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Introduction:

Recently I was asked to speak at a conference on the Origins of

Time’s Arrow ∗

This gave me the opportunity to discuss ideas I have had for some

time about the nature of time in quantum gravity.

I have long believed that time in quantum mechanics is closely related

to the

the use of a complex, rather than say real, Hilbert space.

∗http://www.nyas.org/ebrief/miniEB.asp?eBriefID=687#meetingrep



This becames particularly clear to me when considering quantum field

theory in time dependent backgrounds, such as in cosmology when

the notion of positive frequency ceases to be well defined. One also

has to face this problem in quantum cosmology. This suggests to me

that at a fundamental level quantum mechanics may be really real

with not one, but a multitude of complex structures.



In other words, worry about The Arrow of Time, especially in cos-

mology. I think that before worrying about that, we should ask What

is the nature of time? in Quantum Cosmology.

Both Quantum Mechanics and General Relativity have something to

say about this.

But what they say is not quite compatible



The plan of this lecture is as follows

• Nature of time in quantum Mechanics

• Mathematical Interlude on Real and Complex Vector Spaces

• Real Quantum Mechanics and the Precautionary Principle

• Examples from Quantum Cosmology

• Examples from Spinors and Unification



• Colliding Branes

• Conclusion



Because the nature of time in Quantum Mechanics is less familar and

less frequently discussed than it is in General Relativity I shall begin by

recalling how time is intimately connected with the complex (Hilbert

Space) structure of quantum mechanics.

In other words, the use of complex numbers and hence of complex

amplitudes in Quantum Mechanics is intimately bound up with how

Quantum States evolve in time.

i
dΨ

dt
= HΨ (1)

In particular there can be no evolution if Ψ is real ∗.
∗Conversely, as shown by Dyson in his three-fold way, if H is time-reversal invariant
one may pass to a real (boson) or quaternionic (fermion) basis



If one anaylses the Logical Structure of Quantum Mechanics one finds

that it consists of two different types of statements:

• I Timeless statements about states, propositions, the Principle of

Superposition, probabilities, observables etc

• II Statements about how states and observables change, Schrödinger’s

equation and Unitarity etc.



The upshot of an analysis of I (so called Quantum Logic ∗) is that

pure states are points in a Projective Space over R,CorH †.

Ψ ≡ λΨ , λ ∈ R,CorH (2)

∗Von-Neumann, Jordan, Wigner, Jauch, Piron, Stueckelberg, Adler etc
†We ignore the exceptional case of the octonions



Now any vector space over R,CorH is a vector space V over R with

some additional structure, so let’s use real notation. For clarity, I

propose a short Mathematical Interlude



In standard quantum mechanics, (pure) states are rays in a Hilbert

space Hqm which is a vector space over the complex numbers carrying

a Hermitian positive definite inner product h(U, V ) such that

(i) h(U, λV ) = λh(U, V ) , ∀λ ∈ C . (3)

(ii) h(U, V ) = h(V, U). (4)

(iii) h(U,U) > 0. (5)

It follows that h(U, V ) is antilinear in the first slot

h(λU, V ) = λh(U, V ) , ∀λ ∈ C . (6)



In Dirac’s bra and ket notation elements of Hqm are written as kets:

V ↔ |V 〉 (7)

and elements of the C- dual space H⋆
qm, the space of C- linear maps

Hqm → C as bras: and there is an anti-linear map from Hqm to H⋆
qm

given by

U → 〈U | (8)

such that

h(U, V ) = 〈U |V 〉 , (9)

thus

〈U | = h(U, · ) . (10)



In components

|V 〉 = V i |i〉 (11)

and

〈U | = 〈j| Ū j̄, (12)

〈U |V 〉 = h(U, V ) = h̄ijŪ
īV j, (13)

where

h̄ij = 〈j | i〉 , (14)

and

h̄ij = hj̄i . (15)



Complex Vector spaces as Real Vector spaces For simplicity of ex-

position one may imagine that Hqm as finite dimensional dimCHqm =

n < ∞. Since a complex number is just a pair of real numbers, any

Hermitian vector space may be regarded as a real vector space V of

twice the dimension dimR V = 2n with something added , a complex

structure J, i.e a real-linear map such that

J2 = −1 , (16)

and a positive definite metric . g such that J is an isometry, i.e.

g(JX, JY ) = g(X, Y ) . (17)



It follows that V is also a symplectic vector space, with symplectic

form

ω(X, Y ) = g(JX, Y ) = −ω(Y,X) , (18)

and J acts canonically, i.e.

