} Ai(z) e^{i(q_+y^+ + \frac{m}{R}y^-)}$$

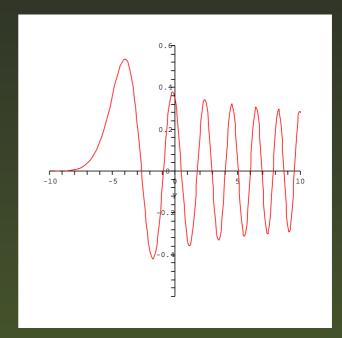
• $\operatorname{Ai}(z)$ are Airy functons;

• For normalisation we considered a "box" defined by $0 \le y^+ \le L_+$ and $-L/2 \le y \le L/2$;

- $q_{-} = m/R$ is the Kaluza-Klein momentum;
- $z^3 = K(y_0 y)^3$ and $K(q_+) = 2Eq_+^2$.

Single particle wave functions II





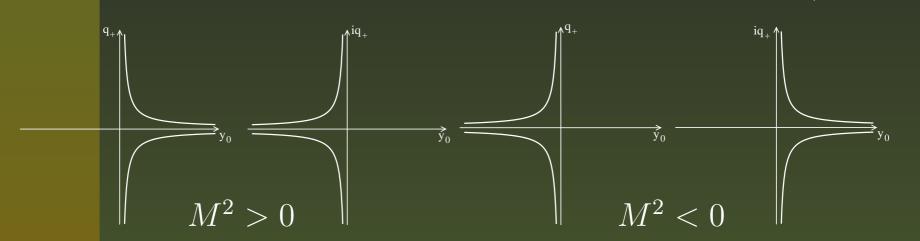
 $M^2 > 0, q_+^2 > 0$ $M^2 < 0, q_+^2 > 0$

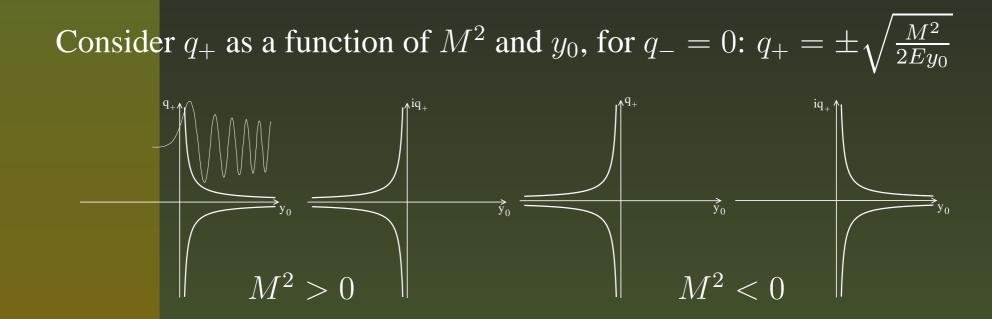
 y_0 is where wave functions turn from oscillatory to evanescent.

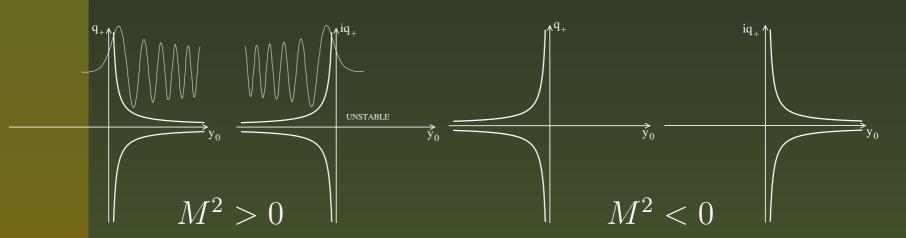
Chronology Protection Conjecture in String Theory - p.13

Consider q_+ as a function of M^2 and y_0 , for $q_- = 0$: $q_+ = \pm \sqrt{\frac{M^2}{2Ey_0}}$

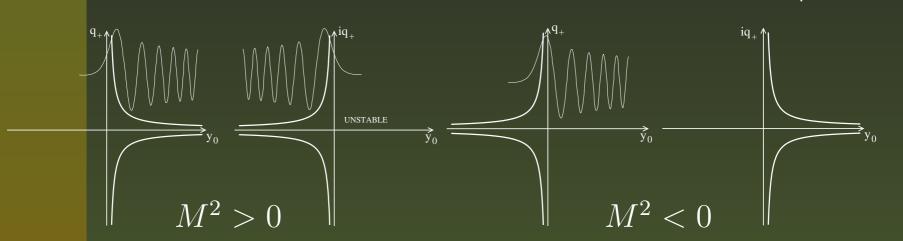
Consider q_+ as a function of M^2 and y_0 , for $q_- = 0$: $q_+ = \pm \sqrt{\frac{M^2}{2Ey_0}}$

