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Abstract

Recently it has been shown in 0901.0931 [hep-th] that there are two extremal
limits for the non-extremal Reissner-Nordstrom black hole: the extremal Reissner-
Nordstrom black hole which carries no entropy and the “compactification solution”
AdS2 ×S2 with flux which carries the macroscopic entropy of the non-extremal black
hole. By uplifting the four dimensional solution to a five dimensional solution, we
show that the “compactification solution” is dual to a CFT with central charge c =
6Qe(Q

2
e + Q2

m). The Cardy formula then shows that the microscopic entropy of the
CFT is the same as the macroscopic entropy of the “compactification solution”.

http://lanl.arxiv.org/abs/0902.4387v3


1 Introduction

One of the most exciting observation in the modern theoretical physics is the holographic

dualities that relates a quantum gravity to a quantum field theory without gravity in fewer

dimensions [1, 2]. The best understood holographic duality is the duality between the

ten dimensional type IIB string theory on background AdS5 × S5 with flux and the four

dimensional N = 4 super Yang-Mills theory at the boundary of AdS5 [3–5]. Recently the

idea of the holographic duality has been examined for the more interesting backgrounds

using the Brown and Henneaux technique [6]. It has been shown in [7] that there is a two-

dimensional CFT dual of quantum gravity on extreme Kerr background. Even though the

structure of the CFT is not known, the central charge of the CFT can be found by studying

the nontrivial asymptotic symmetry of the extreme Kerr solution. The Cardy formula then

gives the microscopic entropy of the CFT to be exactly the same as the macroscopic entropy

of the extreme Kerr background [7]. This duality has been extended to other backgrounds

in [8–10], (see also [11]).

In this paper we would like to study the holographic duality for extreme Reissner-

Nordstrom solution. It has been argued in [12] that the entropy of any extremal black hole

of Einstein theory is zero even if its horizon area is non-zero. The reason is that the space

outside of the horizon of a non-extremal black hole is a manifold with topology R2 × S2

which has non-zero entropy, whereas, the space outside the horizon of an extremal black

hole is a manifold with topology R×S1×S2. This is resulted from the fact that the physical

distance between an arbitrary point and the horizon in an extremal black hole is infinite.

Therefore, entropy of any extrmal black hole is zero [12]! Where does the entropy of the

non-extremal black hole have gone? A resolution for this puzzle has been proposed in [13]

for RN black holes: There are two extremal limits. One is the usual extremal RN black

hole and the other is another solution which has been called in [13] the “compactification

solution”. The entropy of the non-extremal black hole is argued to be carried by the latter

solution [13].

In this paper we would like to find the CFT dual of the “compactification solution” by

applying the Brown-Henneaux technique. It has been argued in [8] that the gauge symmetry

of the extreme Kerr-Newman-AdS black hole can be combined with the geometry of the four

dimensional extreme Kerr-Newman-AdS black hole to write a five dimensional metric from

which the central charge of the extreme RN can be found in the limit J → 0. Using this idea

we find a five dimensional solution which reduces to the four dimensional “compactification
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solution” upon compactifying the 5-th dimension. The CFT dual of this five dimensional

solution should be also dual to the four dimensional solution.

The paper is organized as follows. In the next section we review the non-extremal

RN solution of Einstein-Maxwell theory in four dimensions. In section 3, we study the

two extremal limits of the RN black hole. In section 4 we study the CFT dual of the

compactification solution by uplifting the solution to five dimensional Einstein-Maxwell

theory. In section 4.1, we study the asymptotic symmetry of the compactification solution

and show that the U(1) isometry of the compactification solution appears at the boundary

as Virasoro algebra with the central charge which gives exactly the microscopic entropy

after using the Cardy formula.

2 Review of non-extremal RN solution

In this section we review the non-extremal Reissner-Nordstrom solution of the Einstein-

Maxwell theory in four dimensions. In the unit where G4 = 1, the action is given by

S =
1

16π

∫

d4x
√−g

{

R− 1

2

1

2!
F 2

(2)

}

, (1)

The non-extremal Reissner-Nordstrom solution with mass M , electric charge Qe and

magnetic charge Qm is given by

ds2 = −
(

1 − r+
r

)(

1 − r−
r

)

dt2 +
1

(

1 − r+

r

) (

1 − r
−

r

)dr2 + r2dΩ2
2 ,

F(2) =
Qe

r2
dt ∧ dr +Qm sin θdθ ∧ dφ , (2)

