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Introduction

Supersymmetric solutions of SUGRA theories have played a very
important tole in many developments in string/M-theory.

What are they? Consider bosonic solutions with ¢ = O:

1
El“/ — R,LLV — ERg’UJ/ — T,LLI/ —

Matter Equations of motion = O
Bianchi Identities = O

and dy = O:
Ve = [V~ (fluzes - T),le = 0,

M (fluxes)e = O.

il.e. admitting a “Killing spinor”’ e



Can we ‘classify” such susy solutions?

(i) Matter =0

<4 X
T =
m R
|
o o

= special holonomy.

Euclidean case:

SU(n) in d = 2n - Calabi-Yau
Sp(n) in d = 4n - Hyper-Kahler
Goind=7

Spin(7) in d =38

Lorentzian: more possibilities.



(ii) Matter#0

V is a connection on the Clifford bundle and not, in general on
the spin bundle.

What should we do~?



Motivation

1. Compactifications to e.g. R1:3: fluxes tend to stabilise mod-
uli.

2. Black Holes: Can we classify all supersymmetric black holes?
3. Surprises: new kinds of ansatz. eg black rings, Godel

4. AAS/CFT: new examples; deeper understanding.

5. Mathematics

Want:

(i) Precise characterisation of geometry (and then theorems!)
(ii) Explicit solutions where possible.



Key Tool for classification: G-Structures

PLAN:
1. Overview of G-structures and classification programme.

2. AdS/CFT Applications - including consistency of Kaluza-
Klein truncations.
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(G-Structures

Let M be an n-dimensional manifold. F (M) be the frame bundle:
a principal GI(n) bundle. A G-Structure is a principal G sub-
bundle.

Equivalent to no-where vanishing tensors. e.g.

gap = O(n) (orO(p,q))
9abs €aq...an = SO(n)

JLlJ?=-1 = Gl(m,C)
Gap, Ja2, J° = =1 = U(m)
Gab> JabaQal...am = SU(m)
Classify G-structures by ‘“intrinsic torsion”



Intrinsic Torsion - Measures the deviation from special holonomy.
Let n define a G C SO(n) structure. Basic idea:

Vn — &;W;
W; are G-modules which specify the type of G-structure.

In more detail:

3 V'’ such that V/n = 0. Define

AL @ A?

Al @ so(n)

AN ®(gogh)

Then Vn = (V — V)n — element of Al @ g-. This is the part of
T that is independent of V/ and is called the intrinsic torsion:

70 e AL g gt = oW,

T=V-V =w-04

e [l2 M



An example: SU(3) structures in d = 6.
Specified by a real form J,;, and a complex form £2,,., satisfying

J N Q2 O4
QAQ = —igj/\J/\J

This defines a metric, and orientation and an almost complex
structure.

The intrinsic torsion has 5 components. Decompose fundamen-
tal and adjoint of SO(6) into SU(3) reps: 6 = 3+ 3, 15 =
1+ 3+ 3+ 8. Hence Al ® gt gives the reps:

(34+3) x (14+3+3)=0+1)+(8+8)+
(646)+(3+3)+(3+3)

corresponding to 5 W;.



Each W, € W; can be expressed entirely in terms of dJ and dS2:

dJ — Wi, W3, Wy
dS2 — Wy, Wo, Wx

e.g.
(W4)a — Jble(dJ)able
(W5)Cl — Qb1b2b3(dQ)ab1b2b3
Examples:
Wi=Wor =0 — complex
Wi =Wo=W3=W4 =0 — Kahler
W; =0 — C(Calabi —Yau

& dJ =dS2 =0
There exists 32 different SU(3) structures.



To classify supergravity solutions

1. Observe that the isotropy group G of the Killing spinor e
defines a G-structure. EXxplicitly, the tensors defining the G-
structure can be constructed as bi-linears:

Tiy iy ~ & ip i€, k=0,1,...

1---ik
T he algebraic conditions satisfied by the tensors can be obtained
e.g. by using Fierz identities.