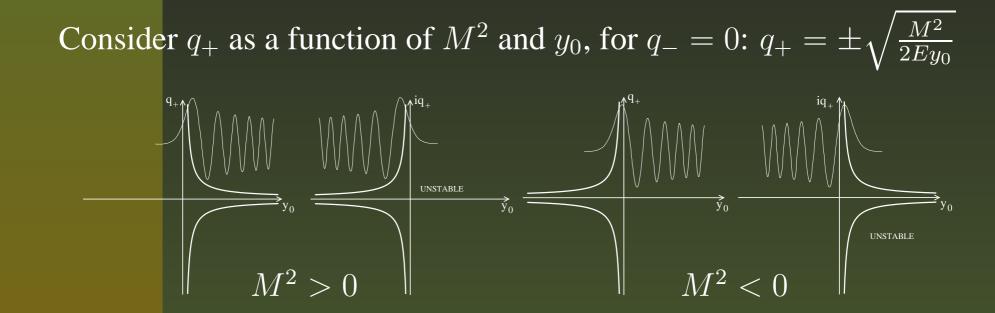


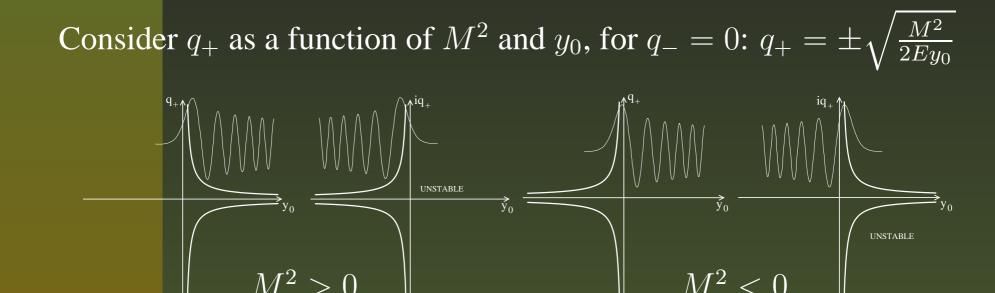




Consider q_+ as a function of M^2 and y_0 , for $q_- = 0$: $q_+ = \pm \sqrt{\frac{M^2}{2Ey_0}}$







Note: Tachyon $(M^2 < 0) \neq$ Instability $(Im(q_+) \neq 0)$; well known example Freedman-Breitenlohner bound in AdS.

The novelty is the winding;

The novelty is the winding; Embedding functions $(0 \le \sigma \le \pi)$

 $Y^{-}(\tau,\sigma) = 2R\omega\sigma + y^{-}(\tau), \qquad Y(\tau,\sigma) = y(\tau), \qquad Y^{+}(\tau,\sigma) = y^{+}(\tau)$

The novelty is the winding; Embedding functions $(0 \le \sigma \le \pi)$

 $Y^{-}(\tau,\sigma) = 2R\omega\sigma + y^{-}(\tau), \qquad Y(\tau,\sigma) = y(\tau), \qquad Y^{+}(\tau,\sigma) = y^{+}(\tau)$

Hamiltonian for string dynamics

$$\mathcal{H} = 2\left(q^2 + V(y)\right), \quad V(y) \equiv -2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right) - 2q_+q_-$$

The novelty is the winding; Embedding functions $(0 \le \sigma \le \pi)$

 $Y^{-}(\tau,\sigma) = 2R\omega\sigma + y^{-}(\tau), \qquad Y(\tau,\sigma) = y(\tau), \qquad Y^{+}(\tau,\sigma) = y^{+}(\tau)$

Hamiltonian for string dynamics

$$\mathcal{H} = 2\left(q^2 + V(y)\right), \quad V(y) \equiv -2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right) - 2q_+q_-$$

Conserved quantity is: $\lambda = -\frac{\mathcal{H}}{2} = L_0 + \tilde{L}_0$

The novelty is the winding; Embedding functions $(0 \le \sigma \le \pi)$

 $Y^{-}(\tau,\sigma) = 2R\omega\sigma + y^{-}(\tau) , \qquad Y(\tau,\sigma) = y(\tau) , \qquad Y^{+}(\tau,\sigma) = y^{+}(\tau)$

Hamiltonian for string dynamics

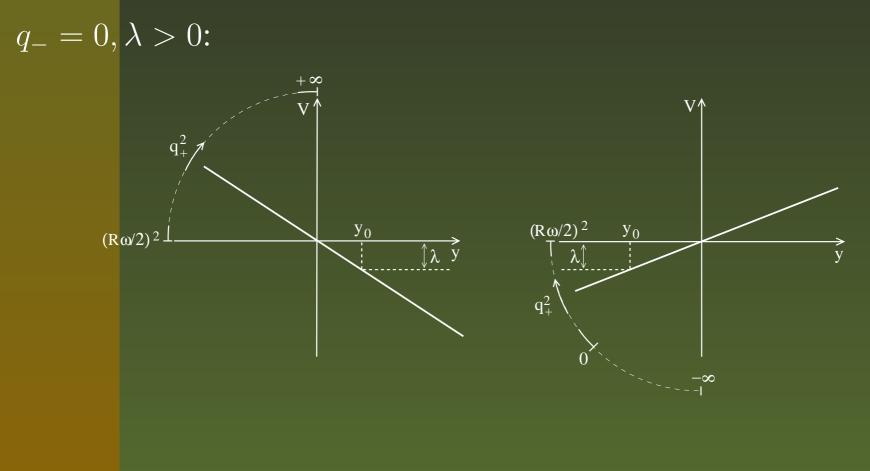
$$\mathcal{H} = 2\left(q^2 + V(y)\right), \quad V(y) \equiv -2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right) - 2q_+q_-$$

