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Introduction and Motivations

AdS/CFT:
any state/physical process in the asymptotically
AdS5 × S5 geometry ↔ a (perturbative) deformation of
N = 4, d = 4 SYM.

A class of such deformations are solutions to
N = 2, d = 5 U(1)3 gauged supergravity.

These solutions are generically black hole (BH)
solutions, among them the static (non-rotating) black
holes are specified with four parameters, three charges
and one mass parameter.
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Introduction, Cont’d

All of the solutions of 5d U(1)3 gauged SUGRA can be
uplifted as rotating black three-brane solutions of 10d

IIB SUGRA.

In 10d these solutions are only specified by metric and
the self-dual five-form and constant dilaton.

As solutions of IIB these solutions they can be 1/2, 1/4,
1/8 BPS or non-SUSY, respectively preserving 16, 8, 4
and zero SUSY.

The 1/2 BPS solutions correspond to smeared
(delocalized) spherical D3-branes, the giant gravitons.
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Introduction, Cont’d

The 1/2 BPS giant gravitons are three-branes wrapping
a three sphere inside the S5 part of the background
AdS5 × S5 geometry while moving on a geodesic along
an S1 ∈ S5 transverse to the worldvolume S3 and
smeared (delocalized) over the remaining direction.

The 1/2 BPS solutions are specified by a single
parameter, the value of the charge.

The 1/2 BPS solutions in our class can be understood
as a collection of smooth LLM geometries; they
preserve the same supercharges.
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Introduction, Cont’d

In a similar manner the two-charge 1/4 BPS and
three-charge 1/8 BPS solutions can be understood as
geometries corresponding to intersecting giant
gravitons.

The non-supersymmetric cases then correspond to
turning on specific open string excitations on the
supersymmetric (intersecting) giant gravitons.
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Introduction, Cont’d

In the dual description in the N = 4 SYM on R× S3, the
1/2 BPS geometries are described by chiral primary
operators in the subdeterminant basis.

In a similar fashion less BPS solutions correspond to
operators involving two or three complex scalars in the
N = 4 vector multiplet.

The non-supersymmetric configurations when the
solution is near-BPS (i.e. when ∆−J

J
≪ 1, where ∆ is

the scaling dimension and J is the R-charge of the
corresponding operators) then correspond to insertion
of “impurities” in the subdeterminant operators.
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The Main Question

Here I’ll focus on the two-charge 5d black hole
solutions. Noting that for these solutions we have
a simple interpretation in terms of intersecting
giants we pose the following question:

Is there a limit in which the (low energy effective)
gauge theory residing on the intersecting

spherical brane system decouples from the bulk?

As we will argue, by gathering supportive
evidence from various sides, that the answer to

this question is positive.
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Plan of the Talk

Review of the 5d gauged SUGRA charge
black holes.

Appearance of BTZ ×S3 factors in the
near-horizon limit of the corresponding
two-charge near-extremal 10d IIB solutions,
the near-BPS and near-extremal, but far from
BPS cases.

Perturbative addition of the third charge,
rotating BTZ×S3 geometries.

The BTZ×S3 geometries as solutions to 6d
(gauged supersymmetric) gravities.
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Plan of the Talk, Cont’d

The Dual Field Theory Descriptions:

The N = 4, D = 4 SYM descriptions,

Identifying the decoupled sectors of the
near-BPS and near-extremal cases.

The D = 2 CFT descriptions,
Identification of L0, L̄0 and the central
charge of the two 2d CFT’s
corresponding to near-BPS and
near-extremal cases.
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Review 5d Charged Black Holes

The 10d metric:

ds2
10 =

√
∆ ds2

5 +
1√
∆
dΣ2

5

where

ds2
5 = − f

H1H2H3

dt2 +
dr2

f
+ r2 dΩ2

3

dΣ2
5 =

3
∑

i=1

L2Hi

(

dµ2
i + µ2

i [dφi + ai dt]
2) .

Note that the 5d Black Hole Metric is

ds2
5d BH = (H1H2H3)

1/3ds2
5

=
−f

(H1H2H3)2/3
dt2 +

(H1H2H3)
1/3

f
dr2 + r2(H1H2H3)

1/3dΩ2
3
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Review 5d Charged Black Holes, Cont’d

dΣ2
5 is the metric for a deformed S5 and

µ1 = cos θ1, µ2 = sin θ1 cos θ2, µ3 = sin θ1 sin θ2.

Hi, f , ∆ and ai:

Hi = 1 +
qi
r2
, f = 1 − µ

r2
+
r2

L2
H1H2H3,

ai =
q̃i
qi

1

L

(

1

Hi

− 1

)

, ∆ = H1H2H3

[

µ2
1

H1

+
µ2

2

H2

+
µ2

3

H3

]

,

As 10d solution, we also have
F5 = F5 + ∗F5, F5 = dB4 where,

B4 = −r
4

L
∆ dt ∧ d3Ω − L

3
∑

i=1

q̃i µ
2
i

(

Ldφi −
qi
q̃i
dt

)

∧ d3Ω,
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Review 5d Charged Black Holes, Cont’d

The ADM mass M and physical charges q̃i of the
corresponding 5d black holes are

q̃i =
√

qi(µ+ qi)

M =
π

4G
(5)
N

(

3

2
µ+ q1 + q2 + q3 +

3L2

8

)

.

The last term in M is the Casimir energy.

G
(5)
N is the five-dimensional Newton constant and is

related to the ten-dimensional one as

G
(5)
N = G

(10)
N

1

π3L5
.
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10d rotating brane charges

As 10d IIB solutions, the black holes correspond to
(smeared or delocalized) stack of rotating intersecting
spherical three-brane giant gravitons, the angular
momentum of each stack of branes is

Ji =
πL

4G
(5)
N

q̃i .

The number of branes in each stack is then given by

Ni =
2Ji
N

=
π4

2N
· L8

G
(10)
N

· q̃i
L2

= N · q̃i
L2

note that, being a D3-brane, each giant is carrying one
unit of the RR charge in units of three-brane tension
T3 = 1/(8π3l4sgs).
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Review 5d Charged Black Holes, Cont’d

µ is a parameter measuring deviation from being BPS.

For µ = 0 case, q̃i = qi and ADM mass up to the
Casimir energy and π/4G(5)

N factor is equal to the sum
of the physical charges; therefore the solution is BPS.

The BPS configuration with n number of non-vanishing
qi’s (n = 1, 2, 3) generically preserve 1/2n of the 32
supercharges of the AdS5 × S5 background.

The three-charge case with q1 = q2 = q3, µ = 0 is an
exception, it is 1/4 BPS and corresponds to a 5d

extremal AdS-Reissner-Nordstrom black hole.
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Review 5d Charged Black Holes, Cont’d

All supersymmetric BPS solutions have naked
singularity. In the 1/2 BPS case it is a light-like, naked
singularity, while for 1/4 and 1/8 BPS states it is
time-like.

Black holes with regular horizons can only occur when
µ 6= 0 and hence are all non-supersymmetric.

For the µ 6= 0 cases depending on the number of
non-zero charges, which can be one, two or three, we
have different singularity and horizon structures:
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The causal structure of the 5d black holes

One-charge black hole:

At µ = 0 we have a null nakedly singular solution
which preserves 16 supercharges.

As soon as we turn on µ the solution develops a
horizon with a space-like singularity sitting behind
the horizon.

As a 10d IIB geometry, the one charge case with
µ = 0 corresponds to 1/2 BPS three sphere giant
configuration wrapping an S3 inside the S5 while
moving with the angular momentum J ∝ q.
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The causal structure of the 5d black holes, Cont’d

One-charge black hole, Cont’d:

This gravity configuration describes a giant
smeared over (delocalized in) two directions inside
S5 transverse to the worldvolume of the brane.

Turning on µ then corresponds to adding open
string excitations to the giant graviton while keeping
the spherical shape of the giant.
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The causal structure of the 5d black holes

Two-charge black hole:

For 0 ≤ µ < µc we have a time-like but naked
singularity where

µc = q2q3/L
2.

