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A Brief History of Universe

>Nearly 14 billion years ago the Universe 
was created from the big bang explosion.

>During the first few minutes the light 
elements(He, D,..) were formed. 

> After 500,000 years atoms formed and CMB 
was released from plasma of electrons, protons 

and photons. Today CMB cooled down to 2.75 K.

> It was a hot soup filled with radiations 
and all sorts of free elementary particles. 

As it expanded, it cooled down.

WMAP 
web page



The Initial Conditions Puzzles

• The Horizon Problem: Why is the Universe so homogeneous 
and isotropic? During its evolution, the Universe did not have 
enough time to become so isotropic and homogeneous.

• The Flatness Problem: Why is the Universe so flat? If              
today,  then extrapolating back to very early Universe at 
Planck time we find                       .           

• There are tiny fluctuations at the level of             on the 
smooth CMB background, which are almost scale invariant, 
adiabatic and Gaussian. What mechanism can create these 
perturbations ?                                                                      
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Despite the success of the big bang cosmology, there are 
initial conditions problems:
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Inflation

A short period of acceleration in very early 
Universe will provide all these necessary 

initial conditions and flattens the Universe. 

www.astro.princeton.edu/~tremaine/ast541/das.ppt

• Primordial quantum fluctuations 
during inflation seeds the observed 
almost scale invariant Gaussian 
perturbations in CMB. 

• Originally all of these modes were 
inside the horizon. Inflation stretches 
their wavelengths outside the 
horizon. While outside the horizon, 
they ``freeze out``.  Later on they 
re-enter the horizon to form the 
observed structures.

http://www.astro.princeton.edu/~tremaine/ast541/das.ppt
http://www.astro.princeton.edu/~tremaine/ast541/das.ppt


WMAP 2003-08
• All observations, specially 

WMAP 2003-2008, strongly 
support inflation.

• Different inflationary models 
predict different values for 
cosmological parameters like         
the scalar spectrum index 
which can be measured  in 
CMB.
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• There is no compelling and theoretically well-motivated model of 
inflation.  There have been many attempts to embed inflation within 
the context of string theory.  

• If it works, this would provide a unique chance to test the relevance of 
string theory to the real world. 

WMAP 08



Inflation?
• What underlying physics drive inflation? What is the nature of inflaton field?

• Since the scale of inflation is very high, possibly GUT scale, it is natural to 
expect that physics beyond SM and effects of quantum gravity were important.

• String theory, on the other hand, is the best theory of quantum gravity.  So far it 
did not make contact with the real world in a direct way.

• There have been many interesting models of inflation from string theory.  
Examples are Tachyon Inflation,  Racetrack Inflation,  DBI-Inflation,  D3-D7 Inflation, 
Brane Inflation, Warped Brane Inflation,...

• There are mutual benefits in pursuing inflation in string  theory :                         
1.    A unique chance to test string theory                                                        
II.    Explaining the nature of inflation from the first principles.



Slow Roll Inflation
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In most models, inflation is derived by a scalar field, the inflaton. 
This creates a negative pressure required for acceleration.

For a scalar field 
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• Simple models of chaotic inflation 
suffers from fine-tuning and issues 
with super-Planckian field values.
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 Brane Inflation

• In brane inflation the inflaton field is 
the distance between brane and anti-
brane.

• There is an attractive force between 
brane and anti-brane. If the potential is 
flat enough one can get enough 
inflation.

• When the distance between brane and 
anti-brane is at the order of string 
scale, a tachyon develops. Inflation ends 
when brane and anti-brane collide.

• Problem: In flat CY, the potential is too 
steep to achieve the slow-roll 
conditions for inflation.

G. Dvali and H. Tye, hep-ph/9812483 

brane anti-brane
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Warped Brane Inflation

• Warped Geometry is a method to 
flatten the potential between brane 
and anti-brane.

• There are localized regions in the bulk 
of the Calabi-Yau compactification 
which are highly warped. These 
regions are called the throats.   
Usually there are many of them. 