Conserved quantity is: $\lambda = -\frac{\mathcal{H}}{2} = L_0 + \tilde{L}_0$ and not the mass

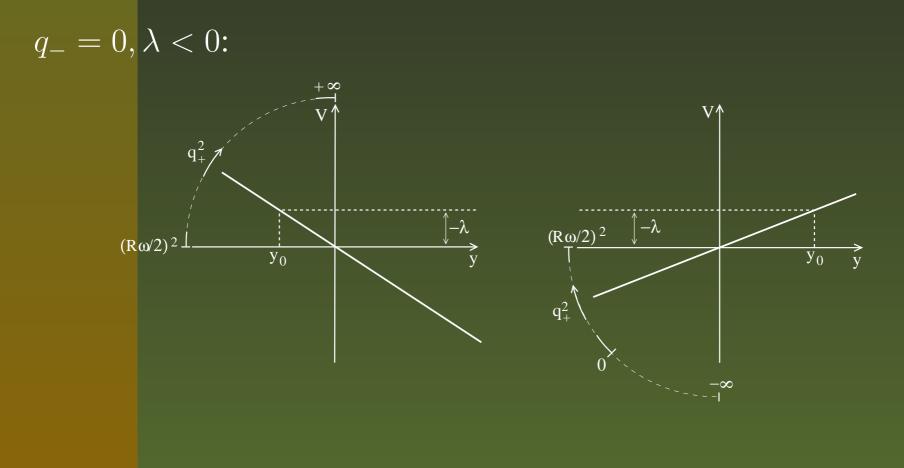
$$M^{2}(y) \equiv -q_{\mu}q^{\mu} = \lambda + 2Ey\left(\frac{\omega R}{2}\right)^{2}$$

$$V(y) \equiv -2q_+q_- - 2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right), \quad \lambda = -V(y_0)$$

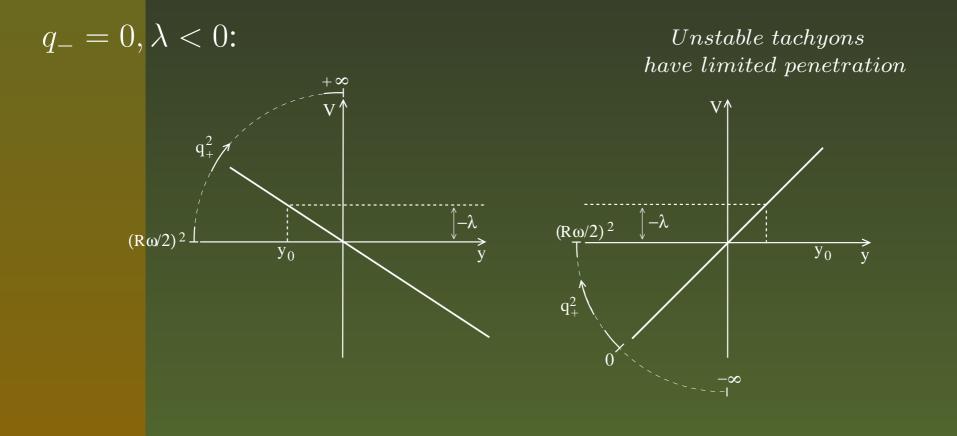
$$V(y) \equiv -2q_+q_- - 2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right), \quad \lambda = -V(y_0)$$



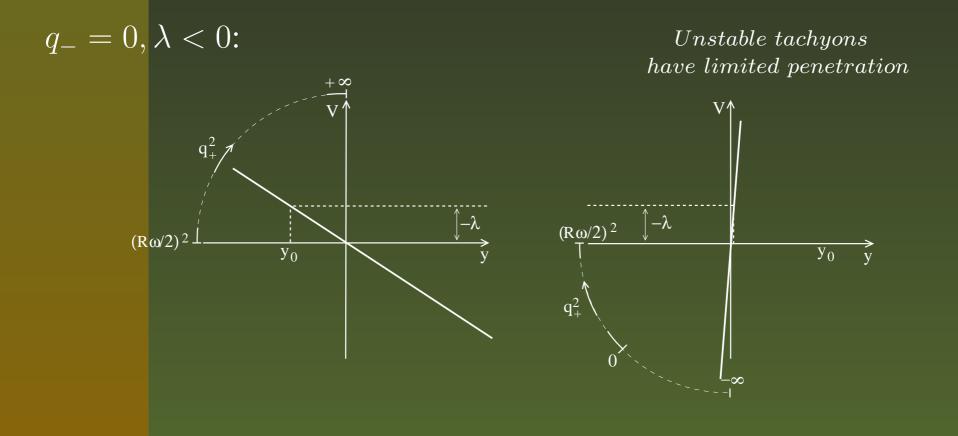
$$V(y) \equiv -2q_+q_- - 2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right), \quad \lambda = -V(y_0)$$



$$V(y) \equiv -2q_+q_- - 2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right), \quad \lambda = -V(y_0)$$