At µ = µc we have an extremal, but non-BPS black
hole solution with a zero size horizon area (horizon
is at r = 0) and r = 0 in this case is a null naked
singularity.

As we increase µ from µc the solution develops a
finite size horizon and the space-like singularity
hides behind the horizon.
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The causal structure of the 5d black holes, Cont’d

Two-charge black hole, Cont’d:

As a 10d solution, the two-charge case at µ = 0

corresponds to two sets of delocalized giant
gravitons wrapping two S3’s inside S5 while rotating
on two different S1 directions.

The worldvolume of the giants overlap on a circle.

If one of the charges is much smaller than the other
one a better (perturbative) description of the system
is in terms of a rotating single giant where as a
result of the rotation the giant is deformed from the
spherical shape.
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The causal structure of the 5d black holes, Cont’d

Two-charge black hole, Cont’d:

For the extremal case at µ = µc we are dealing with
intersecting giants which are generically far from
being BPS and effectively we are dealing with a
stack of giants with worldvolume R× S1 × Σ2,
where Σ2 is a compact 2d surface inside the S5.

Turning on µ, especially when µ is small enough,
corresponds to adding open string excitations while
keeping the U(1) symmetry of the giant intersection.

Out of extremality, measured by µ− µc, then
corresponds to excitations/fluctuations above this
stack of giants.
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The causal structure of the 5d black holes

Three-charge black hole:

For 0 ≤ µ < µc we have a time-like naked
singularity, the singularity is, however, behind r = 0

(one can extend the geometry past r = 0).

At some critical µ, µ = µc, we have an extremal
solution with a finite size horizon (function f has
double zeros at some rh 6= 0).

For µ > µc the geometry has two inner and outer
horizons.
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The causal structure of the 5d black holes, Cont’d

Three-charge black hole, Cont’d:

From the 10d viewpoint the three-charge case
corresponds to a set of three smeared giant
gravitons intersecting only on the time direction and
the giants in each set moving on either of the three
S1 directions in the S5.

If one of the charges is much smaller than the other
two a better description of the system is in terms of
two giants intersecting on an S1, but the third
charge appears as a rotation on the S1.
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The near-horizon limit of the two-charge extremal solutions

For the two charge case, with vanishing q1:

f =
r2

L2
+ f0 −

µ− µc
r2

,

f0 = 1 +
q2 + q3
L2

, µc =
q2q3
L2

.

The horizon of the 5d black hole is where grr vanishes,
or at the roots of r4/3f .

For µ = µc we have a double zero at r = 0 and hence
the solution is extremal. For µ < µc f is positive
definite and for µ > µc f has a single positive root.

Radius of the horizon S3 in the 5d metric is (H2H3)
1

3 r2,
hence the extremal case has vanishing horizon area.
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The near-horizon limit of the two-charge extremal solutions, Cont’d

One can distinguish two extremal black holes (which
have double horizons at r = 0)

The BPS case, with µ = 0 and

The extremal but non-BPS case with µ = µc.

Here we study the near-horizon near-BPS as well as
near-horizon near-extremal but non-BPS limits of the
two-charge 10d solutions separately and argue that
these lead to decoupled geometries involving
AdS3 × S3 factors.
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The near-horizon near-BPS limit

µ1 ∼ 1 case
µ− µc = ǫ2M, qi = ǫq̂i

τ =
t

L
, r =

L

(q̂2q̂3)1/2
ǫρ, µi = ǫ1/2xi, i = 2, 3,

while ǫ→ 0 and keeping q̂i, M ; τ, ρ, xi, φi, L fixed. In
this limit µ1 = 1 + O(ǫ2) or θ1 ∼ ǫ1/2, θ2 =fixed.

µ1 ∼ µ0
1 6= 1 case

µ− µc = ǫ2M, qi = ǫq̂i, ψi =
1

ǫ1/2
(φi − τ),

r =
L

(q̂2q̂3)1/2
ǫρ, θi = θ0

i − ǫ1/2θ̂i, 0 ≤ θ0
i ≤ π/2, i = 2, 3

while ǫ→ 0 and keeping ρ̃, q̂i, M, θ0
i , xi, L fixed. – p. 25/119



The near-horizon near-BPS limit, Cont’d

Taking the above limits we arrive at

ds2 = ǫ

[

R2
S

(

ds2
BTZ + dΩ2

3

)

+
L2

R2
S

ds2
C4

]

where
ds2

BTZ = −(ρ2 − γ2)dτ 2 +
dρ2

ρ2 − γ2
+ ρ2dφ2

1

with
γ2 =

µ− µc
µc

=
M

µ̂c
, µ̂c = q̂2q̂3/L

2

and the radius of the S3 being

R2
S =

√

q̂2q̂3 for µ ≃ 1

R2
S =

√

q̂2q̂3 µ
0
1 for µ ≃ µ0

1
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The near-horizon near-BPS limit, Cont’d

In either case C4 is (locally) describing a T 4 and hence
the solutions are AdS3 × S3 × T 4. ds2

C4
have different

forms for the two cases:

µ1 ∼ 1 case

ds2
C4

=
∑

i=2,3

q̂i(dx
2
i + x2

i dψ
2
i )

where ψi = φi − τ .

µ1 ∼ µ0
1 6= 1 case

ds2
C4

=
∑

i=2,3

q̂i(dx
2
i + (µ0

i )
2dψ2

i )

where µ0
2 = sin θ0

1 cos θ0
2, µ

0
3 = sin θ0

1 sin θ0
2,

dx2 = cos θ0
1 cos θ0

2dθ̂1, dx3 = cos θ0
1 sin θ0

2dθ̂1 + cos θ0
2 sin θ0

1dθ̂2.
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The near-horizon near-BPS limit, Cont’d

For the metric

ds2
BTZ = −(ρ2 − γ2)dτ 2 +

dρ2

ρ2 − γ2
+ ρ2dφ2

1

γ2 = −1 we have a global AdS3 space,

for −1 < γ2 < 0 it is a conical space,

for γ2 = 0 we have a massless BTZ and

for γ2 > 0 we are dealing with a static BTZ black hole
of mass γ2.

These geometries are, upon two T-dualities, related to
standard the D1-D5 system and the corresponding
arguments are applicable to this case.
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The Near-horizon limit, the near-extremal, but non-BPS case

Here we keep µc fixed, with the scalings

r =

√

µc
f0

ǫρ, t =
L√
f0

τ

ǫ
, µ− µc = ǫ2M

φ1 =
ϕ

ǫ
, φi = ψi +

q̃i
qiL

τ̃

ǫ
, i = 2, 3

and ǫ→ 0 while ρ, τ, ϕ, ψi, M, qi, L are kept fixed.

In this limit qi/L2 and hence f0, µc/L2 are fixed.

In this limit

f = f0(1 − M

µc ρ2
), ∆ = µ2

1

L4f 2
0

q2q3

1

ρ4
· 1

ǫ4
, Hi =

L2f0

q2q3

qi
ρ2

· 1

ǫ2
.
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The Near-horizon limit, the near-extremal, but non-BPS case, Cont’d

Taking the limit we obtain

ds2
10 = µ1 (R2

AdS3
ds2

3 +R2
S dΩ

2
3 ) +

1

µ1

ds2
M4

where

ds2
3 = −(ρ2 − ρ2

0)dτ
2 +

dρ2

ρ2 − ρ2
0

+ ρ2dϕ2,

Note that ϕ ∈ [0, 2πǫ].

dΩ2
3 is the metric for a three-sphere of unit radius and

ds2
M4

=
L2

R2
S

[

q2 (dµ2
2 + µ2

2 dψ
2
2) + q3 (dµ2

3 + µ2
3 dψ

2
3)
]

.

In the above

R2
S ≡ √

q2q3 =
√

L2µc, R2
AdS3

=
R2
S

f0

, ρ2
0 =

M

µc
.
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The Near-horizon limit, the near-extremal, but non-BPS case, Cont’d

The ϕ angle in the BTZ is coming from the part which
was in the S5 part of the original AdS5 × S5,

the rest of the six-dimensional part of metric comes
from the original AdS5 geometry;

the M4 is coming from the S5 piece.