• By putting the brane and anti-brane in 
these throats the force between them 
becomes weaker and enough inflation 
can be obtained.                   
(KKLMMT: hep-th/0308055)

D7!branesD7!branes

Figure 1: A schematic picture of the Calabi-Yau manifold is presented here. The large
circle given by dashed line represent the 3-cycle where NS-NS three form H3 is turned
on. The smaller circle in the throat stands for the 3-cycle where the R-R three form F3

is turned on. Also shown are D7-branes wraping 4-cycles. There may exists a number of
throats like the one shown here. There is a mirror image of the entire picture due to the
IIB/Z2 orientifold operation.

From the zero mode we obtain the usual relation between the gravity strength

in four dimensions and the fundamental mass scale of the higher dimensional theory

M2
P = MD−2

s

∫
dD−4y

√
|gmn| e2AΨ2

(0) . (2.21)

One may choose Ψ(0) = 1 as a convention, but in order to compare its magnitude to

the excited modes magnitude we keep it as Ψ(0) which is of course a constant. For

the excited mode we impose the following normalization condition

MD−2
s

∫
dD−4y

√
|gab| e2A Ψ(m)(y) Ψ(m′)(y) = M2

P δmm′ (2.22)

After this general discussions we would like to find the KK spectrum of the

gravitons and other closed string modes in the KS background. We postpone the

spectrum analysis until section 6 after some introduction of the KS background.

3. A Throat in the Calabi-Yau Manifold

A KKLT vacuum involves a Calabi-Yau (CY) manifold with fluxes [1]. Consider F-

theory compactified on an elliptic CY 4-fold X. The F-theory 4-fold is a useful way

7
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KS Throat

r=0
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Figure 2: Here is a schematic picture of the conifold (dashed line) and the deformed
conifold (solid line). The apex is at r = 0. The conifold is deformed at the tip such
that r = ε is now an S3, where S2 has shrinked to zero. The dashed circle at constant r

represents the base of the conifold which is a T 1,1. For large r, the base of the deformed
conifold asymptotically approaches T 1,1.

Geometrically, the conical singularity of Eq.(3.3) can be removed by replacing

the apex by an S3 [18],

4∑

i=1

w2
i = ε2 (3.8)

where we shall take ε to be real and small. The resulting deformed conifold is illus-

trated in Figure 2 and the corresponding metric is non-trivial. It will be convenient

to work in a diagonal basis of the metric, given by the following basis of 1-forms

[20, 22],

g1 ≡ e1 − e3

√
2

, g2 ≡ e2 − e4

√
2

g3 =
e1 + e3

√
2

, g4 ≡ e2 + e4

√
2

g5 ≡ e5 (3.9)

where

e1 ≡ − sin θ1 dφ1 , e2 ≡ dθ1 ,

e3 ≡ cos ψ sin θ2 dφ2 − sin ψ dθ2 ,

e4 ≡ sin ψ sin θ2 dφ2 + cos ψ dθ2 ,

e5 ≡ dψ + cos θ1 dφ1 + cos θ2 dφ2 (3.10)
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throats like the one shown here. There is a mirror image of the entire picture due to the
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of the elliptic fiber describes the profile of the IIB axion-dilaton. In such a model,

one has a tadpole condition on the Euler number χ of X

χ(X)

24
= ND3 +

1

2κ2
10T3

∫

M

H3 ∧ F3 (3.1)

Here T3 is the tension of a D3 brane, ND3 is the net number of (D3 - D3) branes

filling the noncompact dimensions, and H3, F3 are the 3-form fluxes in the IIB theory

which arise in the NS and RR sector, respectively. In the absence of flux, it is always

possible to deform such an F-theory model to a locus in moduli space where it can

be thought of as an orientifold of a IIB CY compactification. So one may use the

language of IIB orientifolds, with M being the CY 3-fold which is orientifolded. In

this language, the LHS of Eq.(3.1) counts the negative D3-brane charge coming from

the O3 planes and the induced D3 charge on D7 branes, while the terms on the RHS

count the net D3 charge from transverse branes and fluxes in the CY manifold. The

Kähler moduli are stabilized by non-perturbative dynamics.