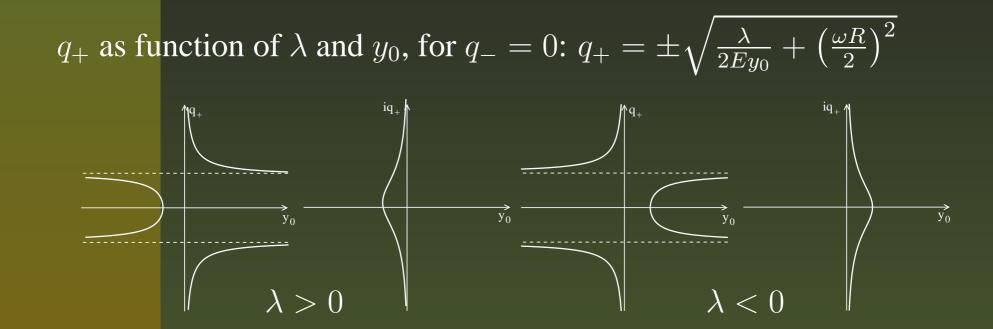


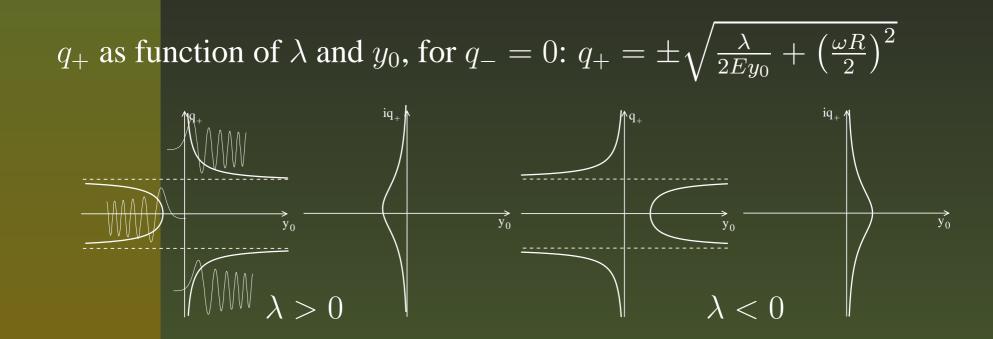
$$V(y) \equiv -2q_+q_- - 2Ey\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right), \quad \lambda = -V(y_0)$$

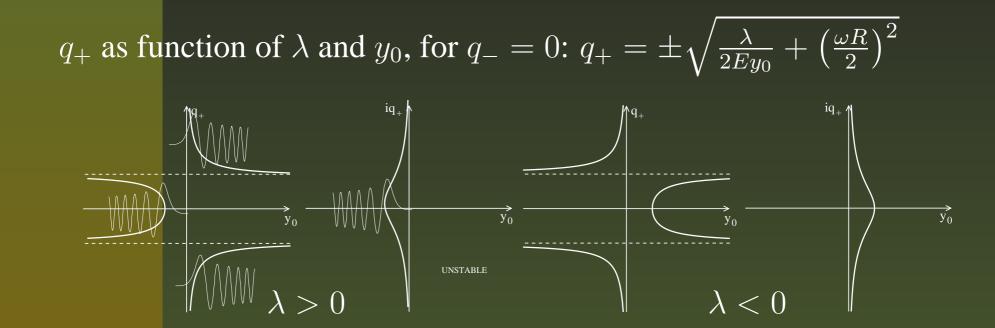


Chronology Protection Conjecture in String Theory – p.16

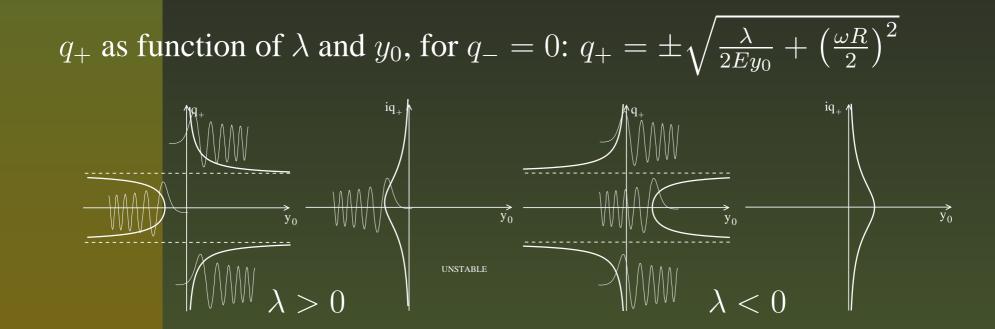
 q_+ as function of λ and y_0 , for $q_- = 0$: $q_+ = \pm \sqrt{\frac{\lambda}{2Ey_0} + \left(\frac{\omega R}{2}\right)^2}$