Although ϕ ∈ [0, 2πǫ], the causal boundary of the
near-horizon decoupled geometry is still R× S1,
because at large, but fixed ρ the AdS3 part of the
metric takes the form

ds2
3 ∼ R2

AdS3
ǫ2ρ2(−dt2 + dφ2

1) ,

t is the (global) time direction in the original AdS5.
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The Near-horizon limit, the near-extremal, but non-BPS case, Cont’d

As the 10d IIB solution, we have a constant dilaton field
with the four-form

B4 = −L2
(

q̃2 µ
2
2 dψ2 + q̃3 µ

2
3 dψ3

)

∧ d3Ω3,

where in the near-horizon, near-extremal limit

q̃2
2 = q2

2(1 +
q3
L2

), q̃2
3 = q2

3(1 +
q2
L2

).

Note that even when M = 0, that is for µ = µc the
near-horizon geometry is not preserving any SUSY.
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Addition of the third charge

We discussed the near-horizon limits of the two-charge
black holes, which lead to BTZ×S3 geometries.

Here we are going to turn on the third charge q1.

Consider generic values for q1. That is, take all three
charges to be of the same order, for some critical value
for µ, µc, we have an extremal (but non-BPS) black
hole. In the near-horizon limit this extremal but
non-BPS black hole goes over to AdS2 × S3 geometry.

What we are going to consider here is the non-generic
case, when q1 ≪ q2, q3. That is perturbative addition of
the third charge.
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Perturbative Addition of the third charge, the near-BPS case

Let us turn on the third charge q1 and scale it as

q1 = ǫ2q̂1

while keeping q̂1 fixed, and scale the rest of parameters
the same as before.

After shifting the ρ coordinate as

ρ2 → ρ2 − q̂1q̂2q̂3
L2

After the limit the metric takes the form

ds2 = ǫ

[

R2
S

(

ds2
rot.BTZ + dΩ2

3

)

+
L2

R2
S

ds2
C4

]
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Perturbative Addition of the third charge, Cont’d

where R4
S = q̂2q̂3 and ds2

rot.BTZ is the metric for a
rotating BTZ black hole in the AdS3 background of unit
radius, with mass and angular momentum

MBTZ =
M + 2q̂1

µ̂c
=
µ̂+ 2q̂1
µ̂c

− 1, JBTZ = 2

√

q̂1(µ̂+ q̂1)

µ̂2
c

.

Again there are two µ1 ∼ µ0
1 6= 1 and µ1 ≃ 1 cases. As

in the previous case, for µ1 ≃ µ0
1, R

4
S = q̂2q̂3(µ

0
1)

2.

The physical angular momentum of the original 10d

black-brane (or electric charge of the 5d black hole)
corresponding to q1 charge, J1, is related to JBTZ as

J1 =
N2ǫ2

4

µ̂c
L2
JBTZ .

– p. 35/119



De tour to rotating BTZ black holes

All stationary solutions to

Rµν = − 2

R2
gµν ,

which are locally AdS3 space-times, are of the form

ds2 = R2

[

−F (r)

r2
dt2 +

r2

F (r)
dr2 + r2

(

dφ+
a2

+ − a2
−

r2
dt

)2
]

,

where φ ∈ [0, 2π] and

F (r) = r4 + 2(a2
+ + a2

−)r2 + (a2
+ − a2

−)2.

It is useful to introduce two other parameters

a2
+ = −M + J

4
, a2

− = −M − J

4
,

We can always assume a2
+ ≤ a2

−, i.e. J ≥ 0 and J ∈ Z.
We are then left with three possibilities. – p. 36/119



De tour to rotating BTZ black holes

Conical Singularity: a2
+, a

2
− > 0, or M < −J.

a+ = a− = 1/2 corresponds to a global AdS3.

For the generic case a+ = a− = γ/2, corresponding
to J = 0, the conic space has the same line element
as a global AdS3 but now φ ∈ [0, 2πγ].

In string theory for rational values of γ and only
when γ < 1 the conical singularity can be resolved.

For the general a+ 6= a− case, the conical space
can be resolved only when a2

− is a rational number
and 0 ≤ a2

− ≤ 1/4. In terms of M,J that is

−1 ≤M − J ≡ −γ2 < −2J , γ ∈ Q, J ∈ Z.
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De tour to rotating BTZ black holes

a2
+ < 0, a2

− > 0, corresponding to −J < M < J . The
geometry is ill-defined and not sensible in string theory.

Rotating BTZ Black hole: a2
+, a

2
− ≤ 0, or M ≥ J ≥ 0

This rotating BTZ black hole of mass M and
angular momentum J has temperature

TBTZ =

√
M2 − J2

2πρh
, ρh =

1

2

(√
M + J +

√
M − J

)

.

Static BTZ: Special case of a− = a+ (i.e. J = 0).

extremal rotating BTZ: Special case of a− = 0

(M = J), which has zero temperature.

Massless BTZ black hole: Very special case of
a− = a+ = 0 (M = J = 0). – p. 38/119



De tour to rotating BTZ black holes

To summarize the above, the cases with integer-valued
J and when M − J ≥ −1 are those which are sensible
geometries in string theory. For the −1 < M − J < 0

resolution of conical singularity in string theory also
demands

√
J −M to be a rational number.

Among the above cases M ≤ −J for any M,J and
M = J, M ≥ 0 can be supersymmetrized.

For the M ≤ −J case, the conic spaces, the
solution becomes supersymmetric in a 3d gauged
supergravity which has at least two U(1) gauge
fields.
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De tour to rotating BTZ black holes

Supersymmetry....

To maintain supersymmetry we should turn on the
Wilson lines of both of the U(1) (flat-connection)
gauge fields.

The two gauge fields which make the above metric
supersymmetric are

A(1) = a+(dt+ dφ), A(2) = a−(dt− dφ) ,

A(1), A(2) are the flat connections of the two U(1)’s.

For M = J, M ≥ 0, the extremal rotating BTZ black
hole, no gauge fields are needed to keep
supersymmetry.
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De tour to rotating BTZ black holes

Among the supersymmetric configurations

the global AdS3, that is when a+ = a− = 1/2, keeps
the maximum supersymmetry the 3d theory has,
with anti-periodic boundary conditions for fermions
on the φ direction.

The massless BTZ, that is when a+ = a− = 0, as
well as the extremal BTZ, corresponding to
a2

+ = a2
− > 0, keep half of the maximal

supersymmetry but with periodic boundary
conditions for fermions on the φ direction.

The conical spaces also keep half of maximal
supersymmetry.

– p. 41/119



Perturbative Addition of the third charge, Cont’d

This metric is a rotating black hole only when
MBTZ ≥ JBTZ (extremality bound) and also φ ∈ [0, 2π].

In terms of our parameters the extremality bound is

M2 ≥ 4q̂1q̂2q̂3/L
2.

Note that M can be positive or negative.

The (Hawking) temperature of our rotating BTZ is

TBTZ =

√

M2 − 4q̂1q̂2q̂3/L4

π

√

2µ̂c

(

M + 2q̂1 +
√

M2 − 4q̂1q̂2q̂3/L4
)

For the special case of M2 = 4q̂1q̂2q̂3/L
2 we have an

extremal rotating BTZ black hole which has TBTZ = 0.
– p. 42/119



Perturbative Addition of the third charge, Cont’d

When MBTZ ≤ −JBTZ ≤ 0, we have a sensible conical
singularity only if

M ≤ −2 Max(q̂1,
√

q̂1q̂2q̂3/L2),

while M + 2q̂1 ≤ 0 and if γ, γ2 ≡ JBTZ −MBTZ , is a
rational number.

In sum, to have a sensible string theory description we
should have

MBTZ − JBTZ + 1 ≥ 0,

and if 0 ≤ JBTZ −MBTZ ≡ γ2 ≤ 1, γ should be rational.

