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In this lecture I will describe two recent pieces of work on Black Hole

physics.

• Gravitating Opposites Attract

• Birkhoff’s Invariant and Thornes’s Hoop Conjecture



Gravitating Opposites Attract

Problem number one is based on joint, and as yet unpublished, work

with Robert Beig and Rick Schoen. It is founded on a beautiful recent

paper of theirs ∗ excluding the existence of static (non-rotating) elec-

trically neutral 3+1 dimensional solutions of the Einstein’s equations

representing two (symmetrical) bodies in equilibrium.

We have succeeded in extending the result to electrically charged and

rotating black holes both in 3+1 and n+ 1 , n > 3.

∗R. Beig and R. M. Schoen, On Static n-body Configurations in Relativity,
arXiv:0811.1727 [gr-qc].



The title of this section is taken from an elegant paper by Coleman

et al on solitons and monopoles in flat spacetime ∗ .

The feature that opposites attract also seems to extend to quantum

mechanical Casimir forces † .

∗Y. Aharonov, A. Casher, S. R. Coleman and S. Nussinov, Why opposites attract,
Phys. Rev. D 46 (1992) 1877.

†O. Kenneth and I. Klich, Opposites Attract - A Theorem About The Casimir
Force, Phys. Rev. Lett. 97 (2006) 160401 [arXiv:quant-ph/0601011].



Electric Charges. For a static electrovac,

ds2 = −V 2dt2 + gijdx
idxj A = φdt (1)

Rij =
1

V
∇i∇jV − κ

V 2
(∇iφ∇jφ− 1

2
gij|∇φ|2) , (2)

V∇2V =
κ

2
|∇φ|2 , (3)

V∇2φ = gij∇iφ∇jV . (4)

The standard Hamiltonian constraint

R = R1̂1̂ +R2̂2̂ +R3̂3̂ =
κ

V 2
|∇φ|2 , (5)

follows as expected.



Following Beig and Schoen we assume that we have a totally geodesic

surface S with Gauss-curvature K, that separates two, possibly charged,

black holes. The totally geodesic surface could arise as the fixed point

set of a Z2 isometry.

R1̂1̂ +R2̂2̂ = 2K +R3̂3̂ (6)

Taking the trace of (2) with respect to the metric on S gives

R1̂1̂ +R2̂2̂ =
1

V
∇2
SV +

κ

V 2
|∇3̂φ|

2 (7)

Thus we arrive at

K =
1

V
∇2
SV +

κ

2V 2
(|∇3̂φ|

2 − |∇1̂φ|
2 − |∇2̂φ|

2) , (8)



In the neutral case, φ = 0, the strategy of Beig and Schoen was to

note that
∫

S
KdA = 0 =

∫

S
|∇SV

V
|2 , (9)

Thus S is an equipotential of V . Then the boundary conditions implies

that the harmonic function V = 1 and hence Rij = 0 and the solution

is flat.



The argument extends to the electrostatic case straight forwardly if

we can assume that ∇Sφ = 0, that is if S is an equipotential of the

electrostatic potential φ.

Our assumptions would hold if we had a static system of charged

bodies invariant under an isometric action of Z2 which stabilizes S

pointwise and under which the electric field is odd, i.e. for unlike

Z2 : ∇φ → −∇φ . (10)

This is the analogue of the situation considered by Coleman et al. for

solitons and in Kenneth et al. for Casimir forces.



These results are consistent with previous work on axisymmetric Weyl

metrics in which the black holes are represented as rods ∗ The argu-

ment also goes through for Einstein-Maxwell-Dilaton theory but that

is most easily seen using a slightly streamlined formalism described

later.

∗G. W. Gibbons,Non-Existence Of Equilibrium Configurations Of Charged Black
Holes, Proc. Roy. Soc. Lond. A 372 (1980) 535.