There are two event horizons located at the coordinate singularities

r± = M ±
√

M2 −Q2 , (3)

where Q =
√

Q2
e +Q2

m. There are different types of patches

RegionI : r+ < r <∞ , −∞ < t <∞ ,

RegionII : r− < r < r+ , −∞ < t <∞ ,

RegionIII : 0 < r < r− , −∞ < t <∞ . (4)

The distance between an arbitrary point and the outer horizon is finite, hence, entropy of

this solution can be found from the semi-classical method to be

S = πr2
+. (5)
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The Hawking temperature of the black hole which is given by 2πT =
√
grr∂r

√
gtt at the

outer horizon is

T =
1

2πr2
+

(r+ − r−) . (6)

The Hawking temperature is zero when r+ = r−, however, the entropy remains non-zero.

3 Extremal limits

It was shown in [13] that there are two different extremal limits. The usual extremal limit

r+ = r− = Q without necessary going to the near horizon, and the simultaneous limit of

extremal and near horizon. In the first case the solution becomes

ds2 = −(1 − Q

r
)2dt2 +

1

(1 − Q

r
)2
dr2 + r2dΩ2

2 ,

F(2) =
Qe

r2
dt ∧ dr +Qm sin θdθ ∧ dφ , (7)

which is an extremal black hole with event horizon at r = Q. There are two regions I, III for

this solution. The region II disappears in this limit. This solution carries no entropy [13]

because the physical distance between an arbitrary point and the horizon is infinite1. To go

to the near horizon, one introduces the new spacelike coordinate 0 < λ < ∞ and timelike

coordinate −∞ < σ <∞ as

λ =
r −Q

Q
, σ = − t

Q
. (8)

The solution for arbitrary λ becomes

ds2 = − Q2λ2

(1 + λ)2
dσ2 +

Q2(1 + λ)2

λ2
dλ2 +Q2(1 + λ)2dΩ2

2

F(2) = − Qe

(1 + λ)2
dσ ∧ dλ+Qm sin θdθ ∧ dφ , (9)

1If one consider the Reissner-Nordstrom solution as a solution of the effective theory of the string theory,
the situation will change. In that case, it has been argued in [14] that near the horizon, the length of periodic
time coordinate approaches to zero and hence the string winding modes become massless or even tachyonic.
So one must include these modes to the effective action. It has been speculated in [14] that in the presence
of these modes the physical distance between an arbitrary point and the horizon remains finite, hence, the
macroscopic entropy of extremal solution of the string theory effective action is non-zero which should be
the same as the microscopic entropy of string microstate counting [15].
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Only at the horizon, λ→ 0, it becomes

ds2 = Q2
(

−λ2dσ2 +
1

λ2
dλ2 + dΩ2

2

)

F(2) = −Qedσ ∧ dλ+Qm sin θdθ ∧ dφ , (10)

which is locally AdS2 × S2.

In the second case, the solution has the three regions I, II, and III. In fact the physical

distance between the inner and outer horizons of the non-extremal solution remains non-

zero in this case [13]. By appropriate coordinate transformation, the metric of the three

regions can be mapped to a global AdS2 ×S2 solution [13]. For instance, in region II using

the new timelike coordinate 0 < χ < π and spacelike coordinate −∞ < ψ < ∞ via the

following coordinate transformation:

r = Q− ǫ cosχ , ψ =
ǫ

Q2
t , (11)

where ǫ =
√
M2 −Q2, one finds the metric and the field strength map to

ds2 = Q2(−dχ2 + sin2 χdψ2 + dΩ2
2) ,

F(2) = Qe sinχdψ ∧ dχ+Qm sin θdθ ∧ dφ , (12)

where we have sent ǫ → 0. Note that in this limit r+ = r− = Q and at the same time

r → Q. Moreover, the physical distance between the outer and the inner horizons remains

non zero at this limit. Using the coordinate transformation

cosχ =
cos τ

cosϑ
, tanhψ =

sinϑ

sin τ
, (13)

the metric (12) transforms to [13]

ds2 =
Q2

cos2 ϑ
(−dτ 2 + dϑ2) +Q2dΩ2

2 , (14)

which is AdS2 × S2. The fluxes are mapped to

F(2) = − Qe

cos2 ϑ
dτ ∧ dϑ+Qm sin θdθ ∧ dφ . (15)

The metric (14) covers a portion of the global AdS2. The other portions of the entire

manifold are covered by the metric in regions I and III [13]. The boundaries of the global
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AdS2 are at ϑ = ±π/2. In terms of new coordinate u = 1/ cosϑ, the boundaries are at

u→ ∞. The solution in terms of the u-coordinate is

ds2 = Q2

(

−u2dτ 2 +
du2

u2 − 1
+ dΩ2

2

)