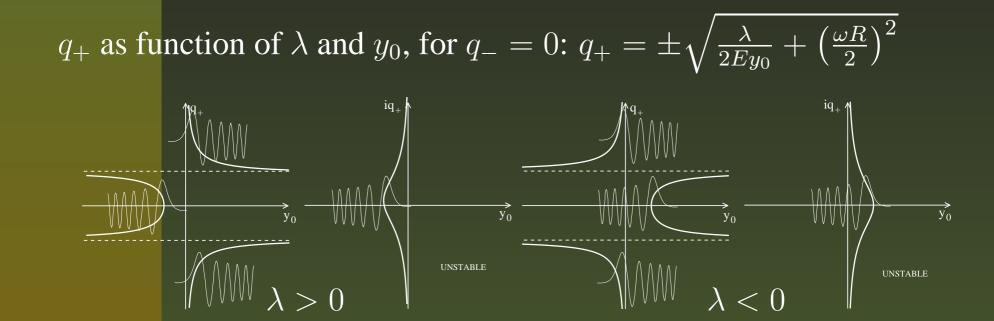




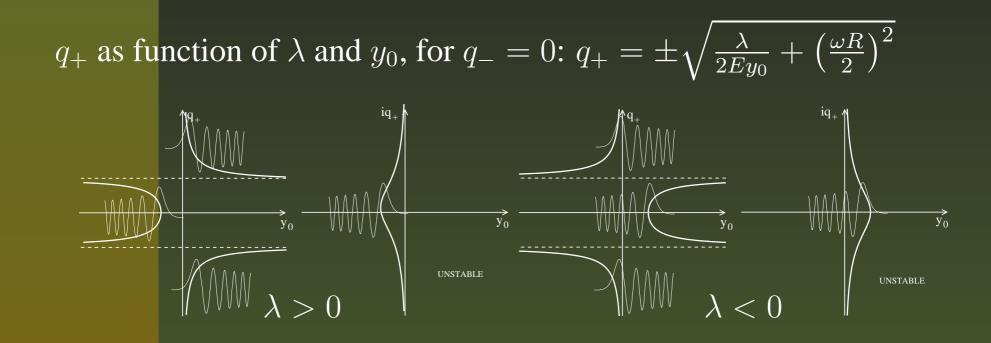
String wave functions



String wave functions



String wave functions



Unstable tachyonic modes cannot penetrate the good region beyond a certain critical y.

Canonical Quantisation

Oscillators and zero modes decouple; so normal ordering is standard. For bosonic string $L_0 = \tilde{L}_0 = 1$ on physical states; these satisfy

$$M^{2}(y) \equiv -q_{\mu}q^{\mu} = 2Ey\left(\frac{\omega R}{2}\right)^{2} + N + \tilde{N} - 2$$

Canonical Quantisation

Oscillators and zero modes decouple; so normal ordering is standard. For bosonic string $L_0 = \tilde{L}_0 = 1$ on physical states; these satisfy

$$M^{2}(y) \equiv -q_{\mu}q^{\mu} = 2Ey\left(\frac{\omega R}{2}\right)^{2} + N + \tilde{N} - 2$$

The quantum numbers for the string centre of mass wave functions $\psi_{q_+,y_0,m}$ obey the on-shell relation

$$\lambda = -2 + N + \tilde{N} = 2q_{+}q_{-} + 2Ey_{0}\left(q_{+}^{2} - \left(\frac{\omega R}{2}\right)^{2}\right)$$

Level matching condition: $N - \tilde{N} = m\omega$.

Canonical Quantisation

Oscillators and zero modes decouple; so normal ordering is standard. For bosonic string $L_0 = \tilde{L}_0 = 1$ on physical states; these satisfy

$$M^{2}(y) \equiv -q_{\mu}q^{\mu} = 2Ey\left(\frac{\omega R}{2}\right)^{2} + N + \tilde{N} - 2$$

The quantum numbers for the string centre of mass wave functions $\psi_{q_+,y_0,m}$ obey the on-shell relation

$$\lambda = -2 + N + \tilde{N} = 2q_{+}q_{-} + 2Ey_{0}\left(q_{+}^{2} - \left(\frac{\omega R}{2}\right)^{2}\right)$$

Level matching condition: $N - \tilde{N} = m\omega$.

Due to zero point energy (-2), both $\lambda > 0$ and $\lambda < 0$ are allowed.

Partition Function I

In the canonical formalism one takes the trace over the Hilbert space

$$Z = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2} \operatorname{Tr} \left(q^{L_0 - 1} \bar{q}^{\tilde{L}_0 - 1} \right)$$

where $q = e^{2\pi i \tau}$ and $\tau = \tau_1 + i \tau_2$.

Partition Function I

In the canonical formalism one takes the trace over the Hilbert space

$$Z = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2} \operatorname{Tr} \left(q^{L_0 - 1} \bar{q}^{\tilde{L}_0 - 1} \right)$$

where $q = e^{2\pi i \tau}$ and $\tau = \tau_1 + i \tau_2$.

- Choose the basis $|q_+, y_0, m\rangle$ to perform trace;
- Do analytic continuation: $q_+ \rightarrow i q_+$;

• Perform q_+ integral (well defined for $y_0 > 0$) to get in the integrand

$$\exp\left[-2\pi\tau_{2}\left(-2+n+\tilde{n}+\frac{m^{2}}{R^{2}(y_{0})}+\frac{\omega^{2}R^{2}(y_{0})}{4}\right)\right]$$

where $R^2(y_0) = 2Ey_0R^2$ is the proper radius of compact direction.

