
Extremal Black Hole Entropy
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One of the successes of string theory has been

an explanation of the Bekenstein-Hawking en-

tropy of a class of supersymmetric black holes

in terms of microscopic quantum states.

SBH( ~Q) = ln dmicro( ~Q)

Strominger, Vafa

dmicro( ~Q): degeneracy of microstates carrying

a given set of charges ~Q

SBH( ~Q) = A/4GN

A= Area of event horizon of a black hole of

charge ~Q
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This formula is quite remarkable since it re-

lates a geometric quantity in space-time to a

counting problem.

However the Bekenstein-Hawking formula for

the entropy receives α′ and gs corrections.

Our goal is to search for an exact relation of

the form

dmacro( ~Q) = dmicro( ~Q)

dmacro( ~Q): Some generalization of the Bekenstein-

Hawking formula taking into account α′ and gs

corrections.
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We shall focus on extremal, BPS black holes.

Extremality: essential for the separation be-

tween the horizon degrees of freedom and those

living outside the horizon by an infinite throat

Supersymmetry: (probably) needed for ensur-

ing stability of extremal black holes.

Also we shall work in some fixed duality frame

so that we can clearly distinguish between clas-

sical and quantum effects.
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Plan

1. A precise proposal for dmacro( ~Q)

2. Some exact results for dmicro( ~Q) in type IIB

string theory on K3× T2.

3. Comparison of dmacro( ~Q) with dmicro( ~Q).
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Take a macroscopic configuration of charge ~Q

In general such a configuration could involve an

n centered black hole with charges ~Q1, · · · ~Qn
and hair with charge ~Qhair.

Hair: smooth normalizable deformations of the

black hole solution with support outside the

horizon(s).
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Proposal for dmacro( ~Q):

∑
n

∑
{ ~Qi}, ~Qhair∑n

i=1
~Qi+

~Qhair=
~Q

{
n∏
i=1

dhor( ~Qi)

}
dhair( ~Qhair; { ~Qi})

dhor( ~Qhor): contribution from the horizon with

charge ~Qhor

dhair: contribution from the hair of the n-

centered black hole, with the horizons carrying

charges ~Q1, · · · ~Qn, and the hair carrying charge
~Qhair.

Our main focus on this talk will be on dhor( ~Q).
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Our goal: Find a macroscopic prescription for

computing dhor( ~Q)

To leading order in gs but all orders in α′,
dhor( ~Q) is given by the exponential of the Wald

entropy

– can be computed using the entropy function

formalism

We shall begin with a lightening review of the

results of the entropy function formalism.
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How do we define an extremal black hole in a

general higher derivative theory of gravity?
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Reissner-Nordstrom solution in D = 4:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ
2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2+
, r =

2ρ− ρ+ − ρ−
2λ

and take λ→ 0 limit.

ds2 = ρ2+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2+(dθ2 + sin2 θdφ2)
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ds2 = ρ2+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2+(dθ2 + sin2 θdφ2)

This describes an AdS2 × S2 space and has

SO(2,1)× SO(3) isometry.

The electromagnetic fields at the horizon also

have SO(2,1)× SO(3) isometry.

More generally, for all known extremal black

holes in all dimensions, the time translation

symmetry gets enhanced to SO(2,1) in the

near horizon limit.
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Postulate: An extremal black hole has an AdS2

factor / SO(2,1) isometry in the near horizon

geometry.

Regarding all other directions (including angu-

lar coordinates) as compact we can regard the

near horizon geometry of an extremal black

hole as

AdS2 × a compact space (fibered over AdS2)

Note: Magnetic charges are encoded in the

fluxes through the compact space.
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Consider string theory in such a background

containing two dimensional metric gµν and U(1)

gauge fields A(i)
µ among other fields.