2. Vyue = [Vy+ (fluzes - T),] e = 0 restricts the intrinsic torsion
and determines some of the flux. Me = 0O places additional
conditions on the flux and intrinsic torsion. Note that some of
the flux components can drop out completely. HARD WORK.



3. Equations of motion. Consider [V, V,]e = 0. Impose matter
equations of motion and Bianchi identities = E,,,[Ye = 0. Need
to impose at most one component of E,, = 0, and only in

Lorentzian case.



An Example: Heterotic compactified on R1:3 x M.
Set Yang-Mills fields to zero for simplicity.
After decomposing D = 10 spinor, susy =

1
<Vm + gHmnprnp) e =0,
1

where € is chiral D = 6 spinor.

e ¢ — SU(3) structure:

|

|
S.
M

—
-
3
S

M

Jmn

|
n
~
—
:
g
o

anp



e Analyse:

d(e ?*Q) = o,
de2®IAJd) = 0,
e?®Pd(e™2*)) = —xH
Have W1 = Wy = 0, = complex. Wy = —(1/2)Wg = 2d$d. H

restricted by structure.

e H e.o.m. is automatically satisfied.
To satisfy all e.o.m. just need to impose dH = 0.

This is equivalent to old results of Strominger and Hull. The
point is that the method generalises.



Can apply the programme in 3 broad ways:

1. Classify the most general supergravity solutions in D=10/11
supergravity.

D=11: Find that the most general solutions, preserving 1/32
supersymmmetry have either SU(5) or Spin(7) x R? structure.

Type IIB: Either Spin(7) x RS, SU(4) x RS or G5 structure

Very general results.

Refine the classification to different amounts of supersymmetry.
Perhaps we can explicitly determine all solutions with say > 16
supersymmetries? e.g. 29, 30 and 31 susies = 32 susies in IIB.



2. Lower-Dimensional Supergravities e.g. D =4,5,6,7.

Can consider ungauged and gauged supergravity and also cou-
pled to various matter multiplets.

Can be much more explicit and this gives powerful new ways of
constructing D=10 and D=11 solutions.

Highlights:

Black rings — black holes with topology S! x S2.

AdSs black holes in D =5 N = 1 gauge supergravity



3. Special classes of Solutions
e Susy black holes - can we classify them all?
e Compactifications from D = 11,10 to RL:3, R12 .

Largely worked put but still much to be understood about ge-
ometry.

Hitchin/Gualtieri: Generalised geometry: particularly useful for
global aspects. Focus on T & T™.



e AdS Solutions

Want to classify most general supersymmetric AdS backgrounds
of string/M-theory or equivalently the most general SCFTs with
supergravity duals

More precisely, want to classify general warped products of the
form: AdS X M:

ds? = 24 [ds2(AdS) + ds2(M)(y)]

with fluxes preserving isometries of AdS.

Can achieve this using G-structure techniques.



Supersymmetric AdS/CFT Solutions

Aim: characterise the most general supersymmetric warped prod-
uct solutions of D=11 or type IIB supergravity of the form:
Adsd—l—l X w M:

ds? = e2AW [ds?(AdS 4 1) + ds? (M) (y)]

with fluxes preserving isometries of AdS.

Solutions are invariant under SO(d,2) < characterise the most
general SCFTs in d spacetimes that have a supergravity descrip-
tion.



Motivation

x (ds2(M), A, fluxes) should be an interesting class of geome-
tries. (Theorems)

*x Rich sets of new explicit solutions

e.g. YP9 Sasaki-Einstein

* M-theory examples give novel SCFTs

* Can deform CFT to get different dynamics in IR

* Can analytically continue — “BPS bubbles” dual to smooth
BPS states of SCFTs

Also: Wilson Lines



PLAN:

1. Special case I. Sasaki-Einstein Geometry

2. Special case II: AdS3 solutions in IIB AdS»> solutions in D =11
3. General Classification programme

4. Consistent Kaluza-Klein truncations



Special Case I: Sasaki-Einstein

Type IIB sugra:

ds? ds®(AdSs) + ds*(Xs)
Fs = (14 *)Vol(Xs)
where Xg is Sasaki-Einstein. Dual to N=1 SCFTs in d=4.