Partition Function II - Infrared Divergences

For $y_0 > 0$, the condition

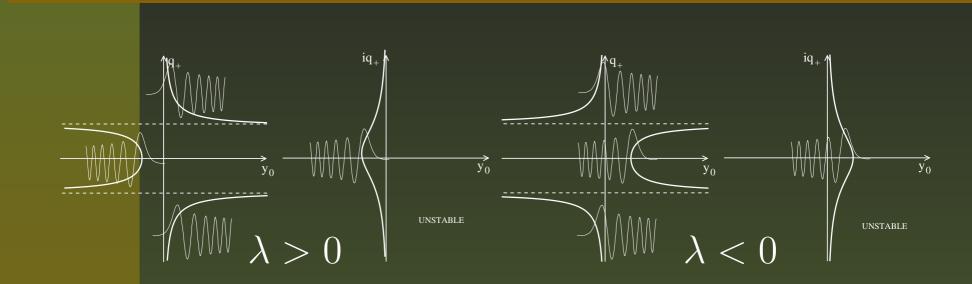
$$\lambda + \frac{m^2}{R^2(y_0)} + \frac{\omega^2 R^2(y_0)}{4} < 0$$

is the condition for solutions of the quadratic equation in q_+

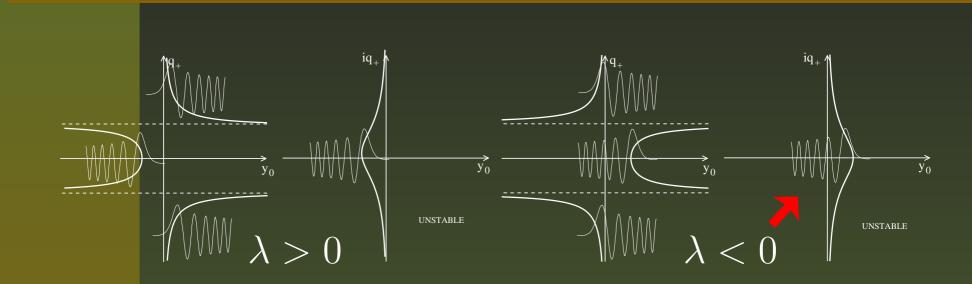
$$\lambda = 2q_+q_- + 2Ey_0\left(q_+^2 - \left(\frac{\omega R}{2}\right)^2\right)$$

to have an imaginary part, when $\lambda < 0$.

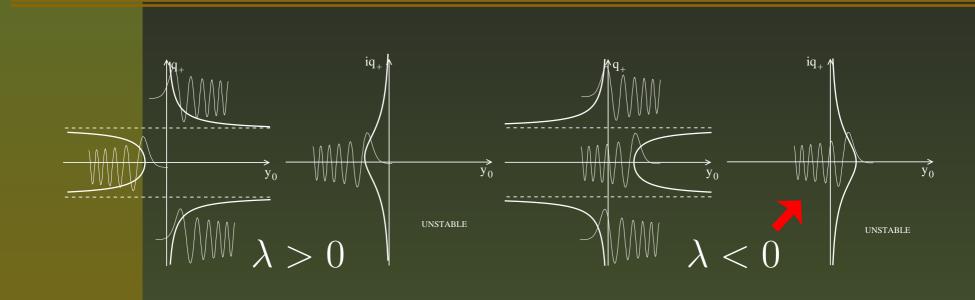
Partition Function III - States causing Infrared Divergences



Partition Function III - States causing Infrared Divergences



Partition Function III - States causing Infrared Divergences



The state with $n = \tilde{n} = 0$ and $\omega = 1$ renders the partition function divergent for

 $\overline{|y_0 < 4/(ER^2)}$

This is the state that condenses the furthest into the y > 0 region.

The same behaviour can be seen from the large n behaviour of Z.

The same behaviour can be seen from the large n behaviour of Z.

- Perform Wick rotation and Poisson re-sum the KK momentum.
- Perform the q_+ integral;
- Use integral representation of the measure;
- Replace the fundamental region \mathcal{F} by the strip;
- Expand the Dedekind eta function $\eta(\tau)$ in a Taylor series;
- Perform the τ_1 integration;

 $Z \propto \sum_{\omega'=1,n=0}^{\infty} d_n^2 \int_{-\infty}^{\infty} dy \int_0^{\infty} \frac{d\tau_2}{\tau_2^{14}} \exp\left(-4\pi(n-1)\tau_2 - \frac{2\pi}{\tau_2} \frac{\omega'^2 R^2(y)}{4}\right)$

$$Z \propto \sum_{\omega'=1,n=0}^{\infty} d_n^2 \int_{-\infty}^{\infty} dy \int_0^{\infty} \frac{d\tau_2}{\tau_2^{14}} \exp\left(-4\pi(n-1)\tau_2 - \frac{2\pi}{\tau_2} \frac{\omega'^2 R^2(y)}{4}\right)$$