The most general field configuration consis-

tent with SO(2,1) isometry:

ds2 ≡ g
(2)
µν dx

µdxν = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei, · · · · · · · · ·

L(2)(v,~e, · · ·): The Lagrangian density evalu-

ated in this background.
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For black hole with electric charge ~q, define

E(~q, v, ~e, · · ·) ≡ 2π
(
ei qi − vL(2)

)
One finds that

1. All the near horizon parameters are obtained

by extremizing E with respect to v, ei and the

other near horizon parameters.

2. Swald(~q) = E at this extremum.

Thus in the classical limit

dhor(~q) = eSwald(~q) = eE
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We shall propose an expression for dhor(~q) in

the full quantum theory as a path integral over

the Euclidean continuation of the near horizon

geometry.

→ Quantum entropy function
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ds2 = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei

Euclidean continuation:

t = −iθ, r = cosh η, 0 ≤ η <∞

This gives

ds2 = v
(
dη2 + sinh2 η dθ2

)
, → θ ≡ θ+ 2π,

F
(i)
θη = iei sinh η

→ A
(i)
θ = −i ei (cosh η−1) = −i ei (r−1) .
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Proposal for the quantum entropy function dhor(~q)

dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite
AdS2

〈 〉AdS2
: unnormalized path integral over vari-

ous fields of string theory on euclidean global

AdS2.

∮
: a closed contour at the boundary of AdS2.

‘finite’: Infrared finite part of the amplitude.

18



We need to regularize the infinite volume of
AdS2 by putting a cut-off r ≤ r0f(θ) for some
smooth periodic function f(θ).
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Cut-off: r ≤ r0f(θ) for some smooth periodic
function f(θ).

The superscript ‘finite’ refers to the finite part
of the amplitude defined by expressing it as

eCL × finite part

L: length of the boundary of AdS2.

C: A constant

The definition can be shown to be independent
of the choice of f(θ).

We shall work with f(θ) = 1.
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The role of

exp[−iqi
∮
dθ A

(i)
θ ]

We could absorb this into the boundary terms

in the action.

However we have displayed it explicitly since it

plays a special role.

It is the only term in the boundary action that

involves the gauge field and not its field strength.

Why do we need this term?
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In AdSd the Maxwell’s equation has two solu-

tions in the asymptotic region:

A
(i)
θ ∼ r−d+3: electric field mode

A
(i)
θ ∼ constant: constant mode

Thus for d ≥ 4 the constant mode of the gauge

field is dominant at infinity.

We fix the constant mode by a boundary condi-

tion and integrate over the electric field mode.
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However for d = 2,

Electric field mode: A(i)
θ ∼ r

Constant mode: A(i)
θ ∼ constant

Thus the electric field mode is dominant

→ we must work in a sector with fixed asymp-

totic electric field ı.e. fixed charge, and allow

the constant mode to fluctuate.
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However now the extremization of the action

no longer gives the classical equations of mo-

tion.

The variation of the action contains boundary

terms proportional to δA(i)
θ which are no longer

constrained to vanish by boundary condition.

→ we need to add new boundary term in the

action to cancel the boundary terms propor-

tional to δA
(i)
θ .

The exp[−iqi
∮
dθ A

(i)
θ ] precisely achieves this

task.
24



dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite
AdS2

We shall try to justify this proposal by showing

that

1. In the classical limit

ln dhor(~q) → Swald(~q)

2. This fits in with the usual rules of AdS/CFT

correspondence.

25



Classical limit:〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

In the classical limit this reduces to

e−S exp[−iqi
∮
dθ A

(i)cl
θ ]

A
(i)cl
θ = −i ei (r0−1)

S = Euclidean action = Sbulk + Sboundary
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Sbulk = −
∫ r0
1

dr
√

det g dθL(2) = −(r0−1)2πvL(2)

−iqi
∮
dθ A

(i)cl
θ = −2π ~q · ~e (r0−1)

Sboundary = −2πKr0 +O(r−1
0 )

K: some constant which depends on the de-

tails of the boundary terms.