D=11 sugra:
ds? ds®(AdSy) + ds?(X7)
Gy Vol(AdSy)
where X7 is Sasaki-Einstein. Dual to N=2 SCFTs in d=3.

Clearly not the most general class of solutions.

Focus on type IIB case.



Xop41 is SE iff the cone metric

dr? + T2d82(X2n+1)
is CY i.e. an SU(n) structure J,Q2 with dJ = d2 = 0.

E.g. X5 = S has cone R® and IIB solution arises from D3-branes
in R1:3 x RO.
E.g. X7 = S’ has cone R8 and solution arises from M2-branes
in R1:2 x RS,

More generally, the cone is singular at » = 0 and the solutions
arise from D3-branes or M2-branes sitting at the singular tip of
the cone over the SE space.



Note AdSs x S° in Poincaré coordinates:

1 1
ds2 = T_QdSQ(Rlﬁ) + T—Q[er + r2ds?(Xs)]

which is the near horizon limit of solution of D3-branes sitting
at apex of cone:

12 = (14 ) 122 (®13) + (1 + “)V2(dr? + r2ds? (X))



Every SE space has a “Reeb-vector” &
& =r(0)' I

and this turns out to be Killing. This is the geometrical dual of
the “U(1)" R-symmetry of the SCFT.

*Locally*, the SE metric can be written

ds?(Xs) = (dyp + 0)? + ds?>(KE)

where § = 9, and ds?(KE) is four-d Kihler-Einstein metric with
positive curvature and do = 2Jgg.

Locally, the SE has an SU(2) structure specified by the one form
K = dw—|—0' and JKE’ QKE



T hree possibilities:

1. Regular SE: Have a U(1) symmetry and it is free. KEFE is
globally defined.

2. Quasi regular SE: Have a U(1) symmetry with finite isotropy
groups. KFE is an orbifold.

3. Irregular SE: Have a non-compact R symmetry. (If compact,
must have additional isometry) KFE is not a manifold.

For cases 1 and 2 the dual SCFT has a U(1) R-symmetry, for
case 3 there is an R R-symmetry.



Many explicit constructions of SE metrics: YP:4, [%b:c

Good understanding of toric case U(1)3 symmetry and much
understood about the dual SCFTS (quivers, dimers)

Many interesting mathematical theorems: General properties of
SCFT should have geometrical manifestations.

1. R-symmetry of SCFT «— Reeb vector.

2. a-maximisation: < Vol(SFE) can be obtained by a variational
principle. Vol(SE) are given by algebraic numbers.

3. Unitarity and RG flow: can be used to identify interesting
obstructions to the existence of conical Calabi-Yau metrics on
algebraic varieties.



Special Case II

AdS3 in Type IIB sugra:
ds? 24 [ds?(AdS3) + ds?(Y7)]
Fs = (14 *%)Vol(AdS3) N F>
Dual to N=(0,2) SCFTs in d=2.

AdS> in D=11 sugra:

ds?
Ga

Dual to N=2 SCQM.

e2A[ds? (AdS2) + ds?(Yo)]
Vol(AdS>) A F>



Can classify using G-structures

There is always a Killing vector <~ U(1) R-symmetry

Locally, there is an SU(3) or SU(4) structure and the metrics
can be written

42(V7) = (= + PY? + e s (Be)
ds?(Ye) = (dz+ P)? + e 34ds?(Bg)
where By, is Kahler and satisfies
OR—- 3R+ R;jRY =0 ()
with dP =R and e %4 or e 34 <« R > 0.