As shown in Figure 1, there is a Klebanov-Strassler throat in the manifold [6].

The throat is a warped deformed conifolds, which is a non-compact CY 3-fold. This

throat is glued to the compact CY manifold. A number of such throats can be
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• Particular example studied carefully is a deformed 
conifold in IIB string theory(Kelebanov and Sttrassler, 
hep-th/0007191).

• A deformed conifold is defined by 

• There are two 3-cycles, called A  and B. 
One can turn on M units of RR 3 forms 
F3 on A cycle and K units of NSNS 3 
forms H3 on B cycles:



The Warped Deformed Conifold

• By turning these fluxes one can create a warped geometry like Randall-
Sundrum(RS) scenario(Kachru, Giddings and Polchiski,  hep-th/0105097).

• The metric inside the conifold is almost an AdS metric:

• Where R is the characteristic length scale of the AdS geometry

• N=MK is the effective background D3-brane charge. The warp factor 
at the end of the throat is given by 

Brane Inflation and Cosmic String Tension in Superstring Theory 6

model building β 1/6

ns β1/7

r β1/5

G µ β1/7

Table 1. Various bounds on β coming from observational data [?, ?, ?, ?]. The more

recent analysis [?] using all available data gives ns ≤ 1.086 which implies β1/7.

Fast roll in the multi-throat scenario was proposed as an interesting alternative

to slow roll [?, ?]. However, this fast roll scenario requires a fine-tuning (e.g., the

background charge N ∼ 1014), so the above slow roll scenario seems most natural. For

larger values of β at the A throat, we also consider the possibility that inflation takes

place while the D3-brane is moving slowly out of another throat. In this case, β for this

3rd throat must be moderately small and negative.

2. The Setup

The realistic setup is a Type IIB orientifold (or F theory) compactified on a Calabi-Yau

3-fold with fluxes [?, ?], where all moduli are stabilized. Inside the bulk of the Calabi-

Yau manifold, there are local regions, or throats, with warped geometry [?]. The metric

in any throat has the approximate AdS5 × X5 form, where X5 is some orbifold of S5

and the AdS5 metric in Poincare coordinates takes the form

ds2 = h(r)2
(
−dt2 + a(t)2d"x2

)
+ h(r)−2dr2 (5)

with the warp factor

h(r) =
r

R
= e−2πK/3Mgs , (6)

where K and M are the background NS-NS and RR fluxes respectively, and R represents

the curvature radius of the AdS throat and is given by [?]

R4 =
27

4
πgsNα′2 . (7)

Here N = KM is equal to the number of the background D3 charge or, equivalently, the

products of NS-NS and RR flux as constructed in [?]. N is taken to be relatively large.

There can be a number of such throats in the compact region. As long as the tadpole

cancellation imposed on the charge conservation is satisfied, there is no restriction on

the number of throats. Following the convention of Ref[?] we consider a scenario with

at least 2 throats : the A throat, where the D3-brane is located, and the S throat, where

the standard model branes are located. As a D3-brane moves towards the D3-brane at

the bottom of the A throat, inflation takes place. The position of the D3-brane is r

in the 6-dimensional compact space. Around a throat, we choose the coordinate with

respect to the bottom of the throat. This allows us to consider only r = |r|. Note that

φ =
√

T3r is the inflaton, where T3 is the D3-brane tension.
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The first of these equations defines an S3 with radius r/
√

2, while the other 2 equa-

tions define an S2 fiber over the S3. Since all such bundles over S3 are trivial, T has

the topology of S2 × S3.

We are interested in Ricci-flat metrics on the cone. Consider the ds2
5 in the

metric (3.2),

ds2
5 = habdxadxb

is a metric on T , the 6-dimensional cone admits a Ricci-flat metric if and only if its

base manifold admits an Einstein metric, that is, Rab(h) = 4hab. Now let us consider

a specific set of ds2
5 metric:

ds2
T P,Q = A0( dψ + P cos θ1 dφ1 + Q cos θ2 dφ2)

2 +
2∑

i=1

Ai( dθ2
i + sin2 θi dφ2

i ) (3.5)

where the integers P, Q are coprime. These are metrics on manifolds T P,Q which are

fiber bundles over S2×S2 with U(1) fibers. Now, it turns out that only T 1,0 and T 1,1

are S2 × S3. To be an Einstein metric, T 1,1 requires A0 = 1/9 and A1 = A2 = 1/6.

