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Content of Lecture 1

• Simple BPS/non-BPS brane configurations

sets the scene the non-BPS solutions in Lecture 2+3, and for the
general non-extreme solutions.

• Some general non-extremal black holes

• Some quantization conditions satisfied by the general
non-extreme black holes

• Extremal limits, BPS and otherwise.
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Lecture 2+3

Focus on more recent work:

• The extreme non-BPS seed solution

• Constituent Model for non-BPS black holes
motivated by some remarkable cancellations

• Attractor behavior and more surprising cancellations in the
classical moduli space.

References for the full lecture series:

M. Cvetic and FL: hep-th 9705192, 9708090, 9712112

FL: hep-th 9702153, 9806071, 9909102, 0002166

E. Gimon, FL, J. Simon: arXiv: 0710.4264, 0903.0719.
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Omitted Aspects of non-BPS BHs

• Higher Derivative Corrections.

Entropy extremization, c-extremization, and anomalies are some
techniques for these studies.

• AdS2/CFT, Kerr/CFT.

Several approaches to the entropy counting are under very active
investigation.

• Interesting Compactifications

We just consider tori here.
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The Setting
• We mostly work in maximally supersymmetric SUGRA: N = 8 in
D = 4.

• The discussion for N = 4 in D = 4 is almost identical - no details
will be given.

• Often useful to lift the solutions to N = IIA in D = 10 or N = 1
SUGRA in D = 11.

• Alternative view point: truncate to the STU model. This is N = 2
SUGRA in D = 4 with prepotential

F =
X1X2X3

X0

This model has an obvious embedding in N = 8, but it is also a
good starting point for generalization to other N = 2 models.
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The D4-brane Solution

The 10D IIA SUGRA solution representing a D4-brane at low energy:

ds2 =
1√
H

(−dt2 + dz2
‖) +
√
Hdz2

⊥ ,

e−2Φ =
√
H

A
(M)
t1234 = H−1 (the magnetic five− form ∗A(M) = F4)

Among the transverse z⊥, single out two compact coordinates y⊥ and
write remaining spatial dimensions in radial coordinates

dz2
⊥ = dy2

⊥ + (dr2 + r2dΩ2
2)

Take the harmonic function on the transverse space:

H = 1 +
Q

r
.

H is independent of y⊥ even though those are transverse to the D4
— D4 is smeared in those two directions. This gives the 4D
interpretation of the 10D solution.
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The D0-brane Solution

The 10D IIA SUGRA solution representing a D0-brane at low energy:

ds2 = − 1√
H
dt2 +

√
Hdz2

⊥ ,

e−2Φ =
1

H3/2

At = H−1

Single out six compact coordinates y⊥ and write remaining spatial
dimensions in radial coordinates

dz2
⊥ = dy2

⊥ + (dr2 + r2dΩ2
2)

Take the harmonic function on transverse space that smears D0’s
over six compact directions y⊥:

H = 1 +
Q

r
.
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The Canonical Black Hole
0 1 2 3 4 5 6 7 8 9

D4 x x x x x
D4 x x x x x
D4 x x x x x
D0 x

The basic solutions lend themselves to harmonic superposition. The
configuration above gives

ds2 = − 1√
H0H1H2H3

dt2 +
√
H0H1H2H3(dr2 + r2dΩ2

2)

+

√
H0H1

H2H3
dz1dz̄1 +

√
H0H2

H3H1
dz2dz̄2 +

√
H0H3

H1H2
dz3dz̄3 ,

e−2Φ =

√
H1H2H3

H3
0

.
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The Solution in 4D

The 4D dilaton is simply

e−2Φ4 = e−2ΦVol6 = 1 ,

so the 4D Einstein metric can be read off immediately

ds2
4 = − 1√

H0H1H2H3

dt2 +
√
H0H1H2H3(dr2 + r2dΩ2

2) .

The black hole entropy computed from the area is

S =
A

4G4
=

π

G4

√
Q0Q1Q2Q3 .
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Quantized Charges
The Qi are ”physical” charges that depend on moduli. The quantized
charges are related by conversion factors

C0 =

√
2G4

v6
,

C i =
√

2G4v6 ·
1

vi
,

where vi are volumes of T 2 measured in string units vi = Vi/(2πls)
2

and the overall volume is v6 = v1v2v3.