*Global* geometry in 2n + 2 dimensions
(d32n+2,f3,gb) with a globally defined SU(n + 1) structure J, 2
satisfying

d[e™Q] = 0
d[ez(n_1)¢ *op40J] = 0
d[e*?J] = f3
d[ez(n_3)¢ *on42f| = O

Geometry in 2n 4+ 1 dimensions (n > 3): ds?(Ya,41), Fa, A is
extracted by demanding the cone form:

ds%n+2 — dr? -+ rzdsgn_H
2(n—1) 2(n 1)
e 2P = p a2 ¢ 2- A

fz = r2—ndr/\F2



Many similarities to Sasaki-Einstein geometry

Apply constructions of Sasaki-Einstein YP9 and La:b:¢ to present
setting: find infinite classes of examples with known central
charges.

To do:

* T he geometries should be dual to D3-branes wrapping holomor-
phic surfaces inside CY, folds. Can we make this more precise?
Do interpolating solutions exist?

* What are the SCFTS dual to explicit examples? Are they
related to SCFTs dual to SE geometries wrapped on Riemann
surfaces?

*x Is there an analogue of toric geometry?

*x Identify geometrical versions of general properties of CFT.



Most General AdS Solutions

D=11 Have classified most general:
AdSg, N=1"7

AdSs, N = 2,
AdS,, N =1

AdS4, N = 2 (A special case is the AdS, x SE+ solutions)
AdS3, N =(0,4), (0,2) %, (2,2), (1,2), (1,1), (1,0)

Type IIB Have classified most general:
AdSs, N =1 (A special case is the AdSs x SEg solutions)



Massive type IIA AdS,, N =1

Technical comment: Noting that any AdS;4; supersymmetric
solution is a special case of a R1.d-1 solution, one can first classify
the latter and then extract out the conditions for an AdS solution.
Turns out that one can construct the most general AdS solutions
from a restricted class of R1:4—1 solutions.



Much to be understood:

*x Still more cases to study

* For many cases the description is in terms of G-structures and
it is not clear what are good local coordinates.

*x For all cases one can recover some known special explicit solu-
tions that were first found in gauged supergravity and describe
branes wrapping calibrated cycles.

For some special cases infinite rich classes of explicit solutions
have been constructed. Why?



Consistent Kaluza-Klein Truncation

Consider a higher dimensional theory of gravity with a vacuum
solution of the form RL4=1 %, M or AdS;11 xw M.

Expand all higher dimensional fields in terms of modes on M and
divide them into “Heavy” H and ‘“Light” L modes.

Substitute into the higher dimensional equations of motion to
get

VZ2H ~ S ap,LF + Y b, HY + Y ¢ HP L

VQL ~/ Z dkLk —I- Z eka —I- Z flekLl
Consistent to set all H = 0 only if a; = 0 and then one obtains
equations of a lower dimensional theory of gravity.

Any solution of the theory in low dimensions gives a solution of
the theory in higher dimensions.



For the truncation to be consistent the light modes should not
source the heavy modes.

Simple example: pure D =5 gravity, Ry;y =0
Vacuum state R1:3 x s1
Metric:

ds?(z,y) = e_¢/3guyda:“da:'/ -+ 62¢/3(dy -+ A,uda:“)Q

where we can expand ¢(z,y), guw(z,y), Au(z,y) in an infinite set
of modes eg

¢(5C7 y) — Z ¢n($)€iny, . .

Substitute into Ry = 0.
Heavy modes: n #= 0 have mass~ n and charge~ n
Light modes: n = 0 have mass=0 and charge=0.



It will clearly be consistent to set heavy modes to zero, since
the light, U(1) invariant, modes cannot source the heavy, non-
iInvariant, states.

Keeping just the light modes (and all of them), we find that they
must solve the four dimensional equations of motion

Ry = v OV i+ —e¢F2

d(e®*F) = 0

Any explicit solution to these D = 4 equations will give an explicit
D = 5 solution with Ry;n = 0.

The consistent KK ansatz provides a powerful way of construct-
ing higher dimensional solutions.



This generalises to tori and also to groups manifolds.
However, in general, there will certainly not exist a consistent
KK truncation, but some other cases are known.

