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Introduction

Supersymmetric solutions of SUGRA theories have played a very

important tole in many developments in string/M-theory.

What are they? Consider bosonic solutions with ψ = 0:

Eµν ≡ Rµν −
1

2
Rgµν − Tµν = 0

Matter Equations of motion = 0

Bianchi Identities = 0

and δψ = 0:

∇̂µǫ = [∇µ + (fluxes · Γ)µ]ǫ = 0,

M(fluxes)ǫ = 0.

i.e. admitting a “Killing spinor” ǫ



Can we “classify” such susy solutions?

(i) Matter =0

Rµν = 0

∇µǫ = 0

⇒ special holonomy.

Euclidean case:

SU(n) in d = 2n - Calabi-Yau

Sp(n) in d = 4n - Hyper-Kahler

G2 in d = 7

Spin(7) in d = 8

Lorentzian: more possibilities. Bryant



(ii) Matter 6=0

∇̂ is a connection on the Clifford bundle and not, in general on

the spin bundle.

What should we do?



Motivation

1. Compactifications to e.g. R
1,3: fluxes tend to stabilise mod-

uli.

2. Black Holes: Can we classify all supersymmetric black holes?

3. Surprises: new kinds of ansatz. eg black rings, Gödel

4. AdS/CFT: new examples; deeper understanding.

5. Mathematics

Want:

(i) Precise characterisation of geometry (and then theorems!)

(ii) Explicit solutions where possible.



Key Tool for classification: G-Structures

JPG, Martelli, Pakis, Waldram

PLAN:

1. Overview of G-structures and classification programme.

2. AdS/CFT Applications - including consistency of Kaluza-

Klein truncations.
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G-Structures

Let M be an n-dimensional manifold. F(M) be the frame bundle:

a principal Gl(n) bundle. A G-Structure is a principal G sub-

bundle.

Equivalent to no-where vanishing tensors. e.g.

gab ⇒ O(n) (or O(p, q))

gab, ǫa1...an ⇒ SO(n)

n = 2m

Ja
b, J2 = −1 ⇒ Gl(m,C)

gab, Ja
b, J2 = −1 ⇒ U(m)

gab, Ja
b,Ωa1...am ⇒ SU(m)

Classify G-structures by “intrinsic torsion”



Intrinsic Torsion - Measures the deviation from special holonomy.

Let η define a G ⊂ SO(n) structure. Basic idea:

∇η ↔ ⊕iWi

Wi are G-modules which specify the type of G-structure.

In more detail:

∃ ∇′ such that ∇′η = 0. Define

T ≡ ∇−∇′ = ω − ω′ ∈ Λ1 ⊗ Λ2

∼= Λ1 ⊗ so(n)
∼= Λ1 ⊗ (g ⊕ g⊥)

Then ∇η = (∇−∇′)η → element of Λ1 ⊗ g⊥. This is the part of

T that is independent of ∇′ and is called the intrinsic torsion:

T (0) ∈ Λ1 ⊗ g⊥ = ⊕iWi



An example: SU(3) structures in d = 6.

Specified by a real form Jab and a complex form Ωabc, satisfying

J ∧ Ω = 0

Ω ∧ Ω̄ = −i
4

3
J ∧ J ∧ J

This defines a metric, and orientation and an almost complex

structure.

The intrinsic torsion has 5 components. Decompose fundamen-

tal and adjoint of SO(6) into SU(3) reps: 6 = 3 + 3̄, 15 =

1 + 3 + 3̄ + 8. Hence Λ1 ⊗ g⊥ gives the reps:

(3 + 3̄) × (1 + 3 + 3̄) = (1 + 1) + (8 + 8) +

(6 + 6̄) + (3 + 3̄) + (3 + 3̄)

corresponding to 5 Wi.



Each Wi ∈ Wi can be expressed entirely in terms of dJ and dΩ:

dJ →W1,W3,W4

dΩ →W1,W2,W5

e.g.