– p. 43/119



Perturbative Addition of the third charge, the near-extremal case

We may turn on the third charge q1 “perturbatively”,
with the scaling

q1 = ǫ4q̂1 .
After taking the above limit the metric takes the form

ds2 = µ1

[

R2
AdS ds

2
rot. BTZ +R2

S dΩ
2
3

]

+
1

µ1

dM2
4

where R4
S = q2q3, R

2
AdS = R2

S/f0 and

ds2
rot. BTZ = −N(ρ)dτ 2 +

dρ2

N(ρ)
+ ρ2(dϕ−Nϕdτ)

2

in which

N(ρ) = ρ2 −MBTZ +
J2
BTZ

4ρ2
, Nϕ =

JBTZ
2ρ2

,
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Perturbative Addition of the third charge, the near-extremal case, Cont’

with

MBTZ =
M

µc
, JBTZ = 2

√

f0q̂1
µc

, µc = q2q3/L
2, f0 = 1 +

q2 + q3
L2

.

Note as in the two-charge case, in the above rotating
BTZ the angular coordinate ϕ ∈ [0, 2πǫ].

The above geometry has the interpretation of rotating
BTZ only when the extremality bound is satisfied

M2 ≥ 4µcf0q̂1.

The horizon radius, where N(ρ) vanishes, is

ρh =
1

2

(

√

MBTZ + JBTZ +
√

MBTZ − JBTZ

)

.
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The Near-horizon Geometries as solutions to 6d SUGRAs

Questions:

Are the AdS3 × S3 geometries solutions to some
six-dimensional (super) gravities?

Is there a consistent reduction of 10 IIB theory
leading to these possible 6d (supergravity) theories?

If yes, Do these AdS3 × S3 near-horizon limit of a 6d

black string solution?
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The Near-horizon Geometries as solutions to 6d SUGRAs, Cont’d

Answers:

As we will see the answer to first question is
affirmative and we present the corresponding 6d

gravity theories.

We also give the consistent reduction relating these
6d theories to the 10d IIB.

As for the last question, for the near-BPS case the
answer is affirmative, but for the near-extremal it is
yet under construction.
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The 6d SUGRA corresponding to the near-BPS geometry

It is readily seen that the AdS3 × S3 coming as
near-horizon limit of the 10d near-BPS solution, which
has equal AdS3 and S3 radii is a solution to

S =
1

16πG
(6)
N

∫

d6x
√

−g(6)

[

R(6) − (∂Φ)2 − 1

3
e2ΦFµνρF

µνρ

]

,

The three-form Fµνρ = (dB2)µνρ. The two-form is not
self-dual.

The above action is made into a consistent 6d

N = (1, 1) SUGRA if besides the metric, two-form B2

and the scalar Φ we also add two U(1) gauge fields.
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The 6d SUGRA corresponding to the near-BPS geometry, Cont’d

The two U(1) fields are not gauged, i.e. it is not a
gauged SUGRA.

The action for these gauge fields are

Sgauge =

∫

e2Φ(F 1
µν)

2 + e−2Φ(F 2
µν)

2.

It is evident that the above 6d theory can be obtained
from the reduction of 10d IIB theory on T 4, or C4.

The AdS3 × S3 is a solution to this 6d theory with
vanishing gauge fields, constant Φ and q2 units of
electric and q3 units of magnetic three-form flux over
the S3.
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The 6d SUGRA corresponding to the near-BPS geometry, Cont’d

The AdS3 × S3 also appears in the near-horizon over
near-BPS black string, which is a marginal bound state
of q2 electric and q3 magnetic strings.

This 6d strings, both of the electrically and
magnetically charged ones, are 10d three-brane giants
wrapping two different two-cycles on C4.

The tension of the 6d string, the electric or magnetic
ones both, is

T (6)
s |Near BPS = πǫL2 · T3 =

Nǫ

2πL2
.
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The 6d SUGRA corresponding to the near-BPS geometry, Cont’d

The 6d Newton constant is then

G
(6)
N =

G
(10)
N

V olC4

, V olC4
=







(2π)2L4µ0
2µ

0
3 ǫ

2 µ1 ∼ µ0
1

(2π)2L4 ǫ2 µ1 ∼ 1

Recalling that

G
(10)
N = 8π6g2

s l
8
s , L4 = 4πgsNl

4
s

G
(6)
N =

π2

8
· L4

N2ǫ2
1

µ0
2µ

0
3

.

Note that to obtain the above for the µ1 ∼ µ0
1, we have

scaled the 6d metric by a factor of ǫµ0
1 so that,

R2
S =

√
q̂2q̂3 for both the µ0

1 = 1, and µ0
1 6= 1 cases .

– p. 51/119



The 6d SUGRA corresponding to the near-extremal geometry

One can check that that the AdS3 × S3 coming as
near-horizon limit of the 10d near-extremal solution,
which has unequal AdS3 and S3 radii is a solution to

S =
1

16πG
(6)
N

∫

d6x
√

−g(6)

[

R(6) − (∂Φ)2+
8

L2
cosh Φ−1

3
e2Φ(F3)

2
]

The three-form F3 = dB2. The two-form is not self-dual.

Difference of this action with the previous one is in the
potential term for scalar Φ.

– p. 52/119



The 6d SUGRA corresponding to the near-extremal geometry, Cont’d

The AdS3 × S3 is a solution to this 6d theory constant Φ

and q̃2 units of electric and q̃3 units of magnetic
three-form flux over the S3.

The value of constant Φ is completely determined in
terms of the charges q̃2, q̃3.

The above 6d action can be obtained from consistent
reduction of IIB theory with the metric reduction ansatz

ds2
10 =µ1 g

(6)
µν dx

µdxν+
1

µ1

ds2
M4

where

ds2
M4

=
L2

R2
S

[

eΦ(dµ2
2 + µ2

2dψ
2
2) + e−Φ(dµ2

3 + µ2
3dψ

2
3)
]

.
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The 6d SUGRA corresponding to the near-extremal geometry, Cont’d

The two-form B2 is coming from the reduction of the
self-dual five-form:

F5 =
1

3!
F3µνρ dµ

2
2 ∧ dχ2 ∧ dxµ ∧ dxν ∧ dxρ

+
1

3!
e2Φ(∗F3)µνρ dµ

2
3 ∧ dχ3 ∧ dxµ ∧ dxν ∧ dxρ,

The five-form equation of motion, dF5 = 0 implies the
equations of motion for the three-form:

dF3 = 0, d (e2Φ ∗ F3) = 0.

The 6d Newton constant is then

G
(6)
N =

G(10)

π2

2
L4

=
π2L4

N2
.
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The 6d SUGRA corresponding to the near-extremal geometry, Cont’d

Unlike the ungauged 6d SUGRA, electric and magnetic
string solutions to this 6d gravity are not mutually BPS.

The electrically and magnetically charged 6d strings
are both three-brane giants which are wrapping
different two-cycles on M4.

The tension of the 6d strings are

T (6)
s = T3(πL

2) =
N

2πL2
=

1

2

√

G
(6)
N

.

These strings form a (p,q)-string type bound states.
The mass of the bound state is the square root of the
sum of the squares of mass of individual electric or
magnetic strings. – p. 55/119



The Black Hole entropy Analyses

To argue that our near-horizon limits are indeed decoupling
limits we first compute the Bekenstein-Hawking entropy of
the original 5d black holes and compare it with the entropy

of the 3d (or 6d) black holes.

As we will show these entropies match for both of the
near-BPS and near-extremal cases. This matching is a

strong evidence in support of the fact that in our
decoupling limits we have not lost any degrees of freedom.
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The Black Hole entropy, the 5d Analysis

The 5d Bekenstein-Hawking entropy is

SBH =
A

(5)
h

4G
(5)
N

.

where
A

(5)
h = 2π2r3

h(H1H2H3)
1/2|r=rh .