The dependence of charges on moduli is such that entropy in fact
depends on the quantized charges alone:

S = 2π
√
n0n1n2n3

This is one aspect of the attractor mechanism (see later).
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BPS and Non-BPS
The solution discussed above makes sense only when
Q0, Q1, Q2, Q3 > 0, or else the metric is singular when the harmonic
functions vanish.

But: the field strengths appear only quadratically in the action so
there are also solutions with Qi → −Qi in the field strengths, but
Qi → Qi in the harmonic functions. Alternatively: take Qi’s of any
sign, but insert |Qi| in the harmonic functions.

Convention: take Q1, Q2, Q3 > 0, and consider Q0 of either sign.

The sign is extremely important : Q0 > 0 is the BPS solution, and
Q0 < 0 is the non-BPS solution.

The two branches have many qualitative differences, exhibited in the
coming lectures.
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Supersymmetry

Type IIA SUSY has two supersymmetry generators, related by the
Dirichlet boundary conditions on the D-branes. The resulting relations
between the super-translations become

ε̃ = Γ3̂4̂5̂6̂ε
ε̃ = Γ1̂2̂5̂6̂ε
ε̃ = Γ1̂2̂3̂4̂ε
ε̃ = ∓ε

where the choices in the last relation refers to the sign of Q0.
Consistency of the first three relations give

ε̃ = −ε
so that only Q0 > 0 is consistent with supersymmetry, as claimed.
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M-theory Interpretation

We can lift the D4−D4−D4−D0 configuration to M -theory with
the result:

0 1 2 3 4 5 6 7 8 9 10
M5 x x x x x x
M5 x x x x x x
M5 x x x x x x
KK x

In this duality frame there are three M5-branes that intersect over a
line, denoted x10. The fourth charge is momentum along that line.

The change from BPS to non-BPS is just the sign of the momentum
along x10.

However, M5-branes are chiral so such a change is not a symmetry.
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Microscopics: the Upshot
The relation to microscopics is invariably through Cardy’s formula for
the asymptotic density of states in a unitary CFT

S = 2π

√
ch

6
This is the entropy of a 1D gas with c = 6n1n2n3 degrees of freedom
and energy (in units of the box size) h = n0. It gives agreement with
the area law.

The central charge can be derived in many different ways including:

• Analysis of D-brane bound states.

• Anomaly inflow on M5’s.

• Exploiting near horizon AdS3 symmetry.

We will not need the details of these derivations.
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Some Non-Extremal Solutions
Ultimately we would like to understand the entropy of black holes
arbitrarily far from extremality, including Scwarzchild black holes.

The natural generalization of the extremal four charge solutions
above are

ds2
4 =

−1√
H0H1H2H3

(1− 2µ

r
)dt2 +

√
H0H1H2H3(

1

1− 2µ
r

dr2 + r2dΩ2
2)

Hi = 1 +
2µ sinh2 δi

r

The gauge fields are essentially the inverse harmonic functions, but
there is an overall factor such that

Qi = µ sinh 2δi , i = 0, 1, 2, 3

Note: the entire solution is in parametric form: it is written in terms of
δi, µ, which encode the four charges and the total mass.
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Physical Thermodynamics

We can extract the physical mass from the solution

2G4M =
1

2
µ

3∑
i=0

cosh 2δi

and also find the thermodynamic entropy in parametric variables

S =
4πµ2

G4

3∏
i=0

cosh δi

The general black hole entropy is a complicated function of the four
charges and the mass.

The BPS limit: δi →∞ for i = 0, 1, 2, 3.

The non-BPS extremal limit is δi →∞, i = 1, 2, 3, δ0 → −∞.
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The Dilute Gas Limit

It is useful to relax the extremal limit to the dilute gas limit:
δi →∞, i = 1, 2, 3 with δ0 fixed.

In this limit the parametric formula for the entropy can be inverted

S = 2π

[√
n1n2n3

ε + p

2
+

√
n1n2n3

ε− p
2

]
Here p is usefully thought of as the momentum quantum number (the
terminology of the M-theory duality frame, whereas in type IIA duality
frame D0-charge p = n0).

The dimensionless energy above extremality is

ε = (M −Mext)R10
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Microscopic interpretation of entropy : c = 6n1n2n3 weakly
interacting massless particles in a box of length R10. The left- and
right-moving momenta are

hL =
ε + p

2
, hR =

ε− p
2

,

and Cardy’s formula applies for right and left movers independently

S = 2π

(√
cLhL

6
+

√
cRhR

6

)
.

The independent left and right moving temperature are formed from
the true temperature (dual to energy) and the chemical potential dual
to momentum:

βL =
1

2
(β − µ) , βR =

1

2
(β + µ) .