Furthermore only T 1,1 satisfies the Sasaki condition to yield supersymmetry. (A

Sasaki-Einstein 5-manifold may be defined as an Einstein manifold whose metric

cone is Ricci-flat and Kahler.) This leads us to study the Sasaki-Einstein manifold

T 1,1 in more detail.

Let us start with the conifold metric with the base manifold T 1,1,

ds2
6 = dr2 + r2ds2

T 1,1 (3.6)

ds2
T 1,1 =

1

9
( dψ +

2∑

i=1

cos θi dφi )
2 +

1

6

2∑

i=1

( dθ2
i + sin2 θi dφ2

i )

It can be shown that

T 1,1 = (SU(2)× SU(2))/U(1) = S3 × S3/U(1)

which has topology of S2 × S3 (with S2 fibered over S3). If ϕ1 and ϕ2 are the two

Euler angles of the two S3s, respectively, then their difference corresponds to U(1)

while ψ = ϕ1 + ϕ2. Since 2π ≥ ϕi ≥ 0, the range of ψ is 4π.

3.2 The Warped Deformed Conifold

The Klebanov-Strassler throat that we are interested in is actually a warped deformed

conifold, as illustrated in Figure 2. This warped deformed conifold emerges in the

presence of fluxes. The R-R flux F3 wraps the S3 while NS-NS flux H3 wraps the

dual 3-cycle B that generates the warped throat, with warp factor h(r).

1

4π2l2s

∫

B

H3 = −K,
1

4π2l2s

∫

S3

F3 = M

N = KM, hA = e−2πK/3gsM (3.7)
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M-Flation

Suppose inflation is driven by non-commutative matrices:

Example :

where

The equations of motion are



Truncation to SU(2)sector

Plugging this ansatz into the action, we obtain

where       are the N-dimensional irreducible representation of SU(2) algebra.



Upon field re-definition

The effective  potential is

Where 



Examples:

1- Chaotic Inflation                     :

To fit the CMB observation, we need 
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Due to large running of field values, a considerable
amount of gravity waves can be produced.



2- Symmetry breaking  potential:

I: 

To fit the observational constraints

II: 

One finds



 3-Saddle-point Inflation

The CMB observables are given by

The upper bound r < 0.4 from WMAP5, and ns=0.96, gives



• When N D-branes are located on top of each other 
the gauge symmetry enhances to U(N) 

wraps the S3 at the bottom of the deformed conifold, while NS-NS flux H3 wraps the dual

3-cycle B that generates the warped throat

1

4π2α′

∫

B

H3 = −K,
1

4π2α′

∫

S3

F3 = M .

(3)

The metric of the deformed conifold is studied in [22–24]. At the tip of the deformed

conifold one S2 shrinks to zero size and the internal geometry reduces to a round S3. At

the tip the metric is given by

ds2 ∼ h2 ηµνdxµdxν + b gsMα′(dψ2 + sin2 ψ dΩ2
2) (4)

where h is the warp factor at the bottom of the throat

h = ε2/32−1/6a−1/4
0 (gsMα′)−1/2 (5)

where a0 ∼ .72 and b = 22/33−1/3I(0)1/2 ∼ 0.93 are numerical constants in the KS solution

and ε1/3 is the deformation radius. Here ψ is the usual azimuthal coordinate in a S3 ranging

from 0 to π.

There are M units of RR 3-forms F3 on the non-vanishing S3 cycle at the tip of the

throat. Its associated two form is given by

C(2) = Mα′
(

ψ − sin(2ψ)

2

)
sin θ dθ dφ . (6)

In KS solution C0 = 0 and at the bottom of the throat Bab = 0. Furthermore, on the gauge

theory side M corresponds to SU(M) gauge theory living at the tip of the conifold.

