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This lecture is based on three recent papers.

• General very special relativity is Finsler geometry. G.W. Gibbons

Joaquim Gomis, C.N. Pope Published in Phys.Rev.D76 :081701,2007.

e-Print: arXiv:0707.2174 [hep-th]

• Time-dependent multi-centre solutions from new metrics with

holonomy SIM(n-2) G.W. Gibbons, C.N. Pope e-Print: arXiv:0709.2440

[hep-th]

• Metrics With Vanishing Quantum Corrections, A.A. Coley G.W.

Gibbons, S. Hervik and C.N. Pope e-Print: arXiv:0803.2438 [hep-

th]



Reduced holonomy groups typically arise when the manifold admits a

tensor or spinor field which is invariant under parallel translation. For

Riemannian metrics this may be a spinor field as in Berger’s List of

the 1950’2.

• SU(k) ⊂ SO(2k) : Ricci flat Kähler

• Sp(k) ⊂ SO(4k) : Hyperkähler

• G2 ⊂ SO(7)

• Spin(7) ⊂ SO(8).



Bilinears in spinors ψ̄γµ1µ2...µpψ then give rise to covariantly constant

p-form fields However in the Riemannian case parallel transport can

never leave invariant a vctor field n, except in the trivial case when

the metric splits as the metric product with a one-dimensional factor.

Even less can it leave invariant a direction field, i.e. a vector field nν

up to scale so that nµ is a recurrent vector field

∇µ n
ν = Bµ n

ν ⇔ ∇X n = B(X), n (1)

for some recurrence one-form Bµ.

To see why, recall that ∇ preserves length whence nν∇µnν = 0, so if

Bµ 6= 0, then

nν n
ν = 0 , (2)

Thus nν must be a lightlike vector field.



If such a vector field exists, the holonomy must be contained in

Sim(n−2) = R ⋊E(n−2) the semi-direct product group of isometries

and dilatations of the (n− 2)-plane En−2. This may be familiar from

Wigner’s little group of a light-like vector which is E(n− 2).

In fact Sim(n − 2) is the maximal subgroup of the Lorentz group

SO(n− 1,1).

In the special case that Bµ = 0 the null vector n is covariantly constant

and we obtain a (if the Ricci tensor vanishes) a Brinkmann wave

known since 1923. The holonomy is then contained in E(n− 2) and

for gravitational waves in the translation subgroup Rn−2.

In that case there is a covariantly constant spinor and the solutions

are BPS, of which more later.



If n = 4 we can be more explicit since Spin(3,1) = SL(2, C) Elements

of Sim(2) are of the form
(

λ a

0 λ−1

)

. (3)

The action on the Weyl spinor is

ψ =

(

u

0

)

→ λ

(

u

0

)

= λψ (4)

and we need λ = 0 if ψ is to be covariantly constant. Four-vectors

correspond to Hermitean matrices



x =

(

t+ z x+ iy

x− iy t− z

)

(5)

and

ψψ† =

(

|u|2 0

0 0

)

(6)

and the null vector n = (1,0,0,1) is invariant in direction but scales

like |λ|2.



The eight dimensional subgroup ISim(2) = Sim(2) ⋉ R4 ⊂ ISO(3,1)

of the Poincaré group ISO(3,1) = E(3,1) i.e. Sim(2) with spacetime

translations added and dubbed

Very Special Relativity

is Cohen and Glashow’s proposal for the spacetime symmetry group

in the presence of a particular kind of

Lorentz violation without spurion fields,

that is with no vacuum expectation value for any vector or tensor

field.



One may study deformations of ISim(2) using Lie algebra cohomology

techniques.

Gomis and Pope and I found that, unlike the case of the Poincaré

group which deforms to one of the two De-Sitter groups, one cannot

deform ISim(2) to incorporate a cosmological constant.

However an interesting deformation DISimb(2) does exist, and this

leads naturally to Finsler Geometry

L(v) = (vµn
µ)b(

√

−ηστv
σvτ )(1−b) (7)

This is one motivation for studying metrics with Sim(n−2) holonomy.



By rescaling nν we can arrange that

∇µn
ν = κnνnµ . (8)

It follows that nµ is geodesic and expansion-free and both normal and

tangent (but not transverse !) to a null hypersurface = const , i.e. is

vorticity free . The metric then takes the form first written down by

A.G Walker (of Robertson Walker fame) in 1950

ds2 = 2du
[

dv+H(v, u, xi)du+Ai(u, x
k)dxi

]

+ gij(u, x
k)dxidxj, (9)

n =
∂

∂v
. (10)



Note that if H(v, u, xi) is independent of v then n = ∂
∂v is a covariantly

constant null vector and we are back to the case of a Brinkmann wave

studied in the 1920’s.



We now impose the Einstein condition Rµν = Λgµν.

This leads to

H(u, v, xi) = Λv2 + vH1(u, x
i) +H0(u, x

i) (11)

We now find that once we have a, possibly u-dependent, solution of

Rij = Λgij (12)

the remaining equations form a linear system in the sense that they

can be integrated successively using the inverses of linear operators!