(W4)a = Jb1b2(dJ)ab1b2
(W5)a = Ωb1b2b3(dΩ)ab1b2b3

Examples:

W1 = W2 = 0 → complex

W1 = W2 = W3 = W4 = 0 → Kahler

Wi = 0 → Calabi− Y au

⇔ dJ = dΩ = 0

There exists 32 different SU(3) structures.



To classify supergravity solutions

1. Observe that the isotropy group G of the Killing spinor ǫ

defines a G-structure. Explicitly, the tensors defining the G-

structure can be constructed as bi-linears:

Ti1...ik ∼ ǭΓi1...ikǫ, k = 0,1, ...

The algebraic conditions satisfied by the tensors can be obtained

e.g. by using Fierz identities.

2. ∇̂µǫ = [∇µ + (fluxes · Γ)µ] ǫ = 0 restricts the intrinsic torsion

and determines some of the flux. Mǫ = 0 places additional

conditions on the flux and intrinsic torsion. Note that some of

the flux components can drop out completely. HARD WORK.



3. Equations of motion. Consider [∇̂µ, ∇̂ν]ǫ = 0. Impose matter

equations of motion and Bianchi identities ⇒ EµνΓνǫ = 0. Need

to impose at most one component of Eµν = 0, and only in

Lorentzian case. JPG, Pakis



An Example: Heterotic compactified on R1,3 ×M6.

Set Yang-Mills fields to zero for simplicity.

After decomposing D = 10 spinor, susy ⇒
(

∇m +
1

8
HmnpΓ

np
)

ǫ = 0,
(

Γm∇mΦ +
1

12
HmnpΓ

mnp
)

ǫ = 0,

where ǫ is chiral D = 6 spinor.

• ǫ → SU(3) structure:

Jmn = −iǫ†Γmnǫ

Ωmnp = ǫTΓmnpǫ



• Analyse:

d(e−2ΦΩ) = 0,

d(e−2ΦJ ∧ J) = 0,

e2Φd(e−2ΦJ) = − ∗H

Have W1 = W2 = 0, ⇒ complex. W4 = −(1/2)W5 = 2dΦ. H

restricted by structure.

• H e.o.m. is automatically satisfied.

To satisfy all e.o.m. just need to impose dH = 0.

This is equivalent to old results of Strominger and Hull. The

point is that the method generalises.



Can apply the programme in 3 broad ways:

1. Classify the most general supergravity solutions in D=10/11

supergravity.

D=11: Find that the most general solutions, preserving 1/32

supersymmmetry have either SU(5) or Spin(7) ⋉ R9 structure.

JPG, Pakis

Type IIB: Either Spin(7) ⋉ R8, SU(4) ⋉ R8 or G2 structure

Gran, Gutowski, Papadopoulos

Very general results.

Refine the classification to different amounts of supersymmetry.

Perhaps we can explicitly determine all solutions with say > 16

supersymmetries? e.g. 29, 30 and 31 susies ⇒ 32 susies in IIB.

Gutowski et el



2. Lower-Dimensional Supergravities e.g. D = 4,5,6,7.

Can consider ungauged and gauged supergravity and also cou-

pled to various matter multiplets.

Can be much more explicit and this gives powerful new ways of

constructing D=10 and D=11 solutions.

JPG, Gutowski, Hull, Pakis, Reall, .....

Highlights:

Black rings – black holes with topology S1 × S2.

Elvang, Emparan, Mateos, Reall; JPG, Gutowski; Bena, Warner

AdS5 black holes in D = 5 N = 1 gauge supergravity

Gutowski, Reall; Chong, Cvetic, Lu, Pope



3. Special classes of Solutions

• Susy black holes - can we classify them all? Reall...

• Compactifications from D = 11,10 to R1,3, R1,2, ...

Largely worked put but still much to be understood about ge-

ometry.