ω(JX, JY ) = ω(X, Y ) . (19)

Alternatively given J and the symplectic form ω we obtain the metric

g via

g(X,Y ) = ω(X, Jy) . (20)



The standard example is the complex plane C = R2 where if

e1 = (1,0) , e2 = (0,1) , (21)

J(e1) = e2 , J(e2) = −e1 (22)

or as a matrix

J =

(

0 −1,

1 0

)

(23)

and thus

J(xe1 + ye2) = xe2 − ye1 (24)

which is the same in the usual notation as

i(x+ iy) = −y+ ix , (25)

where 1 ↔ (1,0) and i↔ (0,1) .



A complex structure J can be thought of as a rotation of ninety

degrees in n orthogonal two planes. To specify it therefore it suffices

to specify the (unordered) set of planes and the sense of rotation in

each 2-plane.



A Real vector space as a Complex Vector space

Given the original real vector space, how are the complex numbers

actually introduced? We start with V and pass to its complexification,

the tensor product

VC = V ⊗R C . (26)

Note that dimR VC = 4n = 2dimC VC,

We now extend the action of J to VC, so it commutes with i ∈ C:

JαX = αJX , ∀ α ∈ C , X ∈ C . (27)



We may now diagonalize J over C and write

VC = W ⊕W (28)

where

JW = iW , JW = −iW . (29)

Clearly dimR W = 2n = 2dimC W = dimR V , and W may be thought

of as V in complex notation.

Thus if X ∈ V , we have that

X =
1

2
(1 − iJ)X +

1

2
(1 + iJ)X, (30)

with 1
2(1− iJ)X ∈W and 1

2(1− iJ)X ∈W . Vectors in W are referred

to as type (1,0) or holomorphic and vectors in W as type (0,1) or

anti-holomorphic.



The metric on VC

If V admits a metric for which J acts by isometries, we may extend

the metric g to all of VC = W ⊕W by linearity over C , we find that

(i) g(Ū , V ) = g(U, V ) (31)

(ii) g(U, Ū) > 0, (32)

(iii) g(U, V ) = 0 ,∀U, V ∈W , and ,∀U, V ∈W . (33)



We now return to the problem at hand. We use an index notation for

vectors va, in our real vector space V with a = 1,2, . . .dimRV = 2n.

The metric is written as gab = gba, the symplectic form as ωab = −ωba
and complex structure as Ja b .



Observables are symmetric bilinear forms:

〈ΨOΨ〉 = ΨaOabΨ
b , Oab = Oba (34)

a = 1,2, . . . , n = dimR V . Mixed states ρ are positive definite observ-

ables dual to the observables

〈Oρ〉 = ρabOab = Tr (ρO) , ρab = ρba (35)

There is a privileged density matrix the completely ignorant density

matrix which we may think of as a metric∗ gab on V and use it to

normalise our states

〈Ψ|Ψ〉 = gabΨ
aΨb , gab = gba , Trρ = gabρab (36)

∗strictly speaking the inverse



The upshot of a conventional analysis of II (Dirac called it Trans-

formation Theory) is that states change by by means of linear maps

which preserves the metric (i.e. preserves complete ignorance)

Ψa → Sa bΨ
b , gabS

a
cS
b
d = gcd (37)

Thus S ∈ SO(n,R), n = dimR V . Infinitesimally

Sa b = δab + T a b + . . . (38)

where the Operator T a b gives a two-form when the index is lowered

gabT
b
c := T ♭ac = −T ♭ca (39)



But Dirac taught us that, just as in Hamiltonian mechanics, to every

(Hermitian) Operator there is an Observable and vice versa. How

can this be? Our vector space V over R needs some extra structure,

in fact a complex structure Ja b or privileged operator which also

preserves the metric (i.e. preserves complete ignorance).