Rotating black holes We re-write the metric as

ds2 = −e2Udt2 + e−2Uγijdx
idxj . (11)

More generally for stationary metrics we write

ds2 = −e2U(dt+ ωidx
i)2 + e−2Uγijdx

idxj . (12)

We refer to U as the Newtonian potential and define the curvature

of the Sagnac connection by

F = dω , Fij = ∂iωj − ∂jωi . (13)

We use Hodge duality and one of the Einstein equations and in di-

mension three to introduce a twist potential

⋆γF = e−4Udψ . (14)



The vacuum Einstein equations may then be cast in as Euler Lagrange

equations of the form (modulo boundary terms)
∫ √

γd3x(R̃− 2γij(∂iU∂jU +
1

2
e−4U∂iψ∂jψ)) , (15)

where R̃ is the scalar curvature of the metric γij. Thus

R̃ij = 2∂iU∂jU +
1

2
e−4U∂iψ∂jψ (16)



It follows that Now we evaluate the Gauss-curvature of the totally

geodesic surface S assuming that it is totally geodesic wrt the metric

γ.

2K̃ = −2Gijn
inj , (17)

= 2∂1̃U∂1̃ + 2∂2̃U∂2̃ − 2∂3̃U∂3̃ (18)

+
1

2
e−4U(∂1̃ψ∂1̃ψ+ ∂2̃ψ∂2̃ψ − ∂3̃ψ∂3̃ψ) , (19)

where Gij is the Einstein tensor of the metric γij , ni is the unit normal

to S wrt to metric γij and the 2̃ indicates a component in a frame

which is orthonormal wrt to the metric γij, .

No integration by parts is required to establish the result. However

we do need a Z2 symmetry of both γij and U , in the latter case to

ensure that ∂3̃U = 0. We also need ∂3̃ψ = 0.



This condition may be better understood by introducing a gravito-

magnetic field Bi by

B = ⋆γF = e−4Udψ , (20)

so that

2K̃ = −2Gijn
inj , (21)

= 2∂1̃U∂1̃ + 2∂2̃U∂2̃ − 2∂3̃U∂3̃ (22)

+
1

2
e4U(B1̃B1̃ +B2̃B2̃ −B3̃B3̃) . (23)



The condition for an attractive, i,e positive, contribution to the Gauss

curvature from the gravito-magnetic field is that B3̃ = Bin
i = 0.

This the field lines must lie in the surface S. Now a spinning object

generates a gravito-magnetic dipole field and and two symmetrically

placed such dipoles with spins pointing along the direction joining

them, will give vanishing field in the surface if they are anti-aligned.

If the spins are orthogonal, they should also be anti-aligned. Thus

the natural assumption on the gravito-magnetic field is that it is odd

under the Z2 reflection



In linear theory, at large separation r = |r|, the mutual potential energy

of two spinning bodies with angular momentum J1 and J2 is given by

Wald ∗
G

c2r5
(3(r.J1)(r.J2) − r2(J1.J2)) . (24)

This gives an attractive force if J1 = −J2 and repulsive force if J2 =

+J1. Our results are consistent with this.

∗R. Wald, Gravitational spin interaction, Phys. Rev. D 6 (1972) 406.



Our results are also consistent with the behaviour of explicit exact

double Kerr solutions obtained using solution-generating techniques

or general existence theorems of Weinstein ∗ . These exhibit conical

singularities along the axis between the two sources which may be

interpreted as a strut or rod in tension which holds the two black

holes apart. For a recent detailed discussion see a recent papers of

Herdeiro et al. †

∗G. Weinstein, N-black hole stationary and axially symmetric solutions of the Ein-
stein/Maxwell equations. Comm. Partial Differential Equations 21 (1996), 1389-
143,On the force between rotating co-axial black holes. Trans. Amer. Math. Soc.
343 (1994), 899–906, On rotating black holes in equilibrium in general relativity.
Comm. Pure Appl. Math. 43 (1990) 903–948.

†C. A. R. Herdeiro and C. Rebelo, On the interaction between two Kerr black holes,
JHEP 0810 (2008) 017 [arXiv:0808.3941 [gr-qc]] C. A. R. Herdeiro, C. Rebelo,
M. Zilhao and M. S. Costa, A Double Myers-Perry Black Hole in Five Dimensions,’
JHEP 0807 (2008) 009 [arXiv:0805.1206 [hep-th]]



Higher dimensions. In n+1 , N > 3 spacetime dimensions, we can’t

use the Gauss-Bonnet theorem.