Hitchin/Gualtieri: Generalised geometry: particularly useful for

global aspects. Focus on T ⊕ T ∗.



• AdS Solutions

Want to classify most general supersymmetric AdS backgrounds

of string/M-theory or equivalently the most general SCFTs with

supergravity duals

More precisely, want to classify general warped products of the

form: AdS ×wM :

ds2 = e2A(y)[ds2(AdS) + ds2(M)(y)]

with fluxes preserving isometries of AdS.

Can achieve this using G-structure techniques.



Supersymmetric AdS/CFT Solutions

Aim: characterise the most general supersymmetric warped prod-

uct solutions of D=11 or type IIB supergravity of the form:

AdSd+1 ×wM :

ds2 = e2A(y)[ds2(AdSd+1) + ds2(M)(y)]

with fluxes preserving isometries of AdS.

Solutions are invariant under SO(d,2) ⇔ characterise the most

general SCFTs in d spacetimes that have a supergravity descrip-

tion.



Motivation

⋆ (ds2(M), A, fluxes) should be an interesting class of geome-

tries. (Theorems)

⋆ Rich sets of new explicit solutions

e.g. Y p,q Sasaki-Einstein (JPG, Martelli, Sparks, Waldram)

⋆ M-theory examples give novel SCFTs

⋆ Can deform CFT to get different dynamics in IR

⋆ Can analytically continue → “BPS bubbles” dual to smooth

BPS states of SCFTs (LLM)

Also: Wilson Lines Lunin, D’Hoker, Gutperle, ...



PLAN:

1. Special case I: Sasaki-Einstein Geometry

2. Special case II: AdS3 solutions in IIB AdS2 solutions in D = 11

3. General Classification programme

4. Consistent Kaluza-Klein truncations



Special Case I: Sasaki-Einstein

Type IIB sugra:

ds2 = ds2(AdS5) + ds2(X5)

F5 = (1 + ∗)V ol(X5)

where X5 is Sasaki-Einstein. Dual to N=1 SCFTs in d=4.

D=11 sugra:

ds2 = ds2(AdS4) + ds2(X7)

G4 = V ol(AdS4)

where X7 is Sasaki-Einstein. Dual to N=2 SCFTs in d=3.

Clearly not the most general class of solutions.

Focus on type IIB case.



X2n+1 is SE iff the cone metric

dr2 + r2ds2(X2n+1)

is CY i.e. an SU(n) structure J,Ω with dJ = dΩ = 0.

E.g. X5 = S5 has cone R
6 and IIB solution arises from D3-branes

in R1,3 × R6.

E.g. X7 = S7 has cone R
8 and solution arises from M2-branes

in R1,2 × R8.

More generally, the cone is singular at r = 0 and the solutions

arise from D3-branes or M2-branes sitting at the singular tip of

the cone over the SE space.



Note AdS5 × S5 in Poincaré coordinates:

ds2 =
1

r2
ds2(R1,3) +

1

r2
[dr2 + r2ds2(X5)]

which is the near horizon limit of solution of D3-branes sitting

at apex of cone:

ds2 = (1 +
1

r4
)−1/2ds2(R1,3) + (1 +

1

r4
)1/2[dr2 + r2ds2(X5)]



Every SE space has a “Reeb-vector” ξ

ξj ≡ r(∂r)
iJi

j

and this turns out to be Killing. This is the geometrical dual of

the “U(1)” R-symmetry of the SCFT.

*Locally*, the SE metric can be written

ds2(X5) = (dψ+ σ)2 + ds2(KE)

where ξ = ∂ψ and ds2(KE) is four-d Kähler-Einstein metric with

positive curvature and dσ = 2JKE.

Locally, the SE has an SU(2) structure specified by the one form

K = dψ+ σ and JKE, ΩKE.



Three possibilities:

1. Regular SE: Have a U(1) symmetry and it is free. KE is

globally defined.