gab J
a
cJ
b
d = gcd , (40)

Then

Ja bJ
b
c = −δac =⇒ ωab = −ωba (41)

where the symplectic two-form ωab = gacJc b may be used to lower

indices and obtain a symmetric tensor for every (Hermitian) observable

(i.e. one that generates a transformation preserves the symplectic

form)

ωabT
b
c := T♭ac = +T♭ca (42)



We can think of this more group theoretically ∗. In regular Quantum

Mechanics V is a Hermitian vector space its transformations should

be unitary, but

U(
n

2
,C) = SO(n,R) ∩GL(

n

2
,C) (43)

where GL(n2,C) ⊂ GL(n,R) is the subgroup preserving J, and SO(n,R) ⊂
GL(n,R) is the subgroup preserving the metric g.One also has

U(
n

2
,C) = SO(n,R) ∩ Sp(n,R) (44)

where Sp(n,R) ⊂ GL(n,R) is the subgroup preserving the symplectic

form ω, and of course

U(
n

2
,C) = SO(n,R) ∩GL(

n

2
,C) (45)

∗Or recall what we know about Kähler mfds. Quantum Mechanics makes use of a
Kählerian vector space



A precautionary principle

The main message of this talk is that given a vector space V over R

it may have no complex structure (n must obviously be even!) or if it

is does, the complex structure may not be unique (they are typically

members of infinite families)

Thus on four dimensional Euclidean space E4 they belong (modulo a

choice of orientation) to a two-sphere S2 = SO(4)/U(2).

More generally, every quaternion vector space has such a 2-sphere’s

worth of complex structures ∗ , i.e. a 2-sphere’s worth of of times!

∗cf Hyper-Kähler manifolds such as K3



To bring out the fact that in physics we use many different com-

plex structures for many different reasons it is occasionally helpful

to indicate explicitly by the symbol iqm the very particular complex

structure on the Hilbert space Hqm of the standard model and so that

Schrödinger’s equation really reads

iqm
dΨ

dt
= HΨ . (46)



Therefore it seems wise to adopt a course of action, particularly at

the classical level before quantization, in which one proceeds as far

as possible by considering all physical quantities and their related

mathematical structures to be real until one is forced to introduce

complex notation and iqm at the point where one introduces quantum

mechanics.

In other words, in what follows, I plan to follow, in so far as is possible,

Hamilton’s course of action



The author acknowledges with pleasure that he agrees with M.

CAUCHY, in considering every (so-called) Imaginary Equation

as a symbolic representation of two separate Real Equations:

but he differs from that excellent mathematician in his method

generally, and especially in not introducing the sign
√
−1 until

he has provided for it, by his Theory of Couples, a possible

and real meaning, as a symbol of the couple (0,1).



Dyson’s Three-fold way In this language, Dyson’s observation is that

in standard quantum mechanics an anti-linear involution Θ acting on

rays may be normalized to satisfy

Θ2 = ±1 , (47)

where the plus sign corresponds to an even spin state and the odd

sign to an odd spin state.To say that Θ is anti-linear is to say that it

anti-commutes with the standard complex structure iqm, iqm
2 = −1

Θiqm + iqmΘ = 0 . (48)

Now for the plus sign Θ, is a projection operator and we get what is

called a real structure on the original complex Hilbert space and if the



Hamiltonian is time-reversal invariant, then we may use the projection

operator to project onto the subspace of real states. On the other

hand for the minus sign we construct

K = Θ iqm (49)

and find that Θ, iqm,K satisfy the algebra of the quaternions.