,

F(2) = − Qeu√
u2 − 1

dτ ∧ du+Qm sin θdθ ∧ dφ . (16)

Near the boundary, u→ ∞, it behaves as

ds2 = Q2

(

−u2dτ 2 +
du2

u2
+ dΩ2

2

)

,

F(2) = −Qedτ ∧ du+Qm sin θdθ ∧ dφ . (17)

which is similar to the near horizon of extremal black hole (10). However, we note that the

equation (10) is not valid for λ→ ∞.

At the extremal limit the entropy of the non-extremal black hole remains non-zero. On

the other hand, the extremal black hole solution (7) carries no entropy, hence, one expects

that the above AdS2 × S2 solution carries the following macroscopic entropy [13]:

Smacro = πQ2 = π(Q2
e +Q2

m) . (18)

Note that the metric (14) is a solution of the four dimensional equations of motion for any

value of Q2, similarly, the fluxes in (15) are valid solution for any Qe and Qm. However,

they are the simultaneous limit of the non-extremal RN black hole only for Q2 = Q2
e +Q2

m.

The Hawking temperature (6) is zero in the simultaneous limit, however, there is another

temperature which is conjugate to the electric charge and is defined by TedS = dQe. This

temperature is

Te =
1

2πQe

. (19)

The macroscopic entropy (18) should be extract also from microstates counting. In the

next section we would like to show that there is a CFT dual of the above solution whose

microstates counting gives its macroscopic entropy.

4 The CFT dual

To study the CFT dual of the compactification solution using the Brown-Henneaux’s tech-

nique [6] that has been used for the extreme Kerr solution in [7], one should write the

5



metric in a form which has isometry SL(2, R) × U(1) with off-diagonal metric in the U(1)

part. Using this idea, the U(1) gauge symmetry of the extreme Kerr-Newman-AdS black

hole has been combined in [8] with the geometry of the four dimensional extreme Kerr-

Newman-AdS black hole to write a five dimensional metric with off-diagonal component in

the 5th-direction. We note that the new metric must satisfy the equations of motion in

order to use the formula for the 5-dimensional on-shell generators [16]. So we should com-

bine the U(1) gauge symmetry (15) with the metric (14) to write a 5-dimensional metric

with off-diagonal component in the 5th direction. Moreover, the new metric must satisfy

the 5-dimensional equations of motion. To this end, we first uplift the compactification

solution to a five dimensional solution of the Einstein-Maxwell theory for a specific value

of the magnetic charge Qm, and then find the CFT dual of the five dimensional solution.

Consider the five dimensional Einstein-Maxwell theory:

S =
1

16πG(5)

∫

d5x
√−g

{

R− 1

2

1

2!
F 2

(2)

}

, (20)

The equations of motion are

Rµ
ν =

1

4

(

2F µαFνα − 1

3
δµ

νF
2
(2)

)

∂µ (
√
gF µν) = 0 (21)

One can show that the above equations are satisfied by the following solution:

ds2
5 =

ρ2

cos2 ϑ
(−dτ 2 + dϑ2) + ρ2dΩ2

2 + (dy +Qe tanϑdτ)2 ,

F = Qm sin θdθ ∧ dφ , Qm =
√

3Qe , (22)

where y is a fiber coordinate with period 2π, and ρ,Qe are arbitrary constants. Upon

dimensionally reducing the y coordinate as

ds2
5 = ds2

4 + (dy + A)2 , (23)

the action (20) reduces to (1) and the five dimensional solution reduces to the following

solution:

ds2
4 =

ρ2

cos2 ϑ
(−dτ 2 + dϑ2) + ρ2dΩ2

2 ,

A = Qe tanϑdτ −Qm cos θdφ , (24)

which is the four dimensional compactification solution when ρ in above solution is ρ2 =

Q2
m +Q2

e and Qm in the compactification solution (15) is Qm =
√

3Qe.
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Using the coordinate transformation cosϑ = 1/u where 1 ≤ u ≤ ∞, the five dimensional

solution (22) becomes

ds2
5 = ρ2

{

−u2dτ 2 +
du2

u2 − 1
+ dΩ2

2

}

+ (dy +Qe

√
u2 − 1dτ)2 , (25)

A = −Qm cos θdφ .

In this coordinate the boundaries are at u → ∞. Note that the curvature of the above

metric is finite everywhere, i.e., R = Q2
e/(2ρ

4), so there is no singularity at u = 1.