2. Quasi regular SE: Have a U(1) symmetry with finite isotropy

groups. KE is an orbifold.

3. Irregular SE: Have a non-compact R symmetry. (If compact,

must have additional isometry) KE is not a manifold.

For cases 1 and 2 the dual SCFT has a U(1) R-symmetry, for

case 3 there is an R R-symmetry.



Many explicit constructions of SE metrics: Y p,q, La,b,c

Good understanding of toric case U(1)3 symmetry and much

understood about the dual SCFTS (quivers, dimers) Hanany,....

Many interesting mathematical theorems: General properties of

SCFT should have geometrical manifestations.

1. R-symmetry of SCFT ↔ Reeb vector.

2. a-maximisation: ↔ V ol(SE) can be obtained by a variational

principle. V ol(SE) are given by algebraic numbers.

Martelli, Sparks, Yau

3. Unitarity and RG flow: can be used to identify interesting

obstructions to the existence of conical Calabi-Yau metrics on

algebraic varieties.

JPG, Martelli, Sparks, Yau



Special Case II

AdS3 in Type IIB sugra:

ds2 = e2A[ds2(AdS3) + ds2(Y7)]

F5 = (1 + ∗)V ol(AdS3) ∧ F2

Dual to N=(0,2) SCFTs in d=2.

AdS2 in D=11 sugra:

ds2 = e2A[ds2(AdS2) + ds2(Y9)]

G4 = V ol(AdS2) ∧ F2

Dual to N=2 SCQM.



Can classify using G-structures (Kim)

There is always a Killing vector ↔ U(1) R-symmetry

Locally, there is an SU(3) or SU(4) structure and the metrics

can be written

ds2(Y7) =
1

4
(dz + P)2 + e−4Ads2(B6)

ds2(Y9) = (dz + P)2 + e−3Ads2(B8)

where B2n is Kähler and satisfies

�R− 1
2R

2 +RijR
ij = 0 (∗)

with dP = R and e−4A or e−3A ∝ R > 0.



*Global* geometry in 2n+ 2 dimensions JPG, Kim :

(ds22n+2, f3, φ) with a globally defined SU(n + 1) structure J,Ω

satisfying

d[enφΩ] = 0

d[e2(n−1)φ ∗2n+2 J] = 0

d[e2φJ] = f3

d
[

e2(n−3)φ ∗2n+2 f
]

= 0

Geometry in 2n + 1 dimensions (n ≥ 3): ds2(Y2n+1), F2, A is

extracted by demanding the cone form:

ds22n+2 = dr2 + r2ds22n+1

e−2φ = r
2(n−1)
n−2 e

2(n−1)
2−n A

f3 = r
n

2−ndr ∧ F2



Many similarities to Sasaki-Einstein geometry

Apply constructions of Sasaki-Einstein Y p,q and La,b,c to present

setting: find infinite classes of examples with known central

charges. JPG, Kim, Waldram

To do:

⋆ The geometries should be dual to D3-branes wrapping holomor-

phic surfaces inside CY4 folds. Can we make this more precise?

Do interpolating solutions exist?

⋆ What are the SCFTS dual to explicit examples? Are they

related to SCFTs dual to SE geometries wrapped on Riemann

surfaces?

⋆ Is there an analogue of toric geometry?

⋆ Identify geometrical versions of general properties of CFT.



Most General AdS Solutions

D=11 Have classified most general:

AdS5, N = 1 ∗

JPG, Martelli, Sparks, Waldram

AdS5, N = 2,

Lin, Lunin, Maldacena

AdS4, N = 1

AdS4, N = 2 (A special case is the AdS4 × SE7 solutions)

AdS3, N = (0,4), (0,2) ∗, (2,2), (1,2), (1,1), (1,0)

JPG, Mateos,Mac Conamhna, Waldram; Figueras, Mac Conamhna, O Colgain,

Type IIB Have classified most general:

AdS5, N = 1 (A special case is the AdS5 × SE5 solutions)

JPG, Martelli, Sparks, Waldram



Massive type IIA AdS4, N = 1

Behrndt, Cvetic

Technical comment: Noting that any AdSd+1 supersymmetric

solution is a special case of a R
1,d−1 solution, one can first classify

the latter and then extract out the conditions for an AdS solution.