With this prepartion we can immediately see that

THE MUCH DISCUSSED QUESTION OF WHETHER BLACK HOLE

EVAPORATION IS UNITARY IS MEANINGLESS IF THERE THERE

IS NO COMPLEX STRUCTURE, AND ILL-POSED IF THERE IS

MORE THAN ONE



in Quantum Field Theory in Curved Spacetime the main problem is

that there is no unique definition of “positive frequency ”. In the free

theory, V = Honeparticle is the space of real-valued solutions of wave

equations. V is naturally (and covariantly) a symplectic (boson), or

orthogonal (fermion)∗ vector space

ω(f, g) =
∫

(ḟg − ġg)d3 x = −ω(g, f) (50)

g(ψ,χ) =

∫

(ψtχ)d3 x = g(χ, ψ) (51)

∗we use real (Majorana) commuting spinors for convenience: there use is not es-
sential



To quantise we complexify and decompose

VC = C ⊗ V = V+ ⊕ V − (52)

This decomposition (which defines a complex structure)∗ is not unique.

THIS NON-UNIQUENESS CORRESPONDS PHYSICALLY TO THE

POSSIBILITY OF PARTICLE PRODUCTION AND IS AN ESSEN-

TIAL PART OF OUR CURRENT UNDERSTANDING OF BLACK

HOLE EVAPORATION AND INFLATIONARY PERTURBATIONS

∗Ashtekar & Magon, Woodhouse



We can make this more concrete by the observation that a gen-

eral Bogoliubov transformation which does nor preserve positive fre-

quency does not therefore preserve the complex structure: it belongs

to Sp(2n,R) but not GL(n,C). Another way to say it is that if particle

production takes place there is a clash of complex structures:

Jinitial 6= Jfinal. (53)

In the language of Geometric Quantization: a choice of complex

structure is a choice of polarization.



At this point it may be instructive to recall why time is not an operator

and why commutation relations of the form

[x̂µ, P̂ν ] = iδµν (54)

don’t apply in quantum field theory in Minkowski spacetime. If they

did, then they would have, up to natural equivalence, to be repre-

sented in the standard Stone-Von-Neumann fashion on L2(E3,1). But

then the energy P̂0, could not be bounded below. Thus L2(E3,1) is

not the quantum mechanical Hilbert space. Rather, as stated above,

it is the space of positive frequency solutions of the Klein-Gordon

or Dirac equations. These are is much more subtle objects and cer-

tainly not uniquely defined in a curved spacetime manifold {M, g},
unlike L2(M,

√−gd4 x), the obvious generalization of L2(E3,1), which

is unambiguous even in a curved spacetime.



In Hartle and Hawking’s Wave Function for The Universe

Ψ(hij,Σ) =

∫

d[g]e−Ieuc(g) , hij = gij|Σ=∂M (55)

Is real valued. To get a notion of time one typically passes to a

Lorentzian WKB approximation Sc

Ψ = AeiSc + Āe−iSc (56)

but this is only a semi-classical approximation, in other words TIME,

THE COMPLEX NUMBERS AND THE COMPLEX STRUCTURE

OF QUANTUM MECHANICSEMERGE ONLY AS AN APPROXI-

MATION AT LATE TIMES



In fact in Euclidean Quantum Field Theory it is not sufficient just to

compute correlators.

In order to recover Quantum Mechanics, rather than merely to in-

dulge in an unphysical case of Statistical Mechanics, the correlators

must exhibit Reflection Positivity. This guarantess the possibility of

analytically continuing to real time.

This can be done for Riemannian backgrounds if they admit a suitable

reflection map ∗

Most Riemannian metrics do not admit such a reflection map.

∗e.g. static or time-symmetric metrics as for Real tunneling geometries, (Gibbons
&Hartle, Jaffe etc)



My last example involves a Lorentzian Born From Nothing Scenario
∗. Essentially, one considers de-Sitter spacetime modded out by the

antipodal map dS/Z2 (so-called elliptic interpretation).

−(X0)2 + (X1)2 + (X2)2 + (X3)2 + (X4)2 =
3

Λ
Z2 : XA ≡ −XA .

(57)

Now the antipodal map preserves space orientation but reverse time

orientation. But in quantum mechanics a time reversing transforma-

tion is represented by an anti-unitary operator Θ and if all states are

invariant up to a factor

ΘΨ = λΨ (58)

then only real linear combinations are allowed.

∗Friedman, Gott & Li , Gratton etc



Thus Quantum Mechanics in dS/Z2 is Real Quantum Mechanics.