• n = 0: IR divergence ($\tau_2 \to \infty$) from tachyon;

$$Z \propto \sum_{\omega'=1,n=0}^{\infty} d_n^2 \int_{-\infty}^{\infty} dy \int_0^{\infty} \frac{d\tau_2}{\tau_2^{14}} \exp\left(-4\pi(n-1)\tau_2 - \frac{2\pi}{\tau_2} \frac{\omega'^2 R^2(y)}{4}\right)$$

n = 0: IR divergence (τ₂ → ∞) from tachyon;
n ≥ 1: Perform τ₂ integral for y > 0; The large n expansion of the integrand is dominated by

$$_{2}2\pi\sqrt{n}\Big(4-\sqrt{2\omega^{2}R^{2}(y)}\Big)$$

We conclude that the sum in n diverges when $y < y_c = \frac{4}{ER^2}$.

$$Z \propto \sum_{\omega'=1,n=0}^{\infty} d_n^2 \int_{-\infty}^{\infty} dy \int_0^{\infty} \frac{d\tau_2}{\tau_2^{14}} \exp\left(-4\pi(n-1)\tau_2 - \frac{2\pi}{\tau_2} \frac{\omega'^2 R^2(y)}{4}\right)$$

n = 0: IR divergence (τ₂ → ∞) from tachyon;
n ≥ 1: Perform τ₂ integral for y > 0; The large n expansion of the integrand is dominated by

$$_{c}2\pi\sqrt{n}\Big(4-\sqrt{2\omega^{2}R^{2}(y)}\Big)$$

We conclude that the sum in *n* diverges when $y < y_c = \frac{4}{ER^2}$. * Hagedorn behaviour!

NS \otimes NS sector: $\lambda = -1 + N + \tilde{N}$.

Then one needs to specify the orbifold spin structure:

Superstring

NS \otimes NS sector: $\lambda = -1 + N + \tilde{N}$.

Then one needs to specify the orbifold spin structure:

• Supersymmetry breaking case (anti-periodic):

Superstring

NS \otimes NS sector: $\lambda = -1 + N + \tilde{N}$.

Then one needs to specify the orbifold spin structure:

• Supersymmetry breaking case (anti-periodic):

* Even ω have the usual supersymmetric GSO projection; odd ω have reversed GSO projection;

Superstring

NS \otimes NS sector: $\lambda = -1 + N + \tilde{N}$.

Then one needs to specify the orbifold spin structure:

• Supersymmetry breaking case (anti-periodic):

* Even ω have the usual supersymmetric GSO projection; odd ω have reversed GSO projection;

***** Usual bosonic string tachyon absent;

NS \otimes NS sector: $\lambda = -1 + N + \tilde{N}$.

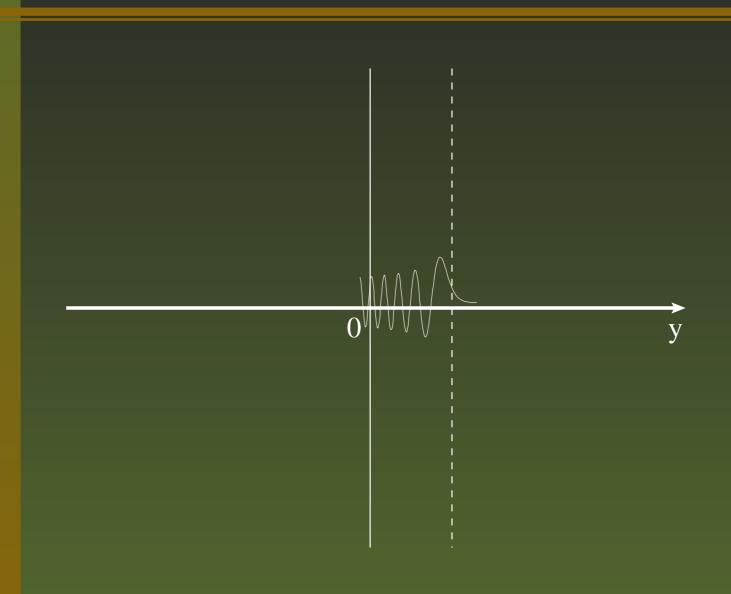
Then one needs to specify the orbifold spin structure:

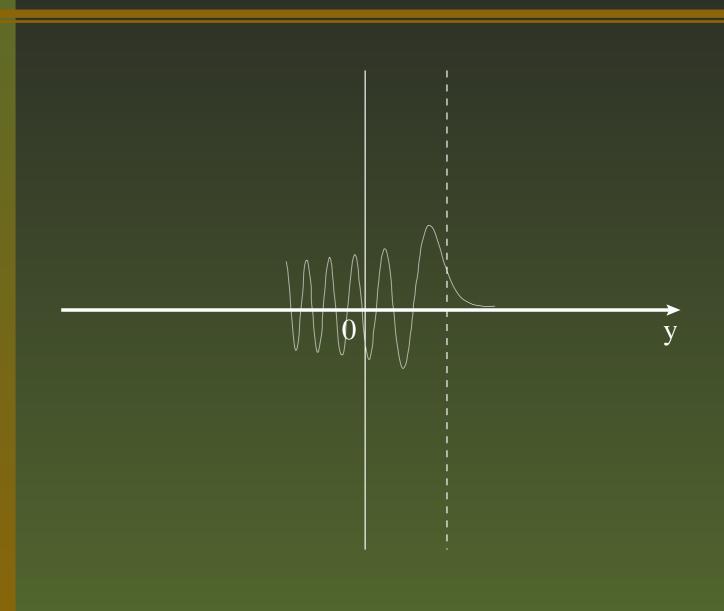
• Supersymmetry breaking case (anti-periodic):