Turns out that one can construct the most general AdS solutions

from a restricted class of R1,d−1 solutions.



Much to be understood:

⋆ Still more cases to study

⋆ For many cases the description is in terms of G-structures and

it is not clear what are good local coordinates.

⋆ For all cases one can recover some known special explicit solu-

tions that were first found in gauged supergravity and describe

branes wrapping calibrated cycles.

For some special cases infinite rich classes of explicit solutions

have been constructed. Why?



Consistent Kaluza-Klein Truncation

Consider a higher dimensional theory of gravity with a vacuum

solution of the form R1,d−1 ×wM or AdSd+1 ×wM .

Expand all higher dimensional fields in terms of modes on M and

divide them into “Heavy” H and “Light” L modes.

Substitute into the higher dimensional equations of motion to

get

∇2H ∼
∑

akL
k +

∑

bkH
k +

∑

cklH
kLl

∇2L ∼
∑

dkL
k +

∑

ekH
k +

∑

fklH
kLl

Consistent to set all H = 0 only if ak = 0 and then one obtains

equations of a lower dimensional theory of gravity.

Any solution of the theory in low dimensions gives a solution of

the theory in higher dimensions.



For the truncation to be consistent the light modes should not

source the heavy modes.

Simple example: pure D = 5 gravity, RMN = 0

Vacuum state R1,3 × S1

Metric:

ds2(x, y) = e−φ/3gµνdx
µdxν + e2φ/3(dy+Aµdx

µ)2

where we can expand φ(x, y), gµν(x, y), Aµ(x, y) in an infinite set

of modes eg

φ(x, y) =
∑

n
φn(x)e

iny, . . .

Substitute into RMN = 0.

Heavy modes: n 6= 0 have mass∼ n and charge∼ n

Light modes: n = 0 have mass=0 and charge=0.



It will clearly be consistent to set heavy modes to zero, since

the light, U(1) invariant, modes cannot source the heavy, non-

invariant, states.

Keeping just the light modes (and all of them), we find that they

must solve the four dimensional equations of motion

Rij =
1

6
∇iφ∇jφ+

1

2
eφF2

ij

∇2φ =
1

4
eφF2

d(eφ ∗ F) = 0

Any explicit solution to these D = 4 equations will give an explicit

D = 5 solution with RMN = 0.

The consistent KK ansatz provides a powerful way of construct-

ing higher dimensional solutions.



This generalises to tori and also to groups manifolds.

However, in general, there will certainly not exist a consistent

KK truncation, but some other cases are known.

If we start with a SUGRA theory and a supersymmetric vacuum,

when can we consistently truncate to a lower dimensional theory?

Sufficient to check at the level of bosonic fields Cvetic, Lu, Pope

Toroidal reductions give sugra theories

e.g. D=11 Sugra on T7 or type IIB Sugra on T6 → N=8 super-

gravity in d=4.

Much less obvious and much more involved are the reductions

on spheres to gauged supergravities:



D=11

AdS4 × S7: can consistently KK truncate on S7 to get N = 8

gauged supergravity in D = 4. De Wit, Nicolai

Gauge group SO(8) ↔ R symmetry in dual CFT

AdS7 × S4: can consistently KK truncate on S7 to get maximal

gauged supergravity in D = 7. Nastase, Vaman, van Nieuwenhuizen

Gauge group SO(5) ↔ R symmetry in dual CFT

Type IIB

AdS5 × S5: can consistently KK truncate on S5 to get maximal

gauged supergravity in D = 5. Cvetic, Duff, Hoxha, Liu, Lu, Lu, Martinez-

Acosta, Pope, Sati, Tran; Lu, Pope, Tran; Cvetic, Lu, Pope, Sadrzadeh, Tran

Gauge group SO(6) ↔ R symmetry in N=4 SYM



There are also further truncations that one can consider. For

example type IIB on S5 can be further truncated to

• N = 1 gauge SUGRA coupled to two vector multiplets (U(1)3)

and further to minimal N = 1 gauged SUGRA (U(1))