This jibes with the fact that under the action of the antipodal map

is antisymplectic on the bosonic space of solutons V

ω(·, ·) → −ω(·, ·) . (59)

This renders imposing the CCR’s impossible ∗

Compare regular time reversal

(pi, q
i) → ω = (−pi, qi) =⇒ dpi ∧ dqi → −dpi ∧ dqi = −ω (60)

If there is no symplectic form then the Heisenberg commutation re-

lations make no sense, one cannot geometrically quantise.

∗Bernard Kay has implemented this argument more rigourously within an algebraic
framework



This pathology arises quite generally for spacetimes which do not

admit a Time Orientation, i.e. a smooth choice of future lightcone.

In other words quantum field theory is not defined unless one may

define an Arrow of Time ∗ .

Amusingly CTC’s seem to be quiet innocuous from this point of view.

It seems that they can be compatible with qunatum mechanics.

An interesting question, discussed by Chamblin and myself, is whether

this arrow is intrinsically defined, or whether both possibilities are on

the same footing.

In other words, do there exist time-orientable spacetimes which have

an intrinsic direction of time?
∗Amusingly CTC’s seem to be quiet innocuous from this point of view. It seems
that they can be compatible with quantum mechanics.



The analogy here is with a quartz crystal which is either left-handed or

right handed. This is because the point group contains no reflections
or inversions.

For a spatial manifold Σ one asks: does Σ there exist an orientation
reversing diffeomorphism. In other words is there a diffeomorphism

taking Σ with one orientation to Σ with the opposite orientation?. For
such mfds a Parity Map cannot be defined. Such “handed ”manifolds
are quite common, certain Lens Spaces and CP2 being examples ∗.

For spacetimes the analogous question is whether there exist a time
reversing diffeo Θ?

We found some rather exotic examples, based on higher dimensional
Taub-NUT spactimes for which no such diffeo Θ exists.
∗see Hartle and Witt



Spacetime Signature and the Real Numbers

In 4+1, and indeed 9+1 and 10+1, spacetime dimensions, it is pos-

sible, by choosing the spacetime signature appropriately, to develop

spinor analysis at the classical level entirely over the reals. That is, to

consistently use Majorana spinors whose components really are real.

In four spacetime dimensions this requires the mainly plus signature

convention (the opposite to that which Penrose uses). The complex

numbers need only enter when one quantizes.



To see this in more detail we need some facts about Clifford Algebras

Given a vector space V ∗ with metric g, of signature (s, t) where s

counts the positive and t the negative signs, Clifford algebra Cliff(s, t;R)

is by definition the associative algebra over the reals generated by the

relations

γµγν + γνγµ = 2gµν , (61)

where γ is a basis for V . As a real algebra, the signature does make

a difference. For example

Cliff(0,1;R) ≡ C , (62)

while

Cliff(0,1;R) ≡ R ⊕ R . (63)

∗V is not Hqm thought of as real!



In fact Cliff(0,1;R) is identical with what are often called ‘double

numbers ’or ‘hyperbolic numbers’, i.e numbers of the form.

a+ eb , a, b ∈ R , e2 = 1 . (64)

As an algebra, Cliff(0,1;R) is not simple, P± = 1
2(1±e) are projectors

onto two commuting sub-algebras.

In a matrix representation

i =

(

0 −1

1 0

)

, e =

(

0 1

1 0

)

. (65)

However if we pass to the complex Clifford over C we lose the dis-

tinction since

Cliff(0,1;C) ≡ Cliff(0,1;C) ≡M2(C) , (66)



where M2(C) is the algebra of all complex valued two by two matrices.

It is precisely at this point that the precautionary principle comes in.

We should not rush into adopting

Cliff(3,1;C) ≡ Cliff(1,3;C) ≡ M4(C) , (67)

but rather enquire what are the possible differences between the two

signatures † . In fact

Cliff(3,1;R) ≡M4(R) , Cliff(1,3;R) ≡M2(H) , (68)

where

H ≡ Cliff(0,2;R) (69)

†A similar point has been made recently by Schucking but he plumps for the quater-
nions



are the quaternions. Despite the differences the spin groups are iden-

tical

Spin(3,1) ≡ Spin(1,3) ≡ SL(2,C) , (70)

but if discrete symmetries are taken into account they differ:

Pin(3,1) 6= Pin(1,3) . (71)

This has important consequences in spacetimes which are time, space

or spacetime non-orientable.