However the n − 1 dimensional surface S is asymptotically flat and

has zero ADM mass. Thus we can use the Positive Mass Theorem

as long as the scalar curvature of S is non-negative.

As Leibniz would have said: Ladies and Gentlemen, let us calculate.



The metric is of the form

ds2 = −e2U(dt+ ψidx
i)2 + e

− 2U
n−2 hijdx

idxj (25)

We define ωij = ∂[iψj]. There are the following identities:

Rij = Rij +
n− 1

n− 2
(DiU)(DjU) − e

−2U n−3
n−2

(

2ωikωj
k − 1

n− 2
hij ωklω

kl
)

(26)

e
2U n−1

n−2 ∆hU = R00 − e
8U 1

n−2 ωklω
kl (27)

e−UDi
(

e
2U n−1

n−2 ωij

)

= Rjo (28)



Assume that the normal derivative of U across the (n − 1) - surface
S be zero and also that the pull-back of ωij to S be zero.
When Rij = 0, Eq.(7) implies that

Rnn = −2 e
−2U n−3

n−2
n− 3

n− 2
ωnαω

nα (29)

and

Rα
α =

n− 1

n− 2
(DαU)(DαU) + 2 e

−2U n−3
n−2

1

n− 2
ωnαω

nα (30)

Now the Gauss equation implies that

Rα
α = R + Rnn − (tr k)2 + tr(k2) , (31)

where R is the Ricci scalar of S. Thus, if S is totally geodesic, R is
given by

R =
n− 1

n− 2
(DαU)(DαU) + 2 e

−2U n−3
n−2 ωnαω

nα (32)



In particular the scalar curvature of S, R, is non-negative.

The rest of the argument is similar to the 3+1 dimensional case.

We also derived the analogue of Wald’s formula for the force between

spinning objects in higher dimensions and checked that our results are

consistent with it.



To calculate the sign of the gravitational spin-spin force (SSF), fol-

lowing Wald, use Mathisson-Fock-Papapetrou, i.e.

Fi = −1

2
S′jkRjki0 large r (33)

in asymptotically flat coordinates. Here S′ij is the spin tensor of a

test particle. Now from the Killing identity

∇µ∇νξλ = Rνλµρ ξ
ρ (34)

applied to the Killing vector ξµ∂µ = ∂t. Using the form

ds2 = −e2U(dt+ ψi dx
i)2 + e

− 2U
n−2 hij dx

idxj (35)

and ωij = ∂[iψj], we find that

∂iωjk = Rjki0 (36)



to leading order. For a stationary rotating spacetime in n+1 dimen-

sions (se e.g. Myers-Perry) we have that

ψi ∼ −Sijx
j

rn
(37)

where we have omitted a positive N - dependent factor. It follows

that the SSF is attractive (resp. repulsive) whenever the quantity

ωijS
′ij is negative (resp. positive), which in turn is the same as the

quantity

SijS
′ij − nSijS

′i
kn
jnk (38)

being negative (resp. positive), where ni = xi

r . Let Sn be the (N−1) -

plane in Rn through the origin with normal ni and Φn be the reflection

at that plane, i.e. the involution xi 7→ x̄i = xi − 2(x, n)ni. The map



Φn acts by pull-back on the covector field ψi(x) as

(Φ⋆
nψ)i = ψ̄i ∼ −S̄ijx̄

j

r̄n
, (39)

where S̄ij = Sij + 4nkSk[inj]. We call the spin tensor S′
ij aligned with

Sij when S′
ij = −S̄ij (and anti-aligned when S′

ij = S̄ij). For n = 3 note

that alignment means that L′
i = Li − 2(n, L)ni, where Sij = ǫijkL

k.