If we start with a SUGRA theory and a supersymmetric vacuum,
when can we consistently truncate to a lower dimensional theory?
Sufficient to check at the level of bosonic fields

Toroidal reductions give sugra theories
e.g. D=11 Sugra on T'7 or type IIB Sugra on T°® — N=8 super-
gravity in d=4.

Much less obvious and much more involved are the reductions
on spheres to gauged supergravities:



D=11

AdS, x ST: can consistently KK truncate on S’ to get N = 8
gauged supergravity in D = 4.

Gauge group SO(8) <« R symmetry in dual CFT

AdS7 x S%: can consistently KK truncate on S’ to get maximal

gauged supergravity in D = 7.
Gauge group SO(5) < R symmetry in dual CFT

Type IIB

AdSs x S°: can consistently KK truncate on S° to get maximal
gauged supergravity in D = 5.

Gauge group SO(6) < R symmetry in N=4 SYM



There are also further truncations that one can consider. For
example type IIB on S® can be further truncated to

e N = 1 gauge SUGRA coupled to two vector multiplets (U(1)3)
and further to minimal N = 1 gauged SUGRA (U(1))

e A different truncation leads to Romans N = 2 SU(2) x U(1)
gauge supergravity.

Thus, for example, the AdSg black holes of minimal N =1 D =5
gauge supergravity can be uplifted on an S° to obtain solutions
of type IIB supergravity.



Conjecture : for any supersymmetric AdS x M solution of D =
10 or D = 11 supergravity there is a consistent KK truncation
on M to a gauged supergravity whose fields guv, Ay... are dual to
the superconformal current multiplet: T, ju, ...

Some general arguments for why this might be true were put
forward by . It would be nice to make them more
precise.

It would also be nice to have an AdS/CFT proof of the conjec-
ture. For d=2 SCFT



We can also tackle this directly by considering G-structure clas-
sification of AdS solutions and use it to try and construct the
appropriate KK ansatz directly (at the level of bosonic fields).

Then for any explicit AdS solution this will allow one to uplift
any explicit solution of the lower dimensional sugra to obtain a
new explicit solution in D=10, 11.

Note that one needs to check regularity of higher dimensional
solution.

Illustrate with simplest example:



Type IIB sugra: AdSs x SEs

d82
Fs

ds?(AdSs) + (di + 0)? + ds? (K Eg)
Vol(AdSs) + Vol(SEs)

do = 2JkEg

Dual to N =1 SCFT in d=4. Bosonic superconformal currents
are T, and U(1l) R-symmetry current j,. These are dual to
D = 5 metric gy and U(1) gauge-field A, which are the bosonic
fields of minimal D=5 SUGRA.

Hence, Conjecture = should be able to KK reduce type IIB on
SEs to minimal D=5 gauged sugra



Consistent KK ansatz

ds? dst + (dip + 0 + A)? 4 ds? (K Ey)
Fs = (1+%)[Vols + Jgp A *5F]

F = dA. Substitute into type IIB equations of motion —
1 A1 2
1
d>|<5F—§F/\F=O.

Which are indeed the equations of motion of minimal D = 5
gauged supergravity.



Generalisations:

e Type IIB AdSs x X5 and D = 11 AdSs Xy Mg solutions dual to
N =1 SCFTs

Have constructed consistent KK reduction on Xg or Mg to min-
imal D = 5 gauged sugra. (More difficult)

Recall AdSs black hole solutions of minimal gauged sugra. Can
be uplifted on S, but also on any SEs, X5 or Msg.

e D =11 AdSs x Mg with N = 2 susy

Have constructed consistent KK reductionto N =2 SU(2)xU(1)
D = 5 gauged SUGRA. Bosonic fields: Metric, SU(2) x U(1)
gauge fields and a scalar. (Much more difficult!)



Conclusions

1. Much progress in classifying supersymmetric solutions of sugra
theories using G-structures.

2. Very rich set of applications to AdS/CFT:

(i) Sasaki-Einstein

(ii) New AdS3 solutions of type IIB and AdS» solutions of D=11
sugra

(iii) General Classification results

3. Consistent Kaluza-Klein Truncations