Majorana Spinors It is a striking and, I believe, a possibly rather

significant fact that the signature (3,1) leads directly to a Majorana

representation, in which all γ matrices are real. Certainly if one holds

that N = 1 supersymmetry and N = 1 supergravity are important,

this fact renders the mainly positive signature rather attractive. The

precautionary principle would lead one to adopt the signature (3,1)

and use a real notation for as long as one can, certainly at the classical

level where one need never introduce complex numbers. Thus the

basic entities are Majorana spinors ψ belonging to a four dimensional

real vector space M with real, or real Grassmann number components

ψa, a = 1,2,3,4.



The charge conjugation matrix C = −Ct satisfies

CγµC
−1 = −γtµ , Cγ5C

−1 = −γt5 . (72)

It serves as a Lorentz-invariant symplectic form on M. Thus Spin(3,1) ⊂
Sp(4;R) ≡ Spin(3,2).



Dirac Spinors Dirac spinors, consist of pairs of Majorana spinors ψi

, i = 1,2 which are elements of R4 ⊕ R4 ≡ R4 ⊗ C2 ≡ R8 If δij
is the metric and ǫij = δikJ

k
j, the symplectic and Jk j the complex

structure which rotates the two summands into each other, we can

endow D ≡ R8 with a symplectic form ω and a pseudo-riemannian

metric g , and hence a pseudo-hermitean structure.

One can think of the Dirac spinors as elements of a four dimensional

complex vector space D = MC ≡ C4, the complexification of the real

space of of Majorana spinors M.



Weyl Spinors To see where Weyl spinors fit in we observe that γ5
acts as a complex structure converting M ≡ R4 to W ≡ C2. In other

words, we write

M ⊗R C = D = W ⊕W , (73)

Elements of W2 are chiral spinors for which

γ5ψR = iψR, (74)

Elements of W are anti-chiral spinors for which

γ5ψL = −iψL, (75)

The projectors 1
2(1− iγ5) and 1

2(1+ iγ5) project onto chiral and anti-

chiral Weyl spinors respectively.



It is of course possible to treat Weyl spinors without the explicit

introduction of complex numbers at the expense of introducing pairs

of Majorana spinors ψ1, ψ2 subject to the constraint that

γ5ψ1 = −ψ2 , γ5ψ2 = ψ1 . (76)

One then has

ψR = ψ1 + iψ2 , ψL = ψ1 − iψ2 . (77)



Unification and Spin(10).

If the viewpoint advocated here is on the right track, one might expect

that should be signs in what little information we have about possible

unification schemes. A very popular one is based on the group SO(10)

and it is perhaps gratifying that it seems to fit with the philosophy

espoused here.



In the standard electro-weak model, the neutrinos are purely left-

handed and a description of the fundamental degrees of freedom in

terms of Weyl spinors is often felt to be appropriate. One may then

argue that this more more convenient with the mainly minus sig-

nature. However nothing prevents one describing it using Majorana

notation and the mainly plus signature. Moreover the discovery of

the non-zero neutrino masses and the so-called see-saw mechanism

make it plausible that there is a right handed partner for the neutrinos

and the fact that then each family would fit into a chiral (i.e. 16)

representation of Spin(10) makes it perhaps more attractive to de-

scribe the fundamental fields in Majorana notation. This would tend

to favour the use of the mainly plus signature.



To see this in more detail recall ∗

Cliff(10,0; R) ≡M32(R) . (78)

Let Γa, a = 1,2, . . . ,10 be a representation of the generators by real

32 × 32 matrices and

Γ11 = Γ1Γ2 . . .Γ10 , (79)

so that †

Γ2
11 = −1 . (80)

∗This is clear from the periodicity modulo eight of Clifford algebras Cliff(s+8, t) ≡
Cliff(s, t) ⊗M16(R) and the easily verified fact that the that Cliff(2,0; R) ≡M2(R).