III. THE DIELECTRIC (P,Q) STRINGS

One may consider to obtain the bound states of (p, q) strings directly [26], using the

non-commutative dielectric brane method prescribed by Myers [19]. Upon expansion, the

results of [26] were in agreements with the results of [18] up to order 1/M2. It is an inter-

esting exercise to see wether there is also an exact agreement between the non-commutative

dielectric brane method and the dual method of wrapped D3-brane used in [18].

When N p-branes are located on top of each other, the ground state of open strings

attached between them becomes massless and the U(1)N symmetry associated with N indi-

vidual branes is enhanced to U(N). The gauge field vector Aa becomes non-Abelian and

Aa = A(n)
a Tn , Fab = ∂aAb − ∂bAa + i[Aa, Ab] , (7)

5

where Tn are N2 Hermitian generators with Tr(TnTm) = Nδnm. The orthogonal displace-

ments of branes, Φi, are now matrix valued and transform in the adjoint of U(N) with

DaΦ
i = ∂aΦ

i + i[Aa, Φ
i] . (8)

The non-Abelian action of N coincident p-branes is given by S = SDBI +SCS, where [19]
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In these expressions, λ = 2πα′, µp is the p-brane charge, EMN = gMN + BMN , Qi
j ≡

δi
j + iλ [Φi, Φk] Ekj and Φi is the branes location along the orthogonal direction xi. In the

conventions of [19], xi = λΦi, so that Φi has dimensions of mass. The indices a, b, ... are

along the brane world-volume directions, while i, j, ... represents the directions orthogonal

to the branes. The operation STr corresponds to the trace of symmetrised pairing of the

non-Abelian fields Fab and Φi [27]. All induced quantities are the pull-backs of space-time

tensors on the brane.

In SCS, the operator iΦ denotes the interior product acting on an n-form C(n) =

1
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[Φi, Φj] C(n)

jiM3···Mn
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To calculate the (p, q) spectrum, one can turn on p units of U(1) electric field on the

world volume of q coincident D1-branes. We take the D1-branes to be extended in the

(t, xµ) direction and the only relevant component of Fab is F0µ. Furthermore, at the tip of

KS throat BMN = 0 and EMN = gMN . The only non-zero term in SCS is the term coming

from the operation of iΦ on C(2).

With these assumptions the action of q D1-branes with electric fields on their world

volumes is
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∫
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]
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To simplify the algebra it is useful to write the above action in the form

S =

∫
d t d xµ

[
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√
h4 − λ2F 2

µ0 + ΩF0µ

]
, (13)
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Motivation from string theory

The action for N coincident brane is 
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Expanding the action up to leading terms, one obtains

Consider the RR background

S=
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As mentioned the potential is

The condition                        is required for background to be susy.

The minimum                 is the susy vacuum.

This corresponds to the solution where N 
D-3 branes blow up into a fuzzy D5-branes.

Geometrically,        is the radius of the fuzzy two-sphere.



Consistency of truncation to SU(2) sector

are hermitian matrices, so we have          real scalar fields.

We have considered      as the inflaton field and turned off the remaining 
fields.  How consistent is this truncation?

Suppose

So

Then
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If we we turn off Ψi initially, they will always remain zero and will hence not contribute to
the classical background inflationary dynamics at all .

1

where



Mass spectrum of the        modes

Expanding the potential up to second order in       one obtains 

where          is classified in three forms



Adiabatic and isocurvature power spectra

Our Lagrangian is

Define

The normalized curvature and isocurvature perturbations are 

Using our equations of motion one obtains 

Compare this to general multiple-field case 



At the time of Horizon crossing

when the mode leaves the horizon till Ne before the end of inflation

where



I. Chaotic inflation 

The system has SO(        ) symmetry which is a specific realization of N-flation.

The spectral tilts are 

Using our analytical formula

At the  end of inflation Ps ~ 10^(-14) for mode of horizon scales.