• A different truncation leads to Romans N = 2 SU(2) × U(1)

gauge supergravity.

Thus, for example, the AdS5 black holes of minimal N = 1 D = 5

gauge supergravity can be uplifted on an S5 to obtain solutions

of type IIB supergravity.



Conjecture : for any supersymmetric AdS ×wM solution of D =

10 or D = 11 supergravity there is a consistent KK truncation

on M to a gauged supergravity whose fields gµν, Aµ... are dual to

the superconformal current multiplet: Tµν, jµ, ....

JPG, Varela (Duff, Pope)

Some general arguments for why this might be true were put

forward by Pope, Stelle . It would be nice to make them more

precise.

It would also be nice to have an AdS/CFT proof of the conjec-

ture. For d=2 SCFT David, Sahoo, Sen



We can also tackle this directly by considering G-structure clas-

sification of AdS solutions and use it to try and construct the

appropriate KK ansatz directly (at the level of bosonic fields).

Then for any explicit AdS solution this will allow one to uplift

any explicit solution of the lower dimensional sugra to obtain a

new explicit solution in D=10, 11.

Note that one needs to check regularity of higher dimensional

solution.

Illustrate with simplest example:



Type IIB sugra: AdS5 × SE5

ds2 = ds2(AdS5) + (dψ+ σ)2 + ds2(KE4)

F5 = V ol(AdS5) + V ol(SE5)

dσ = 2JKE

Dual to N = 1 SCFT in d=4. Bosonic superconformal currents

are Tµν and U(1) R-symmetry current jµ. These are dual to

D = 5 metric gµν and U(1) gauge-field Aµ, which are the bosonic

fields of minimal D=5 SUGRA.

Hence, Conjecture ⇒ should be able to KK reduce type IIB on

SE5 to minimal D=5 gauged sugra



Consistent KK ansatz Buchel, Liu :

ds2 = ds25 + (dψ+ σ+A)2 + ds2(KE4)

F5 = (1 + ∗) [V ol5 + JKE ∧ ∗5F ]

F = dA. Substitute into type IIB equations of motion →

Rµν = −4gµν +
1

6
FµλFν

λ −
1

36
gµνF

2

d ∗5 F −
1

3
F ∧ F = 0.

Which are indeed the equations of motion of minimal D = 5

gauged supergravity.



Generalisations: JPG, O’ Colgain, Varela

• Type IIB AdS5 ×X5 and D = 11 AdS5 ×wM6 solutions dual to

N = 1 SCFTs

Have constructed consistent KK reduction on X5 or M6 to min-

imal D = 5 gauged sugra. (More difficult)

Recall AdS5 black hole solutions of minimal gauged sugra. Can

be uplifted on S5, but also on any SE5, X5 or M6.

• D = 11 AdS5 ×M6 with N = 2 susy LLM

Have constructed consistent KK reduction to N = 2 SU(2)×U(1)

D = 5 gauged SUGRA. Bosonic fields: Metric, SU(2) × U(1)

gauge fields and a scalar. (Much more difficult!)



Conclusions

1. Much progress in classifying supersymmetric solutions of sugra

theories using G-structures.

2. Very rich set of applications to AdS/CFT:

(i) Sasaki-Einstein

(ii) New AdS3 solutions of type IIB and AdS2 solutions of D=11

sugra

(iii) General Classification results

3. Consistent Kaluza-Klein Truncations


