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Why 2D Gravity on AdSy ?!

« AdS; geometry Is the factor which appears in
the near horizon geometry of the extremal
black holes in any dimension.

« Understanding quantum gravity on Ad.S5
might ultimately help us understand the origin
of the black hole entropy in other dimension.



* Being an AdS background it is natural to
define the quantum gravity in terms of the
dual CFT via AdS/CF'T correspondence.

 Although AdS,.,/CF'T; correspondence has
been understood for d > 1 mainly due to
explicit examples, little has been known for
d=1.



2D Maxwell-Dilaton Gravity

« Consider the theory of gravity with the action
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« Using asymptotic symmetries of AdS,, It has
been proposed that quantum gravity on the
AdS background of this theory has a C'F'T
dual which could be a chiral half of the 2D
C' F'T' [Hartman, Strominger, 08].




Adding Chern-Simons corrections

 The aim of this talk Is to elaborate the above
statement by adding higher order correction
to the action.

e This correction is 2D Chern-Simons
correction given by
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* It Is obtained by reducing 3D gravitational
Chern-Simons along an S*.



« We are looking for AdS; solutions of this
theory. It is simply done by utilizing the
entropy function formalism [Sen, 05].

A generic solution preserving SO(1, 2)
Isometry of the AdS; Is given by

« The parameters ¢, v and u can be obtained by
extremizing the entropy function defined by

E = 2m[ge — f(e,v,u)] (4)



¢ IS the charge of the gauge field and
f(e,v,u) is the lagrangian density evaluated
for the above ansatz.

* The entropy Is given by the value of the
entropy function evaluated at the extremum.

* For generic 1 and [ we find three different
solutions:
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* The entropy of the corresponding solutions
written in a suggestive form is
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which may be compared with Cardy formula
for the entropy S = 274/ %c.
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- If we identify ¢i* with the eigenvalue of L, of
the dual CFT then the central charges of the
corresponding CFTs read

3 1 3 1 12

1: = —(14+—). 2: = —(1——). 3: = :
CR QG( —|_/,Ll)7 Cr, QG( Iul)7 Cr, G(/,L2l2—|—27)

),
« If correct, this means that the 2D
Maxwell-dilaton gravity on AdS; background
Is dual to chiral half of a 2D CFT
characterized by the above central charges.

 The index L, R refer to the fact that whether
the dual chiral CFT is left or right handed
which in turn corresponds to the sign of the q.




Asymptotic symmetry and central
charge

« Using Hartman-Strominger method
(arXiv:0803.3621), we can do another
calculation confirming our previous results.

« To proceed we choose a new coordinate
0O =— %,ti:t::()'.

» Our AdS, solutions in this new coordinate can
be recast to the form
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« We want to study the action of the 2D
conformal group on this theory.

» To do so, we choose the conformal gauge for
the metric and the Lorentz gauge for the
gauge field:
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» This gauge choice fixes the coordinate and
U(1) gauge transformation up to residual
conformal and gauge transformation
generated by
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where A, = +0..a.



 On the other hand, in order to define the

theory we must impose boundary conditions
at o = 0.

« Requiring no current flow out of the boundary
Imposes

Jo| o =0 (11)
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* As a result, the boundary terms in the
variation of the action will vanish if
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 In general the last condition is not preserved
by the remaining allowed diffeomorphisms.

* In order to fix this, a diffeomorphism must be
accompanied by a gauge transformation
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* Therefore the improved conformal
transformations are generated by the twisted
energy momentum tensor
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where G, Is the current generates the gauge
transformations (14).



« Using this twisted energy momentum tensor,
the central charge of the model reads
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where £ is the level of U(1) current which
parameterizes the gauge anomaly.

* We have fixed k& using the known solutions.
For the case of 1 — oo the central charge is
found to be 3/(2G) [Alishahiha, Ardalan,
08],[Larsen,et al, 08]. This determines k as

k = 8|q|l* (17)

which results the same value (7) for the
central charges.



Relation to 3D gravity

» Our two dimensional Ad\S, solutions can be
uplifted to three dimension. The results are
pure geometric with SL(2, R) x U(1) isometry.

 For our three solutions we get
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* In light of the recent terminology, the third
metric is the warped AdS; [Strominger, et al,
08].

* It Is notable that our third central charge is the
same as left central charge proposed In
Strominger’s warped AdS; conjecture.

e It could be Interesting to see why we can not
read the right central charge of the warped
AdSs gravity by this method.
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