In the extremal limit β →∞, µ→∞, such that βL remains finite.

The physical significance of βL: it controls fluctuations of the
L-movers, those that give rise to the entropy of the black hole in the
extremal limit.
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Fractionation

An important aspect of the dilute gas model: the momenta of the
individual quanta are quantized in units of 1/(n1n2n3R10).

So wave functions of individual quanta only close on the cover, but
the total wave function does not: the total momentum is quantized in
standard units of 1/R10.

A convenient summary: there is a level matching rule on the total
charges

NR −NL =
cRhR

6
− cLhL

6
= integer ,

that is much more stringent than the implied quantization of a 1D gas

S =
π(cR + cL)

12
TL =

πc

6
TL ,

where L = n1n2n3R10 is the length of the box.
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Effective Levels

Proposal: the physics of the general class of black holes (including
Schwarzchild) is that of an ”effective string”: there are L and R
sectors, each with the modes of a chiral string.

The total level N = ch
6 (conformal weight, in units of fractionation) on

each side are quantized.

The general entropy of the black hole should be given by Cardy’s
formula

S = 2π
[√

NL +
√
NR

]
One way to find find levels: take the dilute gas expressions for NL,R

and then symmetrize with respect to the four charges.
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The proposed effective levels of the effective string are

NL =
cL
6
hL =

µ4

G2
4

(
3∏
i=0

cosh δi +

3∏
i=0

sinh δi

)2

NR =
cR
6
hR =

µ4

G2
4

(
3∏
i=0

cosh δi −
3∏
i=0

sinh δi

)2

They give the correct entropy arbitrarily away from extremality

S = 2π
[√

NL +
√
NR

]
=

4πµ2

G4

3∏
i=0

cosh δi
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A Test

A test of the model:

NL −NR =
4µ4

G2
4

3∏
i=0

cosh δi sinh δi

=
1

4G2
4

3∏
i=0

Qi

=

3∏
i=0

ni

The final line is the rewriting known from the black hole entropy.

The test: the difference NL −NR is independent of moduli, and it is
an integer. These are facts for the entire class of black holes
considered here.
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Rotation

The black holes we consider can be further generalized to include
angular momentum, so that a special case is the Kerr black hole. The
resulting solutions are very complicated.

The entropy from the area of these black holes

S = 2π
(√

NR +
√
NL

)
with

NL =
cL
6
hL =

µ2

G4

(
3∏
i=0

cosh δi +

3∏
i=0

sinh δi

)2

NR =
cR
6
hR =

µ2

G4

(
3∏
i=0

cosh δi −
3∏
i=0

sinh δi

)2

− J2
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Extremal Limits
The quantization condition remains valid in the presence of angular
momentum

NL −NR =

3∏
i=0

ni + J2

The extremal limit T → 0 can be taken in two very different ways:

NL → 0 : NR = |n0|
3∏
i=1

ni − J2 ,

NR → 0 : NL =

3∏
i=0

ni + J2 (BPS branch)

Either case corresponds to AdS2 × S2 geometry. The BPS branch is
only supersymmetric when J = 0.

Extremal Kerr: BPS branch with no charges and so
S = 2π

√
NR = 2π|J |.
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Significance of the Inner Horizon
The proposal in general involves two gasses that a free, except for
the coupling due to the matching condition.

There is a geometric interpretation of the resulting two entropies in
terms of the areas of the outer and inner horizons

SR = 2π
√
NR =

1

2

(
A+

4G4
− A−

4G4

)
SL = 2π

√
NL =

1

2

(
A+

4G4
+
A−
4G4

)
The temperatures of the gasses are related to the two surface
accelerations of the outer and inner horizons

βR = 2π

(
1

κ+
+

1

κ−

)
βL = 2π

(
1

κ+
− 1

κ−

)
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Summary
• Introduced the canonical D4-D4-D4-D0 brane configurations.

• Emphasized that the sign of Q0 determines whether the
confugation is BPS or non-BPS. This will be the starting point of
the next lecture.

• Introduced a much more general family of four-charge solutions
that includes Schwarzchild, Kerr, and Reissner-Nordström black
holes as special cases.

• Hypothesized of general microscopic structure underlying all
these black holes: it is a direct product of a BPS black hole theory
and a non-BPS black hole theory, coupled by a level matching
condition.

• Tested this hypothesis by showing the the natural level matching
condition is independent of moduli and integer quantized.
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