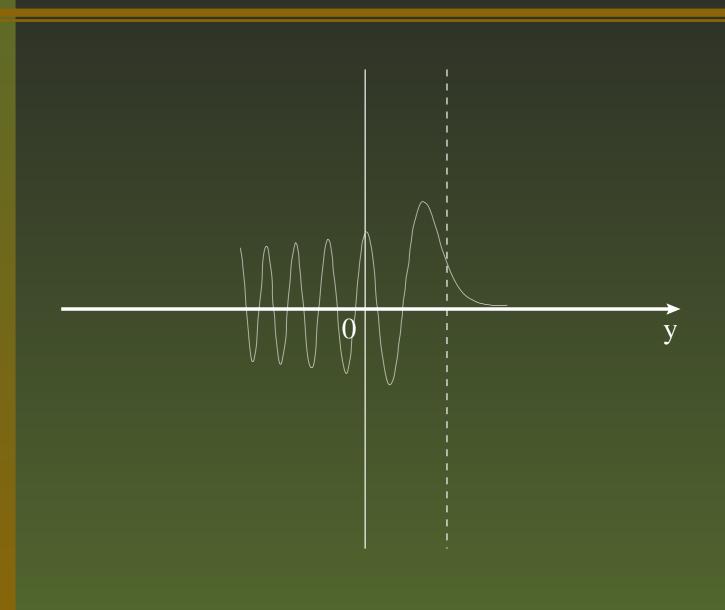
* Even ω have the usual supersymmetric GSO projection; odd ω have reversed GSO projection;

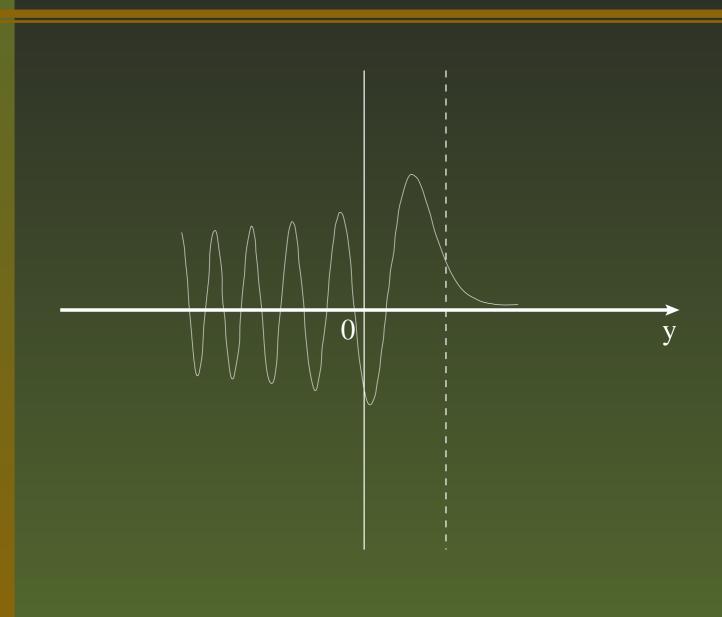
***** Usual bosonic string tachyon absent;

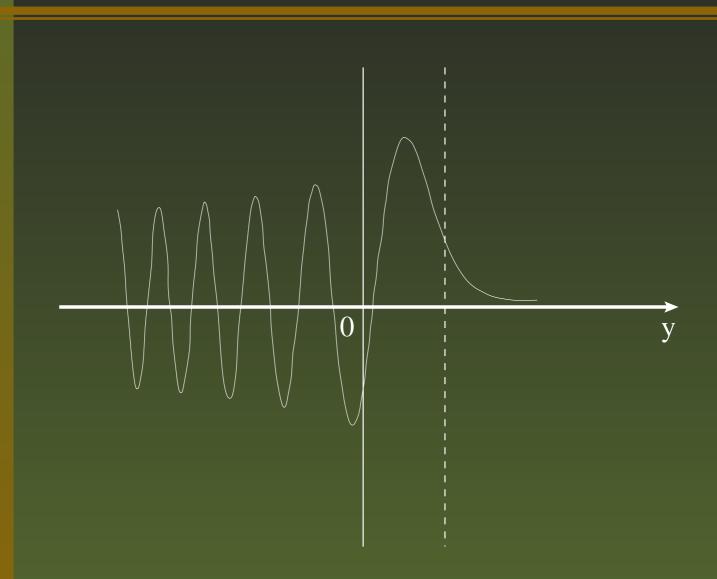
* States with $\lambda = -1$ and odd ω penetrate good region to a maximum of $y = y_c = \frac{2}{ER^2}$ (for $\omega = \pm 1$).











Chronology Protection Conjecture in String Theory

Chronology Protection Conjecture in String Theory

Closed Null curves do not form in string theory because light winding states condense, causing a phase transition whose end point target space geometry is chronological.

Chronology Protection Conjecture in String Theory

Closed Null curves do not form in string theory because light winding states condense, causing a phase transition whose end point target space geometry is chronological.

Nice toy model but... How general?...End point?