There is a U(1) gauge transformation under which δΛ = dΛ, for arbitrary scalar field Λ,

as well as the isometry group of SL(2, R)×SO(3)×U(1). The Killing vector that generates

the rotational U(1) isometry group is

ζ (y) = −∂y , (26)

the Killing vectors that generate the SO(3) isometry group are the followings:

ζ̂1 = sinφ ∂θ + cot θ cosφ ∂φ ,

ζ̂2 = − cosφ ∂θ + cot θ sinφ ∂φ ,

ζ̂3 = −∂φ , (27)

and the Killing vectors that generate the SL(2, R) isometry group are the followings:

ζ1 =
2 sin τ

√
u2 − 1

u
∂τ − 2 cos τ

√
u2 − 1∂u +

2Qe sin τ

u
∂y ,

ζ2 =
2 cos τ

√
u2 − 1

u
∂τ + 2 sin τ

√
u2 − 1∂u +

2Qe cos τ

u
∂y ,

ζ3 = 2Qe∂τ . (28)

At the boundary, u→ ∞, the above Killing vectors become

ζη = η(τ)∂τ − ∂τ (η(τ))u∂u (29)

for η(τ) = 2 sin τ, 2 cos τ, 2Qe. If one perturbs the background (25), then the Killing vectors

will change and hence their values at the boundary will be modified.

4.1 The Asymptotic Symmetry Group

The asymptotic symmetry group (ASG) of a spacetime is the group of non-trivial allowed

symmetries. A non-trivial allowed symmetry is the one which generates a transformation

that obeys the boundary conditions and its associated charge is non-vanishing [7].
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Since ∂τ is the generator whose conjugate conserved charge measures the deviation of the

solution from extremality [7], we consider the perturbations that their associated conserved

charges commute with ∂τ . For the fluctuations of the metric and gauge field (25) we choose

the following boundary condition:

hµν ∼ O















u2 u u 1/u2 1
1 1 1/u 1

1 1/u 1
1/u3 1/u

1















, aµ ∼ O(u, 1, 1, 1/u2, 1/u) (30)

in the basis (τ, φ, θ, u, y). At leading order, the diffeomorphisms which preserve the above

boundary condition are

ζǫ = ǫ(y)∂y − uǫ′(y)∂u , (31)

ζ (τ) = ∂τ ,

ζ̂1 = sinφ ∂θ + cot θ cosφ ∂φ ,

ζ̂2 = − cosφ ∂θ + cot θ sinφ ∂φ ,

ζ̂3 = −∂φ ,

where ǫ(y) is an arbitrary smooth function. The Lie derivative of metric (25) with respect

to ζ (τ) and ζ̂’s are zero, and with respect to ζǫ is

δǫds
2 = 2

(

(ρ2 −Q2
e)u

2ǫ′(y)dτ 2 +
ρ2

(u2 − 1)2
ǫ′(y)du2 + ǫ′(y)dy2

− Qe√
u2 − 1

ǫ′(y)dτdy − ρ2u

u2 − 1
ǫ′′(y)dudy

)

, (32)

which is consistent with the boundary condition (30). The Lie derivative of gauge field (25)

with respect to (31), however, does not satisfy the boundary condition (30). One must add a

compensating U(1) gauge transformation such that the combined gauge transformation and

the diffeomorphism transformation, i.e., δΛA + LζA, satisfies the boundary condition [8].

The appropriate gauge transformation is

Λ = Qm cos θǫ(y) (33)

The combined transformation is

δA = Qm sin θǫ(y)dθ (34)
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which satisfies the boundary condition (30).

Using the periodicity of the y coordinate, one can expand ǫ(y) in terms of the basis

ǫn(y) = −e−iny. Defining the generators ζn ≡ ζǫn
, Λn ≡ Λǫn

, one finds they satisfy the

following Virasoro algebra:

i[ζm, ζn]L.B. = (m− n)ζm+n ,

i[Λm,Λn]ζ = (m− n)Λm+n , (35)

where [Λm,Λn]ζ = ζµ
m∂µΛn − ζµ

n∂µΛm. They have zero central charge. To evaluate the

central term of the above algebra, one needs to construct the surface charges which generate

the asymptotic symmetry (31). For asymptotically AdS spacetimes, the charge differences

between (gµν , Aµ) and (gµν + hµν , Aµ + aµ) are given by [16] (see [10] for a review)