When S′ is aligned with S, the sign of (11) is opposite to that of

SijS
ij + (n− 4)SijS

i
kn
jnk (40)

The expression (13) is positive definite for n ≥ 3 (for n = 3 use Li to

see this). We conclude that aligned spins are attractive.

Now let ψi be the Sagnac connection corresponding to a linear su-

perposition of spins S and S′, located at points, say a and −a, which



are reflections under Φn of each other and where S′ = −S̄. It fol-

lows that Φ⋆
nψ = −ψ and thus Φ⋆

n ω = −ω. So, finally, we have that

Φ⋆
n ω|Sn = 0. Thus a superposition of two aligned spins leads exactly

to the situation covered by our theorem



Birkhoff’s invariant and Thorne’s Hoop Conjecture ∗ Thorne’s original

Hoop Conjecture † was that

Horizons form when and only when a mass m get compacted

onto a region whose circumference in EVERY direction is C ≤
4πM .

∗G. W. Gibbons
†K S Thorne, Nonspherical Gravitational Collapse: A Short Review in Magic
without Magic ed. J Klauder (San Francisco: Freeman) (1972)



The capitalization “EVERY ”was intended to emphasis the fact that

while the collapse of oblate shaped bodies the circumferences are all

roughly equal, in the prolate case, a the collapse of a long almost

cylindrically shaped body whose girth was never the less small would

not necessarily produce a horizon. However, as proposed, the state-

ment is so imprecise as to render either proof or disproof impossible.

Presumably for the mass we could take the ADM mass, MADM , but

what about the circumference of the hoop?



We can assume that the horizon ∗ or apparent horizon † is topologically

spherical ‡

Suppose that S = {S2, g} is a sphere with arbitrary metric g and

f : S → R a function on S with just two critical points, a maximum

and a minimum. Each level set f−1(c), c ∈ R has a length l(c) and

for any given function f we define

β(f) = maxc l(c) . (41)

∗S. W. Hawking, Black holes in general relativity. Comm. Math. Phys. 25 (1972),
152-166.

†

‡G. W. Gibbons, The time symmetric initial value problem for black holes, Commun.
Math. Phys. 27 (1972) 87, Some Aspects of Gravitational Radiation and Gravi-
tational Collapse Ph.D. Thesis, University of Cambridge (1972), S. W. Hawking,
The event horizon , in Black holes (Les astres occlus) C. M. and B. De Witt(1973)
1-55



We now define the Birkhoff invariant ∗ β(S, g) by minimizing β(f) over

all such functions

β = inf
f
β(f) . (42)

∗G. D. Birkhoff, Dynamical systems with two degrees of freedom Trans. Amer.
Math. Soc. 18 (1918)



The intuitive meaning of β is the least length of a length of a closed

(elastic) string or rubber band which may be slipped over over the

surface S. To understand why, note that each function f gives a

foliation of S by a one parameter family of curves f = c which we

may think of as the string or rubber band at each “moment of time

”c. β(f) is the longest length of the band during that process. If

we change the foliation we can hope to reduce this longest length

and the infinum is the best that we can do. The phrase “moment

of time ”is in quotation marks because we are not regarding f as a

physical time function, merely a convenient way of thinking about the

geometry of S.



Birkhoff’s Theorem then assures us that there exist a closed geodesic

γ on S with length l(γ) = β(g). Clearly, if l(g) is the length of the

smallest non-trivial closed (i.e periodic) geodesic then

l(g) ≤ β(g) . (43)

It seems therefore that the Birkhoff invariant β(g) should be taken as

a precise formulation of Thorne’s rather vague notion of circumfer-

ence.Thus we make the following

Conjecture: For an outermost marginally trapped surface S

lying in a Cauchy hypersurface surface Σ with ADM mass

MADM on which the Dominant Energy condition holds, then

β(g) ≤ 4πMADM . (44)



In other words, (44) is conjectured to be a necessary condition for

a marginally outermost trapped surface. Bearing in mind Thorne’s

comments about very prolate shaped surfaces for which β(g) can be

extremely small, it is not claimed that (44) is a sufficient condition

for a closed surface S to be trapped.