Recalling that

G
(10)
N = 8π6g2

s l
8
s , G

(5)
N =

G
(10)
N

π3L5
, L4 = 4πgsNl

4
s ,

we obtain

SBH =
1

2π
N2 · A

(5)
h

L3
.
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The 5d black hole entropy analysis, the near-BPS case

In the near-BPS limit the horizon is located at

r2
h = µ− µc

and hence

SNear BPSBH = πγ
µ̂c
L2

N2ǫ2 ,

where
γ2 =

µ− µc
µc

, µ̂c = µc/ǫ
2

Once the third charge is also added perturbatively, the
above is replaced with

SNear BPSBH = π
µ̂c
L2

ρh N
2ǫ2 ,

where

ρ2
h =

1

2µ̂c

(

M + 2q̂1 +
√

M2 − 4q̂1q̂2q̂3/L4
)

.
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The 5d black hole entropy analysis, the near-BPS case

The validity of classical gravity analysis demands that

All curvature components should remain small in
string units ls and

the entropy, should be large:

SBH ≫ 1

All curvature components scale as 1/ǫ (in units of L−2).

The large entropy condition implies that together with
ǫ→ 0, N → ∞, e.g. as N ∼ ǫ−α, α ≥ 2.

This consideration is not strong enough to fix α.
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The 5d black hole entropy analysis, the near-BPS case

Noting the form of metric, that it has a factor of ǫ in
front and that one expects the string scale to be the
shortest physical length leads to

ǫ ∼ l2s ⇒ N ∼ ǫ−2 .

Once the above scaling of ǫ and N is considered,

SBH ∼ N ∼ ǫ−2 → ∞.

In sum, our complete near-horizon, near-BPS limit is
defined as an α′ = l2s ∼ ǫ→ 0 limit together with scaling
q2, q3 ∼ ǫ; q1, µ ∼ ǫ2, while keeping L4 ∼ Nl4s fixed.
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The 5d black hole entropy analysis, the near-extremal case

In the near-extremal limit to order ǫ, we have

r2
h =

µ− µc
f0

+ O(ǫ4).

Therefore

SNear ExtremalBH = π
µc
L2

· ρ0√
f0

N2ǫ.

With the perturbative addition of the third charge

SBH = πρh
1√
f0

µc
L2

N2ǫ ,

where

ρh =
1

2

(

√

MBTZ + JBTZ +
√

MBTZ − JBTZ
)

MBTZ=
M

µc
, JBTZ = 2

√

f0q̂1
µc
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The 5d black hole entropy analysis, the near-extremal case

To ensure the validity of the classical gravity analysis,
one should also send N → ∞ while keeping ρ0 and
µc/L

2 finite. This is done if we scale N ∼ ǫ−β, β ≥ 1
2

.

The validity considerations does not fix β. As we will
show, however, β = 1 is giving the appropriate choice,

N ∼ ǫ−1 → ∞ .

In sum, we keep L, gs, qi/L2 and ρ0 finite while taking

l4s ∼ N−1 ∼ ǫ→ 0.

In this case, as in the near-BPS case,

SBH ∼ N → ∞.
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The Black Hole Entropy, the 3d Analysis

The rotating BTZ×S3 obtained in the near-horizon limit
is also a solutions to 6d (super)gravity theory.

One can further reduce this 6d theory on the S3 to
obtain a 3d gravity theory.

The rotating BTZ solution is then a black hole solution
to this 3d theory.

What we are going to do here is to compute the BH
entropy of this 3d black holes, which is obtained from

S
(3)
BH =

A(3)

4G
(3)
N

where A(3) is the area of horizon for the BTZ black hole.
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The 3d black hole entropy analysis, the near-BPS case

The 3d Newton constant is related to the 6d one as

G
(3)
N =

G
(6)
N

2π2R3
S

=
L4

16R3
S

· 1

N2ǫ2
1

µ0
2µ

0
3

.

The 3d entropy for any value of µ0
2 and µ0

3 is hence

s
(3)
BH = 8π

µ̂c
L2

ρh N
2ǫ2 µ0

2µ
0
3,

with the ρh taking the same value as in the 5d case.

The total entropy to be compared against the 5d

entropy is integral of s(3)
BH over values of µ0

2, µ
0
3, yielding

S
(3)
BH = π

µ̂c
L2

ρh N
2ǫ2 ,

This exactly matches the the entropy of the 5d black
hole after taking the near-BPS decoupling limit.
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The 3d black hole entropy analysis, the near-extremal case

For the near-extremal case that is

A(3) = 2πǫRAdS3
ρ0.

The 2πǫ comes from the fact that ϕ ∈ [0, 2πǫ].

The 3d Newton constant is

G
(3)
N =

G
(6)
N

2π2R3
S

=
L4

2R3
S

· 1

N2
.

Therefore,
S

(3)
BH = π

RAdSR
3
S

L4
ρ0N

2ǫ ,

The above is the same as the 5d black hole entropy in
the near-horizon near-extremal limit, recalling

RAdS = RS/
√

f0 , µc = R4
S/L

2.
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Dual Field Theory Descriptions

So far we have shown that one can take specific
near-horizon, near-extremal limits over 10d type IIB
solutions which are asymptotically AdS5.

As such one would expect that these solutions, the
limiting procedure and the resulting geometry after the
limit should have a dual description via AdS5/CFT4.

On the other hand, after the limit we obtain a space
which contains AdS3 × S3,

and hence there should also be another dual
description in terms of a 2d CFT.
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Dual Field Theory Descriptions

So far we have shown that one can take specific
near-horizon, near-extremal limits over 10d type IIB
solutions which are asymptotically AdS5.

As such one would expect that these solutions, the
limiting procedure and the resulting geometry after the
limit should have a dual description via AdS5/CFT4.

On the other hand, after the limit we obtain a space
which contains AdS3 × S3,

and hence there should also be another dual
description in terms of a 2d CFT.
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Dual Field Theory Descriptions, the 4d SYM

Here we translate what taking the near-horizon limits
on the gravity backgrounds corresponds to in the
N = 4, d = 4 U(N) SYM theory.

We argue that taking the near-horizon near-BPS and
near-extremal limits correspond to focusing on specific
sectors in the N = 4 SYM which we identify.

We argue that the decoupling in the gravity
corresponds to the fact that these sectors are closed
under SYM dynamics.

The idea here is somewhat like that of BMN and
almost-BPS operators there....
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Dual Field Theory Descriptions, the 4d SYM

The operators of N = 4, d = 4 U(N) SYM theory are
specified by their SO(4, 2) × SO(6) quantum numbers.

The scaling dimension of operators ∆ and their
R-charge Ji respectively correspond to the ADM mass
and angular momentum of the objects in the gravity.

Explicitly, for the two-charge case of our interest, with
the perturbative addition of the third charge, the
operators are specified by four quantum numbers

∆ = L ·MADM =
N2

2L2
(
3

2
µ+ q1 + q2 + q3) ,

Ji =
πL

4G5

q̃i =
N2

2

q̃i
L2

,
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Dual Field Theory Descriptions, the 4d SYM

and are singlets of SO(4) ∈ SO(4, 2).

If µ and qi are finite, ∆ and Ji scale as N2.

In both of the near-BPS and near-extremal limits we
are taking the ’t Hooft coupling, λ = L4/l4s to infinity.

Despite of the large ’t Hooft coupling, we may have a
perturbative description.

Recall the BMN case, where the effective expansion
parameters of the 4d gauge theory is different in
sectors of large R-charges and we have finite effective
(or “dressed”) ’t Hooft coupling and the genus
expansion parameter.
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The 4d N = 4 SYM description, the near-BPS case

In the near-BPS limit case together with some of the
coordinates we also scale µ and qi as ǫ.

Moreover, we need to also scale N ∼ ǫ−2.

Therefore, the sector of the N = 4 U(N) SYM
operators corresponding to the geometries in question
have large scaling dimension and R-charge

∆ =
N2ǫ

2
(q̂2 + q̂3 + O(ǫ))/L2 ∼ N3/2 → ∞

Ji =
N2ǫ

2
(q̂i + O(ǫ))/L2 ∼ N3/2 .
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The 4d N = 4 SYM description, the near-BPS case

In the same spirit as the BMN limit, one can find
certain combinations of ∆ and Ji which are finite and
describe physics of the operators after the limit.