In other words we need to solve

∇2H0 −
1

2
F ijFij − 2Ai∂iH1 −H1∇

iAi + 2ΛAiAi − 2∇iȦi

+
1

2
ġijġij + gijg̈ij +

1

2
gijġijH1 = 0 ,(13)

∇jFij + ∂iH1 − 2ΛAi + ∇jġij − ∂i(g
jkġjk) = 0 ,(14)

∇2H1 − 2Λ∇iAi + Λgijġij = 0 .(15)



If Λ = 0 and n = 4 we recover the metrics of Goldberg and Kerr of

1961. If Λ < 0 and n = 4 we find new metrics.

These generalise and correct metrics of Ghanam and Thompson. Set

Λ = −2

ds24 = 2dudv+
dx2 + dy2

2x2
− [2v2 +H(x, y)]du2 , (16)

where H(x, y) is an arbitrary harmonic on the upper half plane



If n = 5 our solutions include Kaluza-Klein electropoles with NUT

charges depdending on two arbitrary harmonic functions on E3.

ds24 = −H−1/2(dv+A)2 +H1/2dxidxi , (17)

with

∇ · A = 0 , ∇× A = ∇V , H = U + 1
2V

2 , (18)

∇2U = 0 , ∇2V = 0 . (19)



Performing a discrete electric-magnetic duality gives one metrics rep-

resenting Kaluza-Klein magnetic monopoles with NUT charges and

angular momentum.

Taking time dependent harmonic functions which allow boost sym-

metry, gives time dependent metrics in four dimensions representing

collisions of Klauza-Klein magnetic monopoles, which generalise some

recent colliding brane metrics.



A special case of our metrics are vaccum pp-waves. These have Λ = 0

and gij = δij. It has been known for some time that these have no

quantum corrections

C. G. Torre, Gravitational waves: Just plane symmetry’ Gen. Rel.

Grav. 38 (2006) 653 [arXiv:gr-qc/9907089].

G. T. Horowitz and A. R. Steif, Space-Time Singularities in String

Theory, Phys. Rev. Lett. 64 (1990) 260.

G. W. Gibbons, Quantized Fields Propagating In Plane Wave Space-

Times, Commun. Math. Phys. 45 (1975) 191.

S Deser, Plane waves do not polarise the vacuum J. Phys. A8 (1975)

1972-1974



So what about metrics with Sim(n− 2) holonomy?



The corrected Einstein equations are assumed to take the form

Rµν −
1

2
gµν − Λgµν = Tµν (20)

where Tµν is conserved and constructed from the the metric and

Riemann tensor and its covariant derivatives.

We ask whether a classical metric gµν (possibly rescaled by a constant

factor h) solves the full quantum corrected equations e.o.m. This

requires that

Tµν(hgρσ) = F(h)gµν (21)

for some function F(h) and that h may be chosen to satisfy

Λ(h− 1) = 2F(h) . (22)



A sufficient condition is that it hold for any symmetric conserved

tensor constructed from the classical metric gµν and its derivatives.

We call this condition Weak Universality because, subject to there

being real solutions of the algebraic equation, we can simply rescale

the metric to get a solution of any set of corrected field equations.



An example of a weakly universal metric is a maximally symmetric

space, such as de Sitter spacetime, for which

Rµνστ = c(gµσgντ − gνσgµτ) , (23)

where c is necessarily a constant, and hence

Rµνστ ;λ1;...;λk
= 0 (24)

for arbitrary integers k. It follows that c must satisfy

Tµν = f(c)gµν , (25)

for some function f(c), and if a value of c can be found satisfying

f(c) +
(n− 1)(n− 2)

4
c = 0 , (26)

we have a solution.



For pp-waves waves the Ricci tensor Rµν vanishes, and hence the

classical value of Λ vanishes. Horowitz and Steif showed, when evalu-

ated on a pp- wave background, all other conserved tensors Tµν(gρσ)

(except of course the metric itself) will vanish. Thus, in distinction to

the case of maximally symmetric spaces such as de Sitter spacetime,

no rescaling of the metric is required when passing from the classical

to the quantum-corrected metric.

Such metrics we call Strongly Universal



To make the notion of strong universality precise we need to consider,

for a general spacetime, the vector space (over real constants) of all

symmetric conserved second rank tensors constructed from the metric

and its derivatives, modulo constant multiples of the metric itself.

If, when restricted to a classical metric gµν such as a pp wave, all

such tensors vanish, then we say that the classical metric is Strongly

Universal.



Bleecker has defined Critical Metrics,if they solve the field equation

derived from any diffeomorphism invariant action functional, which in

our case means
1

4

∫

√

|g| (R− 2Λ) + I(g) (27)

such that

Tµν = −
2
√

|g|

δI(g)

δgµν
. (28)

where
∫

√

|g|I(g) is an effective action. All of our heirarchy of condi-

tions are stronger than the mere vanishing of I(g) on shell. cf correc-

tions to Calabi-Yau’s which take the metric outside the Calabi-Yau

class

Note however that universal metrics are necessarily critical.



We have examined the new metrics and find that in four dimensions

• All metrics with Sim(2) holonomy are weakly universal and hence

critical

• Goldberg Kerr ( Ricci flat) metrics with Sim(2) holonomy are

strongly universal

Note that these result are not a consequence of supersymmetry.