Clearly, from (43), this form of the hoop conjecture implies

l(g) ≤ 4πMADM , (45)

and therefore a counter example to (45) would be a counter example

to (44).



The Kerr-Newman Horizon We first test the conjecture on the general

charged rotating black hole. In standard notation, the metric on the

horizon is

g = ds2 = (r2+ + a2)((1 − x2 sin2 θ)dθ2 +
sin2 θdφ2

1 − x2 sin2 θ
) , (46)

with

x2 =
a2

r2+ + a2
. (47)

This is clearly foliated by the orbits of the group of rotations generated

by by ∂
∂φ and we take f = cos θ.



That is, we are thinking of the coordinate θ as a function on S. In

this case the greatest length of the small circles, i.e. of the orbits, is

le, the length of the of the equatorial geodesic at θ = π
2 and we have

β(cos θ) = le = 2π(r+ +
a2

r+
) = 2π(2M − Q2

r+
) ≤ 4πM . (48)

The right hand side of (48) is certainly an upper bound for the Birkhoff

invariant and so the conjecture certainly holds in this case.



However the horizon is prolate in character, in the sense that the polar

circumference lp which is the length of a meridional geodesic lp (i.e.

one with φ = constant and φ = constant + π ), is

lp =
√

r2+ + a2
∫ π

0

√

1 − x2 sin2 θ dθ . (49)

In fact taking f = sin θ cosφ, we have

β(sin θ cosφ) = lp , (50)

and since
√

r2+ + a2 ≤ r+ +
a2

r+
, (51)

we have

β(g) ≤ lp ≤ le ≤ 4πM . (52)



Despite being prolate, the Gaussian curvature K of the surface is

given by

K =
(r+

2 + a2)(r2+ − 3a2 cos2 θ)

(r+
2 + a2 cos2 θ)3

, (53)

and can become negative at the poles θ = 0, π as discovered by Smarr
∗ .

∗L. Smarr, Surface Geometry of Charged Rotating Black Holes, Phys Rev D 7

(1973) 289



The Kerr-Newman metrics have been generalized to include up to

four different charges associated with four different abelian vector

fields. In the subclass for which only two charges are non-vanishing

we can use these metrics to examine the conjecture. The energy

momentum tensor of the system satisfies the Dominant Energy The

horizon geometry is given by

ds2 = Wdθ2 +
(r+1r+2 + a2)2

W
sin2 θ dφ2 , (54)

with

W = r+1r+2 + a2 cos2 θ . (55)

and

r+1 = r+ + 2m sinh2 δ1 , r+2 = r+ + 2m sinh2 δ2 (56)



with r+ the larger root of r2 − 2mr + a2 = 0 and δ1 and δ2 two

parameters specifying the two charges. If δ1 = δ2 we obtain the

Kerr-Newman case.



Just as the horizon geometry of the Kerr-Newman solution is isometric

to that of the neutral Kerr, so in this more general case, we find

an isometric horizon geometry. Of course the interpretation of the

parameters occurring in the metric is different, but the geometry is

the same. Thus

β(g) ≤ lp ≤ le = 2π(
√
r+1r+2 +

a2

√
r+1r+2

) . (57)

Now for positive x, y, z,

xy ≤ 1

4
(x+ y)2 , =⇒

√

(z + x)(z + y) ≤ z +
1

2
(x+ y) . (58)

Thus,

√
r+1r+2 ≤ r+ +m(sinh2 δ1 + sinh2 δ2) (59)



and

a2

√
r+1r+2

≤ a2

r+
, (60)

Thus

(
√
r+1r+2 +

a2

√
r+1r+2

) ≤ r+ +m(sinh2 δ1 + sinh2 δ2) +
a2

r+
. (61)

But

2m = r+ +
a2

r+
, (62)

and the ADM mass is given by

MADM = 2m+ 2m(sinh2 δ1 + sinh2 δ2) (63)



Thus

β(g) ≤ 4πMADM , (64)

and the conjecture holds in this case. It would be interesting to check

it in the four charge case, but the algebra appears to be rather more

complicated.