In order that recall the way the limit was taken:

iL
∂

∂τ
= iL

∂

∂t
+ i

∑

i=2,3

∂

∂φi
= ∆ −

∑

i=2,3

Ji

−i ∂
∂ψi

= −i ∂
∂φi

= Ji

Up to leading order we have

∆ −
∑

i=2,3

Ji =
N2ǫ2

4

µ̂

L2
, Ji =

N2ǫ

2

q̂i
L2

.
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The 4d N = 4 SYM description, the near-BPS case

∆ −∑ Ji ∼ N2 ·N−1 = N → ∞, while Ji ∼ N3/2.

The “BPS deviation parameter”:

ηi ≡
∆ −∑i Ji

Ji
∼ ǫ ∼ N−1/2 → 0 ,

and hence we are dealing with an “almost-BPS” sector.

It is instructive to make parallels with the BMN sector,
where we deal with operators with

∆ ∼ J ∼ N1/2, while ∆ − J = finite,

implying that, similarly to our case, ηBMN ∼ N−1/2 → 0.

Note that, ∆ −∑ Ji is linearly proportional to
non-extremality parameter µ̂ and SBH ∼ ∆−

∑

Ji ∼ N .
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The 4d N = 4 SYM description, the near-BPS case

In sum, the sector we are dealing with is composed of
“almost 1/4 BPS” operators of U(N) SYM with

∆ ∼ Ji ∼ N3/2, λ = g2
YMN ∼ N → ∞

Ji
N3/2

≡ q̂i
L2

= fixed, (∆ −
∑

i=2,3

Ji) ·
1

N
=

µ̂

L2
= fixed.

The dimensionless physical quantities that describe
this sector are therefore q̂i/L2, µ̂/L2 and gYM .

To completely specify the sector, the basis used to
contract N ×N gauge indices should also be specified.
This could be done by giving the (approximate) shape
of the corresponding Young tableaux.

– p. 74/119



The 4d N = 4 SYM description, the near-BPS case

To this end we recall the interpretation of the original
10d geometry in terms of the back-reaction of the
intersecting giant gravitons and that giant gravitons
and their open string fluctuations are described by
(sub)determinant operators.

Here we are dealing with a system of intersecting multi
giants. The “number of giants” in each stack in the
near-BPS, near-horizon limit is

Ni = Nǫ · q̂i
L2

= 2N1/2 q̂i
L2

,

Therefore, ∆ −∑i Ji = N2N3

4
µ̂
µ̂c
.
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The 4d N = 4 SYM description, the near-BPS case

Finally, let us consider addition of the third charge,
where besides J2, J3 we have also turned on J1,

J1 =
N2ǫ2

2
· 1

L2

√

q̂1(q̂1 + µ̂) .

As we see ∆ −
∑

i=2,3 Ji ∼ J1 ∼ N2ǫ2 ∼ N → ∞.

In this case instead of ∆ −∑i=2,3 Ji it is more
appropriate to define another positive definite quantity:

∆ −
3
∑

i=1

Ji = N ·
(

µ̂+ 2q̂1 −
√

(µ̂+ 2q̂1)2 − µ̂2

L2

)

≥ 0 .
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The 4d N = 4 SYM description, the near-BPS case

It is remarkable that the above BPS bound is exactly
the same as the bound in which the generic rotating
BTZ metric could be made sense of.

This bound is more general than just the extremality
bound of the rotating BTZ black hole MBTZ − JBTZ ≥ 0.

This bound besides the rotating black hole cases also
includes the case in which we have a conical
singularity which could be resolved in string theory.

End of the near-BPS case
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The 4d N = 4 SYM description, the near-extremal case

In the near-horizon, near-extremal limit we do not scale
µ and qi’s. Therefore, we deal with a sector of N = 4

SYM in which ∆ ∼ Ji ∼ N2 and, as noted N ∼ ǫ−1.

To deduce the correct “BMN-type” combination of ∆

and Ji , we recall the way the limit has been taken:

τ = ǫ
RS

RAdS3

t

L
, φi = ψi +

q̃iRAdS3

qiRS

τ

ǫ
, i = 2, 3 .

Therefore, −i ∂
∂ψi

= −i ∂
∂φi

= Ji and

E ≡ −i ∂
∂τ

= −RAdS3

ǫ RS

(

iL
∂

∂t
+ i

∑

i=2,3

q̃i
qi

∂

∂φi

)

= −RAdS3

ǫ RS

(

∆ − 2L2

N2

∑

i=2,3

J2
i

qi

)
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The 4d N = 4 SYM description, the near-extremal case

Intuitive way of understanding E:

In the near-extremal case we deal with massive
giant gravitons which are far from being BPS

and hence are behaving like non-relativistic objects

which are rotating with angular momentum Ji over
circles with radii Ri, R2

i = L2

R2

S

qi.

Therefore, the kinetic energy of this rotating branes
is proportional to

∑

J2
i /qi.

In our limit ǫ ∼ 1/N which for convenience we choose

ǫ =
4

N
.
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The 4d N = 4 SYM description, the near-extremal case

Recalling that ∆ is measuring the “total” energy of the
system, n E should have two parts:

the rest mass of the system of giants and

the energy of “internal” excitations of the branes.

To see this explicitly we note that

E =
RAdS3

RS

· N
2

4ǫ
· µ
L2

= E0 +
RAdS3

RS

· (2πT (6)
s M)

where have used µ = µc + ǫ2M (M is related to the
mass of BTZ black hole), and

E0 =
RAdS3

R3
S

16L4
·N3.
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The 4d N = 4 SYM description, the near-extremal case

E0 which is basically E evaluated at µ = µc, is the rest
mass of the brane system.

E − E0 corresponds to the fluctuations of the giants
about the extremal point.

E − E0 is proportional to T (6)
s M , indicating that it can be

recognized as fluctuations of a 6d string.

Recall also that from the 10d viewpoint, the 6d strings
are uplifted to three-brane giants with two legs along
the M4 directions.

Therefore, E − E0 corresponds to (three) brane-type
fluctuations of the original “intersecting giants”.
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De tour, The 4d N = 4 SYM description, the near-extremal case

At the extremal point the system is not BPS and the
“rest mass” of the giants system is not simply sum of
the masses of individual stacks of giants and contains
their “binding energy” (stored in the deformation of the
giant shape from the spherical shape).

Nonetheless, it should still be proportional to the
number of giants times mass of a single giant.

In the 6d language, as suggested previously, this
corresponds to formation of a 6d (Qe, Qm)-string.
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De tour, The 4d N = 4 SYM description, the near-extremal case

Inspired by the expression for the 10d five-form flux and
recalling that the IIB five-form is self-dual, the system
of giants we start with, may also be interpreted as
spherical three-branes wrapping S3 ∈ AdS5 while
rotating on S5, the dual giants.

In terms of dual giants, after the limit, we are dealing
with a system of dual giants wrapping S3 ∈ AdS3 × S3

which has radius RS.
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De tour, The 4d N = 4 SYM description, the near-extremal case

The mass of a single such dual giant m0 (as measured
in RAdS3

units and also noting the scaling of AdS5 time
with respect to AdS3 time) is then

m0

RAdS3
/ǫ

= T3(2π
2R3

S) =
R3
S

L4
·N.

The number of dual giants is again proportional to N
and hence one expects the total “rest mass” of the
system m0 to be proportional to N3R3

S.

End of De Tour to Dual Giants and their mass.
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The 4d N = 4 SYM description, the near-extremal case

In sum, from the U(N) SYM theory viewpoint the
sector describing the near-extremal, near-horizon limit
consists of operators specified with

∆ ∼ Ji ∼ N2, λ ∼ N → ∞,

Ji
N2

≡ q̃i
2L2

= fixed,
E − E0

N
= fixed ,

where as discussed, E, E0 are defined in terms of ∆, Ji.
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The 4d N = 4 SYM description, the near-extremal case

As discussed, one may obtain a rotating BTZ if we turn
on the third R-charge in a perturbative manner.