The length of the boundary is

L = 2π
√
vr0 +O(r−1

0 ) .

27



This gives〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

=
[
eL(vL(2)+K−~e·~q)/

√
v+2π(~e·~q−vL(2))+O(r−1

0 )
]

Extracting the finite part we get

dhor(~q) ' exp
[
2π(~e · ~q − vL(2))

]
= exp [Swald(~q)]

Note: A change in the boundary action changes

K but the finite part is insensitive to such a

change.
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AdS2/CFT1 correspondence

Euclidean AdS2 is the Poincare disk.

→ its boundary is a circle of circumference L.

Thus AdS/CFT correspondence →〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

= ZCFT1
= Tr~q e

−LH

Tr~q: trace over states of charge ~q in CFT1

H: Hamiltonian of dual CFT1
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Thus we have, for large L,〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

= Tr~q e
−LH

= dCFT (~q)e
−E0L .

E0, dCFT (~q): ground state energy, degeneracy

Taking the finite part we get

dhor(~q) = dCFT (~q)

Note: In the more conventional units we take
the length of the boundary to be finite, but
scale energies by L.

Only the ground states of the CFT survive.
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What can we say about CFT1?

It should be identified as the infrared limit of

the quantum mechanics associated with the

microscopic description of the black hole, after

stripping off the hair contribution.

Thus dCFT together with the hair contribution

should give us the microscopic degeneracies.

– agrees with our proposal.
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Degeneracy or Index?

Often in the microscopic theory we compute
the index rather than degeneracy.

– protected against quantum corrections.

e.g. in D = 4 we calculate the helicity trace
index

B2n = (−1)n Tr ~Q

[
(−1)2h (2h)2n

]
4n: Number of broken SUSY generators

Thus on the black hole side also we should
compute the index.
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The (2h)2n factor is needed to absorb the fermion

zero modes associated with broken SUSY.

For a black hole solution these zero modes

form part of hair degrees of freedom.

Thus B2n for the black hole takes the form

∑
n

∑
{ ~Qi}, ~Qhair∑n

i=1
~Qi+

~Qhair=
~Q

{
n∏
i=1

Ihor( ~Qi)

}
B2n;hair( ~Qhair; { ~Qi})

Ihor: Witten index associated with the horizon
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Since in D = 4 the black hole horizons always

have h = 0 we get

Ihor( ~Qhor) = dhor( ~Qhor)

This gives the following formula for the index

on the macroscopic side

∑
n

∑
{ ~Qi}, ~Qhair∑n

i=1
~Qi+

~Qhair=
~Q

{
n∏
i=1

dhor( ~Qi)

}
B2n;hair( ~Qhair; { ~Qi})

– can be computed using quantum entropy

function.
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Summary

We have a concrete proposal for relating the

extremal black hole entropy to the microscopic

degeneracy

dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite
AdS2

should agree with the microscopic degenera-

cies after removing the hair contribution.
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1. It reduces to the relation between wald en-

tropy and statistical entropy in the classical

limit.

2. It is in the spirit of AdS/CFT correspon-

dence.
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Results for dmicro( ~Q) in type IIB string the-
ory on K3× S1 × S̃1

We shall focus on a special class of states in
this theory consisting of

D5/D3/D1 branes wrapped on 4/2/0 cycles
of K3 × (S1 or S̃1)

Q: D-branes charges wrapped on 4/2/0 cycles
of K3 × S̃1

P : D-branes charges wrapped on 4/2/0 cycles
of K3 × S1

Q and P are each 24 dimensional vectors.

37



Note: The ~Q used earlier now stands for (Q,P )

B6(Q,P ): microscopic 6th helicity trace index
of quarter BPS states carrying charges (Q,P ).

Besides depending on the charges, B6(Q,P )
also depends on the asymptotic values of the
moduli fields as the degeneracy can jump as
we cross walls of marginal stability.