Collapsing Shells and Convex Bodies This is a class of examples ∗ in
which a shell of null matter collapses at the speed of light in which the
apparent horizon S may be thought of as a convex body isometrically
embedded in Euclidean space E3. In this case one has

8πMADM ≥
∫

S
HdA , (65)

where H = 1
2(

1
R1

+ 1
R2

) is the mean curvature and R1 and R2 the
principal radii of curvature of S and dA is the area element on S. The
right hand side is called the total mean curvature and it was shown
by Álvarez Paiva † that in this case that

β(g) ≤ 1

2

∫

S
HdA . (66)

∗G. W. Gibbons, Collapsing Shells and the Isoperimetric Inequality for Black Holes,
Class. Quant. Grav. 14 (1997) 2905 [arXiv:hep-th/9701049].

†J .C. Álvarez Paiva, Total mean curvature and closed geodesics. Bull. Belg.
Math. Soc. Simon Stevin 4 (1997) 373–377.



Combining Álvarez Paiva’s (66) with (65) establishes the conjecture

(44) in this case.



In fact the proof is close to the ideas of Tod. If n is a unit vector we

define the height function on S ⊂ E3 by

h = n.x , x ∈ S . (67)

Let Sn be the orthogonal projection of the body S onto a plane with

unit normal n and let C(n) = l(∂Sn) be the perimeter of Sn. Then

β(g) ≤ β(h) ≤ C(n) . (68)

Now
∫

S
HdA =

1

2π

∫

S2
C(n)dω , (69)

where dω is the standard volume element on the round two-sphere

S2 of unit radius. Thus averaging (68) over S2 and using (69) gives

(66).



Quasi-Normal Mass

Some recent constructions of Yau et al. have made us of isometric

embeddings of apparent horizons into euclidean space E3. The ideas

described here may be relevant.



The Penrose inequality It is now well established (e.g. Huisken and

Ilmanen, Bray) that the area A(g) of the outermost marginally trapped

surface should satisfy Penrose’s isoperimetric type conjecture that
√

πA(g) ≤ 4πMADM . (70)

Evidently, if we could bound β(g) above by by
√

πA(g) we would have a

proof of my version (44) of the Hoop conjecture. On the other hand,

if we can bound
√

πA(g) above by β(g), then the Hoop conjecture

would imply the Penrose conjecture.

This raises the question of what is known about bounds for A(g),

β(g), l(g) and other invariants, either for a surface in general, or one

with some additional restrictions.



We begin by noting that the Riemannian metric g on S allows us to

define a distance d(x, y) = d(y, x), x, y ∈ S which is the infinum of the

length of all curves from x to y. Then

b(x) = max
y

d(x, y) (71)

is the furthest we can get from x. The then define

e(g) = min
x
b(x) = min

x
max
y

d(x, y) (72)

E(g) = max
x

b(x) = max
x

max
y

d(x, y) (73)

Hebda provides a lower bound for A:

√

A(g) ≥ 1√
2
(2e(s) − E(g)) . (74)



Using (70) we get

4πMADM ≥
√

π

2
(2e(s) −E(g)) , (75)

For the sphere the right hand side of (74) is
√

2π3MADM which is

satisfied but not sharp. There seems therefore no reason to choose

C(g) =
√

π
2(2e(s) −E(g)), in order to sharpen Thorne’s conjecture.



Another lower bound for the area has been given by Croke [?]. If,

as above, l(g) is the length of the shortest non-trivial geodesic on S,

then Croke proves that
√

A(g) ≥ 1

31
l(g) . (76)

This is again, far from the best possible result, which Croke conjec-

tures to be
√

A(g) ≥ 1

3
1
42

1
2

l(g) , (77)

which is attained for two flat equilateral triangles glued back to back.

If we use (70 ) and (77 we obtain

(
π2

12
)
1
4l(g) ≤ 4πMADM . (78)



If one takes C(g) = l(g), then (78) is weaker than Thorne’s suggestion

and taking C(g) = (π
2

12)
1
4l(g) looks rather perverse, and in any case

there is a problem about when it is attained. Moreover, since β(g) ≥
l(g), we cannot easily relate (78) to my form of the conjecture (44).