In the 4d gauge theory language this is considering the
operators which besides the above E − E0 and Ji carry
the third R-charge J1, J1 ∼ N2ǫ2 ∼ 1:

J1 =
N2

2L2
ǫ2
√

q̂1µc

In terms of the AdS3 parameters, since ϕ = ǫφ, then

J ≡ −i ∂
∂ϕ

= −i1
ǫ

∂

∂φ
=
J1

ǫ
=
N2ǫ

2

µc
L2

√

q̂1
µc
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The 4d N = 4 SYM description, the near-extremal case

As we see J, similarly to E − E0, is also scaling like
N2ǫ ∼ N in our decoupling limit.

When J1 is turned on the expressions for ∆ and hence
E are modified, receiving contributions from q1. These
corrections, recalling that q1 scales as ǫ4, vanish in the
leading order.

However, one may still define physically interesting
combinations like E − E0 ± J.

End of the 4d SYM descriptions
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Description in terms of 1 + 1 dim. dual theory

In either of the near-BPS or near-extremal
near-horizon limits we obtain a space-time which has
an AdS3 × S3 factor.

In both cases the AdS3 factor is in global coordinates.

This, within the AdS/CFT ideology, is suggesting that
(type IIB) string theory on the corresponding
geometries should have a dual 1 + 1 CFT description.
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Description in terms of 2d dual theory, the near-BPS case

In the near-BPS case metric takes the same form as
the near-horizon limit of a D1-D5 system, though the
AdS3 is obtained to be in global coordinates.

This could be understood noting that the two-charge
geometry corresponds to a system of smeared giant
D3-branes intersecting on a circle.

In the near-horizon limit we take the radius of the
giants to be very large (or equivalently focus on a very
small region on the worldvolume of the spherical
brane) while keeping the radius of the intersection
circle to be finite (in string units).
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Description in terms of 2d dual theory, the near-BPS case

Therefore, upon two T-dualities on the D3-branes along
the C4 directions the system goes over to a D1-D5
system but now the D1 and D5 are lying on the circle
(D5 has its other four directions along C4).

Here we give the dictionary from our conventions and
notations to that of the usual D1-D5 system, and
discuss the similarities and difference.

Number of D-strings Q1 and number of D5-branes Q5

are respectively equal to the number of giants in each
stack N2 and N3.
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Description in terms of 2d dual theory, the near-BPS case

The degrees of freedom are coming from four DN
modes of open strings stretched between intersecting
giants which are in (N2, N̄3) representation of
U(N2) × U(N3).

In taking the near-horizon, near-BPS limit we are
focusing on a narrow strip in µ2, µ3 directions and
hence our BTZ×S3 ×C4 geometry and in this sense the
corresponding 2d CFT description is only describing
the narrow strips on the original 5d black hole.

– p. 91/119



Description in terms of 2d dual theory, the near-BPS case

Therefore, our 5d black hole is described in terms of
not a single 2d CFT, but a collection of (infinitely many
of) them. The only property which is different among
these 2d CFT’s is their central charge.

The “metric” on the space of these 2d CFT’s is exactly
the same as the metric on C4.

As far as the entropy and the overall (total) number of
degrees of freedom are concerned, one can define an
effective central charge of the theory which is the
integral over the central charge of the theory
corresponding to each strip.
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Description in terms of 2d dual theory, the near-BPS case

For the central charge we use the Brown-Henneaux
central charge formula,

c =
3RAdS

2 G
(3)
N

and recall that for each strip

RAdS = RS, G
(3)
N =

L4

16R3
S

· 1

N2ǫ2
µ0

2µ
0
3

The effective total central charge is obtained by
integrating strip-wise c over the C4.

Noting that
∫

µ2

2
+µ2

3
≤1

µ2µ3dµ2dµ3 =
1

8
,
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Description in terms of 2d dual theory, the near-BPS case

The effective central charge of the system is

cL = cR = c = 3N2N3 = 12N · µ̂c
L2
.

Compare this with the central charge of the usual
D1-D5 system is given by 6Q1Q5.

In near-BPS case c ∼ N → ∞, as opposed to N2

because in our case the entropy scales as N2ǫ2 and
that ǫ2 ∼ 1/N .

The 2d CFT is described by L0, L̄0 which are related to
the BTZ black hole mass and angular momentum

L0 =
6

c
NL =

1

4
(MBTZ − JBTZ), L̄0 =

6

c
NR =

1

4
(MBTZ + JBTZ).
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Description in terms of 2d dual theory, the near-BPS case

Note that L0, L̄0 are equal to the left and right excitation
number of the 2d CFT NL and NR, divided by N2N3.

The above expressions for L0, L̄0 are given for
MBTZ − JBTZ ≥ 0 when we have a black hole
description.

When −1 ≤MBTZ − JBTZ < 0, we need to replace
them with L0 = − c

24
a2

+, L̄0 = − c
24
a2
−.

In the special case of global AdS3 background, where
a+ = a− = 1/2 formally corresponding to
MBTZ = −1, JBTZ = 0, the ground state is describing
an NSNS vacuum of the 2d CFT.
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Description in terms of 2d dual theory, the near-BPS case

With the above identification, the Cardy formula for the
entropy of a 2d CFT gives

S2d CFT = 2π
(

√

cNL/6 +
√

cNR/6
)

=
π

6
c
(

√

MBTZ − JBTZ +
√

MBTZ + JBTZ

)

This exactly reproduces the expressions for the
entropy we got in the 5d and 3d descriptions.

Although the entropy and the energy of the system
(which are both proportional to the central charge)
grow like N and go to infinity the temperature and the
horizon size remain finite.
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Description in terms of 2d dual theory, the near-BPS case

It is also instructive to directly connect the 4d and the
2d field theory descriptions. Comparing the
expressions for MBTZ , JBTZ and ∆ −∑i=2,3 Ji, J1, we
see that they match; explicitly

∆ −
∑

i=2,3

Ji =
c

12
(MBTZ + 1), J1 =

c

12
JBTZ .

The 4d gauge theory BPS bound, ∆ −∑i=1,2,3 Ji ≥ 0

now translates into the bound MBTZ − JBTZ ≥ −1.

This means that the 4d gauge theory, besides being
able to describe the rotating BTZ black holes, can also
describe the conical spaces.

– p. 97/119



Description in terms of 2d dual theory, the near-BPS case

In other words, ∆ −
∑3

i=1 Ji = 0 and N µ̂c

L2 respectively
correspond to global AdS3 and massless BTZ cases

and when

0 < ∆ −
3
∑

i=1

Ji <
c

12
= N

µ̂c
L2

,

4d gauge theory describes a conical space, provided γ,

γ2 ≡ 12

c

(

∆ −
3
∑

i=1

Ji

)

− 1,

is a rational number.

– p. 98/119



Description in terms of 2d dual theory, the near-BPS case

This is of course expected if the dual gauge theory
description is indeed describing string theory on the
conical space background.

One should also keep in mind that entropy and
temperature are sensible only when ∆ −∑3

i=1 Ji ≥ c
12

;

For smaller values the degeneracy of the operators in
the 4d gauge theory is not large enough to form a
horizon of finite size (in 3d Planck units).

End of the 2d CFT description of the near-BPS case.
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Description in terms of 2d dual theory, the near-extremal case

In the near-horizon limit of a near-extremal two-charge
black hole we obtain an AdS3 × S3 in which the AdS3

and S3 factors have different radii.

Although locally AdS3, the coordinate parameterizing
S1 ∈ AdS3 is ranging over [0, 2πǫ] = [0, 8π/N ].

As such, and recalling that the AdS3 × S3 is not
supersymmetric, one expects the dual 2d CFT
description to have somewhat different properties than
the standard D1-D5 system.
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Description in terms of 2d dual theory, the near-extremal case

Based on the analysis and results of previous sections
we conjecture that

there exists a 2d CFT which describes the 6d string
theory on this AdS3 × S3 geometry. This string theory
could be embedded in the 10d IIB string theory on the

background obtained in the near-horizon near-extremal
limit.