Qζ,Λ[g, A] =
1

8πG

∫

∂Σ

(

kgrav
ζ [h; g] + kgauge

ζ,Λ [h, a; g, A]
)

, (36)

where the integral is over the boundary and

kgrav
ζ [h, g] = −1

2

1

3!
ǫαβγµν

[

ζνDµhσ
σ − ζνDσh

µσ + ζσD
νhµσ +

1

2
hσ

σD
νζµ

−hνσDσζ
µ +

1

2
hσν(Dµζσ +Dσζ

µ)
]

dxα ∧ dxβ ∧ dxγ , (37)

kgauge
ζ,Λ [h, a; g, A] =

1

4

1

3!
ǫαβγµν

[

(−1

2
hσ

σF
µν + 2F µσhν

σ − δF µν)(ζρAρ + Λ)

−F µνζρaρ − 2F σµζνaσ +
1

4
gνσaµ(LζAσ + ∂σΛ)

]

dxα ∧ dxβ ∧ dxγ

where δF µν = gµσgνλ(∂σaλ − ∂λaσ). The covariant derivatives and raised indices are com-

puted using the metric gµν . For the magnetic gauge field (25) and the perturbation (34),

one finds kgauge
ζ,Λ [h, a; g, A] = 0. Hence, the charge (36) simplifies to

Qζ,Λ[g, A] =
1

8πG

∫

∂Σ
kgrav

ζ [h; g] , (38)

≡ Qζ [g] (39)

For the diffeomorphism (31), one finds2

kgrav
ζǫ

= −Qe sin θ

4u2

[

2ǫ(y)u3∂yhuy +
ρ2 +Q2

e

ρ2
u2ǫ(y)hyy

−2ǫ′(y)u3huy +
1

ρ2
ǫ(y)hττ

]

dθ ∧ dφ ∧ dy ,

2Note that the Lie derivative of metric with respect to the diffeomorphisms ζ(τ) = ∂τ and ζ̂1, ζ̂2, ζ̂3 are
zero, hence, their corresponding charges are zero too.
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where we have discarded total φ derivative terms and keep only terms that are non-zero at

the boundary u→ ∞. We have also included only the terms that are tangent to ∂Σ.

The algebra of the non trivial asymptotic symmetries is the Poisson bracket algebra of

the charges [16]

{Qζm
, Qζn

}P.B. = Q[ζm,ζn] +
1

8πG

∫

∂Σ
kgrav

ζm

[Lζn
g, g] . (40)

The last term has the structure

1

8πG

∫

∂Σ
kgrav

ζm

[Lζn
, g] = −iA(m3 +Bm)δm+n,0 . (41)

If one defines the quantum version of the Q’s by

Ln ≡ Qζn
+

1

2
(AB + A)δn,0 , (42)

plus the usual rule of {., .}P.B. → −i[., .], then the algebra becomes the standard Virasoro

algebra

[Lm, Ln] = (m− n)Lm+n + Am(m2 − 1)δm+n,0 , (43)

with central charge c = 12A.

The Lie derivatives of metric (25) at the boundary are

Lζn
gττ = 2i(ρ2 −Q2

e)u
2ne−iny ,

Lζn
gτy = −iQe

u
ne−iny ,

Lζn
guy = −ρ

2

u
n2e−iny ,

Lζn
gyy = 2ine−iny ,

Lζn
guu =

2iρ2

u4
ne−iny . (44)

Replacing above perturbation into the central term of (40), one finds

1

8πG(5)

∫

∂Σ
kgrav

ζm

[Lζn
g, g] = − i

2
Qe(m

3ρ2 +m)δm+n,0 (45)

where we have used the fact that in five dimension G(5) = 2π. Therefore, the central charge

is

c = 6Qeρ
2 , (46)

This is the central charge of the CFT dual of the background (25) in which the parameter

ρ is arbitrary. For the specific value of ρ2 = Q2
e + Q2

m the solution is the 4-dimensional
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compactification solution. So the central charge of the CFT dual of the compactification

solution, at least for Qm =
√

3Qe, is

c = 6Qe(Q
2
e +Q2

m) , (47)

This central charge has been also found in [8] by combining the gauge field of extremal

Kerr-Newman-AdS black hole with the 4-dimensional metric and taking J → 0.

The Cardy formula gives the microscopic entropy of a unitary CFT at large Te to be

Smicro =
π2

3
cTe , (48)

Using (19) and (46), one finds

Smicro = πQ2 = π(Q2
e +Q2

m) , (49)

This exactly reproduces the macroscopic entropy (18).
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