Curiously however, for a special class of surfaces, we can improve

considerably on (74) or (78).



Horizons admitting an anti-podal map Many results for general sur-

faces rely on on the existence of non-null homotopic closed curves.

For a surface with spherical topology no such curves exist. However

it is possible to restrict attention to the special class of surfaces for

which Z2 acts freely and isometrically such that x→ Ix. The quotient

S2/I ≡ RP
2 and Pu provides a lower bound forA in terms of the the

systole sys(S/I), i.e. the length of the shortest non-null homotopic

curve:

√

A(S/I) ≥
√

2

π
sys(S/I) . (79)

Now the shortest non-null homotopic curve on S/I is a closed geodesic

which lifts to a closed geodesic of twice the length on S, thus

sys(S/I) = min
x

d(x, Ix) ≤ b(x) ≤ e(g) , (80)



where b(x) and e(g) are taken on the spherical double cover.



If, as before, l(g) is the length of the shortest non-trivial geodesic on

S, then for this class of metrics

√

A(g) ≥ 2√
π

sys(S/I) ≥ l(g)√
π

(81)

and hence, using (70) we obtain for this class of metrics,

l(g) ≤ 4πMADM , (82)

i.e. the inequality (45) which is a consequence of my version of the

hoop conjecture (44). Thus no counter example to to my conjecture

can be constructed within the class of horizons admitting an antipodal

isometry.



Of course (45) is of the form of Thorne’s suggestion, if we take the

circumference C = l(g). However l(g) does not carry with it the idea

of the least circumference in all directions. I have argued above that

it is β(g) which better captures that notion, and so I prefer to think of

(45) as a consequence of the more basic inequality (44) and the fact

that (45) holds in this special case as a confirmation of the general

plausibility of this line of argument.



Injectivity and Convexity Radii

The literature on area, the lengths of geodesics etc is often couched

in terms of the injectivity radius i(g) and the convexity radius c(g).

In the sequel we mainly follow papers of Berger. The definitions are

valid for any dimension.

The injectivity radius i(x) of a point x ∈ S is the supremum of the

distances out to which which the exponential map is a diffeomorphism

onto its image. The injectivity radius i(g) of the manifold is the

infinum over all points in S of i(x). In the case of an axisymmetric

body for which the metric may be written as

ds2 = R2{dθ2 + a2(θ)dφ2} (83)



with R an overall constant setting the scale, 0 ≤ θ ≤ π, the injectivity

radius of the north (θ = 0) or south (θ = πpole is 1
2Cp = πR and

i(g) ≤ 1

2
Cp . (84)

Now local extrema of a(θ) correspond to azimuthal geodesics. If the

Gaussian curvature is positive, there will only be one, and define Ce
as its length. Otherwise Ce as the smallest such length.

l(g) ≤ Cp , l(g) ≤ Ce (85)

The convexity radius c(x) of a point x is the largest radius for which

the geodesics ball Bc(x) centred on x is geodesically convex, that is

every point in Bc(x) is connected by a unique geodesic interval lying

entirely within B(x). The convexity radius c(g) of the manifold is the



infinum over all points in S of c(x). On the round unit-sphere (R = 1)

we have i = π and c = π
2.

Now Berger proves that

l(g) ≥ 2c(g) . (86)

and hence

β(g) ≥ 2c(g) (87)

Thus in the case of horizons admitting an antipodal map, we can

combine Pu’s result and (70 to obtain

2c(g) ≤ 4πMADM , (88)

in the case that my form of the hoop conjecture (44) holds we obtain

from (87) the same result. In fact Klingenberg has shown that either

l(g) = 2i(g) (89)



or there is a geodesic segment of length l(g) whose end points are

conjugate. Finally for metrics on S2 we have the so-called isembolic

inequality
√
πA ≥ 2i(g) ≥ 4c(g) (90)

and hence by (70)

4πMADM ≥ 2i(g) ≥ 4c(g) . (91)