Here we just make some remarks about this
conjectured 2d CFT and a full identification and
analysis of this theory is still an open question.
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Remarks on the conjectured 2d CFT dual to the near-extremal case

This 2d CFT resides on the R× S1 causal boundary of
the AdS3 × S3 geometry.

It is worth noting that in terms of the coordinates t and
φ1 of the original AdS5 background, we have a space
which looks like a (supersymmetric) null orbifold of
AdS3 , by Zǫ−1 , that is an AdS3/ZN/4. It is desirable to
understand our analysis from this orbifold viewpoint.

One may use the Brown-Henneaux analysis to
compute the central charge of this 2d CFT:

c =
3RAdS3

ǫ

2G
(3)
N

= 12
µc

L2
√
f0

N .
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Remarks on the conjectured 2d CFT dual to the near-extremal case

In this case the expression for the central charge,
except for the 1/

√
f0 factor, is the same as that of the

near-BPS case, and scales like N → ∞ in our limit.

The 5d or 3d black hole entropies presented take
exactly the same form obtained from counting the
number of microstates of a 2d CFT, i.e. the Cardy
formula, with the above central charge and MBTZ and
JBTZ of the near-extremal case.

As discussed, there is a sector of N = 4, d = 4 SYM,
characterized by E − E0 and J, which describes IIB
string theory on the near-horizon near-extremal
background.
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Remarks on the conjectured 2d CFT dual to the near-extremal case

One can readily express the 4d parameters in terms of
2d parameters, namely:

E − E0 =
c

12
MBTZ , J =

c

12
JBTZ ,

where c, MBTZ and JBTZ are given in terms of µ and
charges qi.

The above relations have of course the standard form
of the usual D1-D5 system, and/or the near-BPS case
discussed previously.

Note, however, that in this case E − E0 is measuring
the mass of the BTZ with the zero point energy set at
the massless BTZ case (rather than global AdS3).
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Remarks on the conjectured 2d CFT dual to the near-extremal case

We expect the degrees of freedom of this 2d CFT to
correspond to string states of the 6d gravity theory,
which in turn from the 10d IIB theory viewpoint
correspond to brane-like excitations about the extremal
intersecting giant three-branes. It is of course desirable
to make this picture precise and explicitly identify the
corresponding 2d CFT.

– p. 105/119



Summary and Outlook

We discussed the near-horizon decoupling
limits of the near-extremal two-charge black
holes of U(1)3 d = 5 gauged SUGRA.

There are two such decoupling limits, one
corresponding to near-BPS and the other to
near-extremal black hole solutions.

There were similarities and differences
between the two cases. In both cases taking
the limit over the uplift of the 5d black hole
solution to 10d IIB theory, we obtain a
geometry containing an AdS3 × S3 factor.
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Summary and Outlook

Therefore, there should be 2d CFT dual
descriptions.

On the other hand, noting that the starting 5d
(or 10d) geometry is a solution in the AdS5 (or
AdS5 × S5) background there is a description
in terms of the dual 4d SYM theory.

We identified central charge of the dual 2d
CFT’s in both cases and showed that B.-H.
entropy of the original 5d solution, which is the
same as the B.-H. entropy of the 3d BTZ black
hole obtained after the limit, is reproduced by
the Cardy formula of the 2d CFT.
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Summary and Outlook

We identified the L0, L̄0 of the corresponding
2d CFT’s in terms of the parameters of the
original 5d black hole.

Matching of the Bekenstein-Hawking entropy
of the 5d and 3d black holes is a strong
indication that the near-horizon limit we are
taking is indeed a “decoupling” limit.

For the near-BPS case, the 2d description is
essentially the same as that of the D1-D5
system and the 2d CFT, modulo one
complication.

– p. 108/119



Summary and Outlook

The complication is that our background
corresponds not to a single 2d CFT but a
(continuous) collection of them, all of which
have the same L0, L̄0 but different central
charges.

Nonetheless, one can define an effective
central charge for the system by summing
over the “strip-wise” 2d CFT descriptions.
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Summary and Outlook

For the near-extremal case, however, we have
a different situation; the conjectured 2d CFT
description corresponds to a set of D3 giants
which have a deformed shape and as a result
only certain degrees of freedom on the giant
theory survive our (“α′ → 0”) decoupling limit.

In a sense, instead of intersecting giants of
the near-BPS case, at the extremal point
(µ = µc) we are dealing with a (non-marginal)
bound state of giants.

This may be traced in the 6d gravity theory
obtained from reduction of 10d IIB theory.
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Summary and Outlook

As discussed, the two species of intersecting
giants in 6d language appear as strings which
are either electrically and/or magnetically
charged under the three-form F3.

The bound state of giants in the 6d theory is
expected to appear as a “(Qe, Qm)-string”.

The mass of this dyonic (Qe, Qm)-string state
can be computed from the time-time
component of the energy momentum tensor
of the system T 0

0 for the AdS3 × S3

configuration.
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Summary and Outlook

This has two parts, a cosmological constant
piece and the part involving 2-form charges.

The latter can be used to identify the mass
squared of the (Qe, Qm)-string, which is

M 2
(Qe,Qm) = T (6)

s

(

N 2
e gs +N 2

mg
−1
s

)

where gs = 〈X−2〉 is the “effective” 6d string
coupling and Ne, Nm are the number of
electric and magnetic strings and are related
to Qe, Qm.

Note that in “Einstein frame” the mass of
fundamental string mass squared is T (6)

s gs.
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Summary and Outlook

To complete this picture one should show the
6d (Qe, Qm)-string is a stable configuration in
the corresponding gravity theory.

We expect our 6d gravity description to be a
part of a new type of 6d gauged supergravity.

This 6d theory is expected to be a U(1)2

N = (1, 1) gauged SUGRA with the matter
content (in the language of 6d N = 1):

one gravity multiplet,
one tensor multiplet and
two U(1) vector multiplets.

– p. 113/119



Summary and Outlook

This theory is a 6d version of the d = 4, d = 5
“gauged STU” models.

It may be obtained from a suitable extension
of the reduction we already discussed.

The two U(1) gauge fields Ai are coming from
replacing dψi in reduction ansätz with
dψi + LAi.

The details of this reduction and construction
and analysis of this “6d gauged STU”
supergravity will be discussed in an upcoming
publication.
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Summary and Outlook

We gave a description of both the near-BPS
and near-extremal cases in terms of specific
sectors of large R-charge, large engineering
dimension operators.

We expect these sectors to be decoupled
from the rest of the theory since they also
have a description in terms of a unitary 2d
CFT.
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Summary and Outlook

The near-BPS case has features similar to
the BMN sector. In this case, however, the
sector is identified with operators of Ji ∼ N 3/2,
as opposed to J ∼ N 1/2 of BMN case.

In the near-extremal case the operators we
are dealing with are far from being BPS and
their R-charge Ji (i = 2, 3) scale as N 2.
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Summary and Outlook

Understanding these sectors in the 4d gauge
theory and computing their effective ’t Hooft
expansion parameters,i.e. effective ’t Hooft
coupling and the planar-nonplanar expansion
ratio, is an interesting open question.

We expect there should be new “double
scaling limits” similarly to the BMN case.

To give another supportive evidence for the
decoupling of these sectors one can count
degeneracy of states in both of these sectors
in N = 4 SYM and match it with the B.-H.
entropies computed here.
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Summary and Outlook

Here we focused on the two-charge 5d
extremal black hole solutions of U(1)3 5d
gauged SUGRA. The U(1)4 d = 4 gauged
SUGRA has a similar set of black hole
solutions.

Among them there are three-charge extremal
black holes of vanishing horizon size.

One can take the near-horizon decoupling
limits over these black holes to obtain
AdS3 × S2 geometries.
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Summary and Outlook

Again there are two possibilities, the
near-BPS and near-extremal but non-BPS
cases, very much the same as what we found
here in the 5d case.

This is under preparation......

Thanks for your attention.
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