II. Chaotic inflation: 

The potential is 

The mass of entropy modes are different: 

The lowest mass states are 

M=0



Numerically we find

From our analytical solution



III. Symmetry breaking potential: 



 Preheating 

The preheating for                is studied by Greene  et al, 1997

The structure of parametric resonance is completely determined by

for our model 

As an estimate of Preheat temperature, suppose we have an instant preheating

performed analytically. As discussed in [26] for these specific values of g2/λ we have

the significant property that there is an enhancement in the parametric resonance

leading to considerable creation of zero, α and β modes. As discussed in [26] one can

distinguish two even and odd n cases. For the odd n (i.e. for our zero modes, even l

α-mode, and odd l β-mode) the particle creation is peaked around zero momentum

k modes. For the even n modes, however, the particle creations is peaked around

momenta k2 = 3
2H

2
infε

√
g2

2λ , where ε is the computed for the beginning of the slow-roll

inflation and Hinf is the Hubble during inflation. For low n, the µk ∝ ln nk (nk is the

number density of the produced particles at momentum k) is around 0.15 for odd n

and around 0.5 for even n. Therefore, among the low n modes the main contribution

to preheating is coming from odd n [26]. As discussed in [26] the bigger k the more

energy can be transferred from the inflationary sector to the Ψ sector and a more

efficient preheat mechanism. This means that α and β modes with large l, l of order

N , make the biggest contribution, this is despite the fact that the zero modes have

a larger degeneracy (of order N2) compared to the degeneracy of order N for the

large l modes. All in all, due to the existence of the large l modes, and for large N

in our model we expect to have a very efficient preheating model. The computations

for the modes with large g2/λ has been carried out in [26] and the only point which

is different in our case is that their result should be multiplied with the degeneracy

factor 2l + 1.

We have not provided a mechanism of reheating to transfer energy from the Ψr,lm

fields to the Standard Model of particle physics. As a very crude estimate of reheat

temperature in our M-flation set up, suppose we have an instant efficient reheating

that all the energy of the inflaton field has gone to effectively massless zero modes

by the end of inflation, leading to

N2T 4 ∼ 3H2M2
P , (6.18)

where N2 estimates the number of species and T is the (p)reheat temperature. As we

see, this is as if we have effectively an instant reheating model in which the maximum

temperature achieved is lowered by 1/
√

N . As a rough estimate taking H saturating

its current bound H ∼ 10−5MP and N ∼ 105 then the preheat temperature becomes

of order T ∼ 1013 Gev. Reducing the preheat temperature to below GUT scale is

in principle a positive feature , as it removes the problem with overproduction of

gravitinos.

7. Motivation from String Theory

Here we argue that our M-flation set up presented in section 2 with non-commutative

matrices and potential in the form of (2.2) is strongly motivated from string theory.

In the context of string theory, the world-volume theory of N coincident p-branes

is described by a (supersymmetric) U(N) gauge theory. In this system, the transverse
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for large N one can get sufficiently small reheat temperature.



Reheating ?

We have not provided a mechanism of reheating where the energy 
from the              particles are transferred into SM particles.

One scenario in M-flation in string theory:   We may imagine that SM 
fields are localized on branes as open strings gauge fields 
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This can naturally be embedded in model noting that

Non-Gaussianity?

 Due to multiple-field nature of the model, there would be plenty of 
NG produced. It would be interesting to calculate primordial NGs 

and compare it with observation.



Conclusion

• All observations strongly support inflation as a theory of early Universe 
and structure formation. But there is no deep theoretical understanding 
of its origin.

• M-flation is an interesting realization of inflation which is strongly 
motivated from string theory.  M-flation, like N-flation, can solve the 
fine-tunings associated with chaotic inflation and produce super-
Planckian field during inflation.

• Due to Matrix nature of the fields there would be many scalar fields in 
the model. This leads to novel effects such as isocurvature productions, 
and no-Gaussianities which both are under intense observational 
investigations.

• M-flation has a natural built-in mechanism of preheating to end inflation. 
However, a mechanism of reheating has yet to be implemented. 