†The matrices Γa,Γ11 generate the M-theory Clifford algebra Cliff(10,1;R) ≡
M32(R) ⊕M32(R).



It is customary to describe the Spin(10) model in terms of 16 left

handed spacetime Weyl fermions which are then placed in a single

complex chiral 16, Ψ of Spin(10)

Γ11Ψ = iΨ , (81)

but this is completely equivalent ,and notationally simpler to regard

the 16 spacetime Weyl fermions as 32 spacetime Majorana fermions

and then to regard Ψ as a 32 dimensional Majorana spinor of Spin(10)

subject to the constraint

Γ11Ψ = γ5Ψ . (82)



In yet more detail, we start with the 15 observed left handed Weyl

fermions of the electro-weak theory with their weak hypercharges

Y = Q− t3, where Q is the electric charge and t3 the third component

of weak iso-spin
(

uL
dL

)

, Y =
1

6

(

vL
eL

)

, Y = −1

2
(83)

ucL , Y = −2

3
dcL , Y =

1

3
ecL , , Y = 1 . (84)

The first row consists of 4 iso-doublets and the second row of 7 iso-

singlets. The up and down quarks uL and dL are in a 3 of SU(3)

colour and their charge conjugates ucL, d
c
L are in a 3̄ of SU(3). In fact

the, because effective group is S(U(3) × U(2)) ≡ SU(3) × SU(2) ×



U(1)/Z3 × Z2, where Z3 and Z2 are the centres of SU(3) and SU(2)

respectively. This is because the electric charge assignments are such

that acting with Z3 × Z2 ≡ Z6 can always be compensated by a U(1)

rotation.

Now S(U(3)×U(2)) is a subgroup of SU(5) and is well known one may

fit all 15 left handed Weyl spinors in a 5 and a 10. However it is more

elegant to adjoin the charge conjugate of the right handed neutrino,

νcL to make up a complex 10 of Spin(10). In fact the multiplets may be

organized into multiplets of the Spin(6)×Spin(4) ≡ SU(4)× SU(2)×
SU(2) subgroup of Spin(10)

(

uL
dL

)

,

(

νL
eL

)

. (85)



(

ucL
dcL

)

,

(

νcL
ecL

)

. (86)

In this formalism we have left-right symmetry with the first row con-

sisting of 4 weak iso-doublets and the bottom row of 4 doublets of

some other, as yet unobserved SU(2). The quarks and leptons also

form two Spin(6) ≡ SU(4) quartets.



Colliding-Brane Cosmologies are now popular. Before collision each

brane has its own complex quantum mechanics. The brane collio-

sion produces particles (see e.g. Fermions on colliding branes. Gary

Gibbons (Cambridge U., DAMTP) , Kei-ichi Maeda (Cambridge U.,

DAMTP & Waseda U.) , Yu-ichi Takamizu (Waseda U.) . Oct

2006. 8pp. Published in Phys.Lett.B647:1-7,2007. e-Print: hep-

th/0610286)

There is here a potential clash of different complex structures.

{V1, J1} ⊕ {V2, J2} → {V3, J3} (87)

J3 = J1 ⊕ J2 ? (88)



If

J1 ⊕ J2 6= J3 (89)

one gets a non-trivial Bogoliubov transformations and hence particle

production

Our universe could have begun this way!



We have seen in this lecture that

• Time and its arrow are intimately linked with the complex nature

of quantum mechanics.

• It is not difficult to construct spacetimes for which no arrow of

time exists and on which which backgrounds only real quntum

mechanics is possble

• Only Riemannian mfds admitting a reflection map Θ allow the

recovery of standard quantum mechanics



• Even if one can define an arrow of time it may not be possible to

define an operator Θ which reverses it.



Why then do we have such a strong impression that time exists and

that it has an arrow? When and how did the complex numbers get

into quantum mechanics?

Like so many things in life: its all a matter of history. The universe

“started ”with very special initial conditions “when “neither time nor

quantum mechanics were present. Both are emergent phenomena.

Both are consequences of the special state we find ourselves in.

Constructing and understanding that state, and its alternatives is the

on-going challenge of Quantum Cosmology.