In order to facilitate comparison with the macro-
scopic results it will be convenient to choose
the asymptotic moduli such that only single
centered black holes contribute to B6(Q,P ).

We shall proceed with this choice.
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Duality symmetries

The duality symmetries which take D-branes

to D-branes is given by

O(4,20;ZZ)T × SL(2,ZZ)S

O(4,20;ZZ)T : global diffeomorphism + mirror

symmetry of K3

SL(2,ZZ)S: global diffeomorphism of S1 × S̃1
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We can use duality transformations to simplify

the dependence of B6 on (Q,P ).

An invariant of O(4,20;ZZ)T × SL(2,ZZ)S:

` ≡ gcd{QiPj −QjPi}

Dabholkar, Gaiotto, Nampuri

With the help of SL(2,ZZ)S transformation any

charge vector can be brought to the form

(Q,P ) = (`Q0, P0), gcd{Q0iP0j − P0iQ0j} = 1

Banerjee, A.S.

We shall proceed with this choice.

40



Intersection form of 4/2/0 forms on K3 defines

O(4,20;ZZ) invariant inner products

Q2, P2, Q · P

One finds that for (Q,P ) = (`Q0, P0) the mi-

croscopic result for B6(Q,P ) takes the form∑
s|`
s f(Q2/s2, P2, Q · P/s)

Banerjee, A.S., Srivastava; Dabholkar, Gomes, Murthy
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f(2m,2n, p)

= (−1)p+1
∫ iM1+1/2

iM1−1/2
dρ
∫ iM2+1/2

iM2−1/2
dσ
∫ iM3+1/2

iM3−1/2
dv

e−2iπ(σm+ρn+vq) Φ10 (ρ, σ, v)−1

M1 = 2Λ
Q2√

Q2P 2 − (Q · P )2
, M2 = 2Λ

P 2√
Q2P 2 − (Q · P )2

,

M3 = −2Λ
Q · P√

Q2P 2 − (Q · P )2
.

Φ10: Igusa cusp form

Λ: a large positive number
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f(2m,2n, p)

= (−1)p+1
∫ iM1+1/2

iM1−1/2
dρ
∫ iM2+1/2

iM2−1/2
dσ∫ iM3+1/2

iM3−1/2
dv e−2iπ(σm+ρn+vq) Φ10 (ρ, σ, v)−1

For large charges

f(Q2/s2, P2, Q · P/s)

= exp
[
2π
√
Q2P2 − (Q · P )2/s

]
× Series expansion in inverse powers of charges

+Exponentially suppressed corrections

Our goal: understand this formula from macro-
scopic viewpoint.
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Macroscopic computation of B6(Q,P )

For single centered black holes

B6( ~Q) =
∑

~Qhor,
~Qhair

~Qhor+
~Qhair=

~Q

dhor( ~Qhor)B6;hair( ~Qhair; ~Qhor)

For black holes carrying D-brane charges only
hair degrees of freedom are the fermion zero
modes associated with broken supersymmetry.

(Closed string excitations do not carry D-brane
charges)

→ ~Qhair = 0, B6;hair = 1
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In this case we have

B6( ~Q) = dhor( ~Q)

dhor( ~Q): Finite part of the partition function

on AdS2 with the boundary condition that the

asymptotic values of the electric fields are fixed.

− can be expressed as sum over contributions

from different saddle points.
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The leading saddle point

K3× S1 × S̃1 ×AdS2 × S2

ds2 = v

(
dr2

r2 − 1
+ (r2 − 1) dθ2

)
+
R2

τ2

∣∣dx4 + τdx5
∣∣2

+w(dψ2 + sin2ψdφ2) + ĝmn(~u)du
mdun

v, w,R: real constants

τ = τ1 + iτ2: a complex constant ∈ UHP

ĝmn(~u): metric on K3

x4: coordinate along S̃1

x5: coordinate along S1
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There are also background RR fluxes.

Q: represent RR fluxes through the cycles of

K3 times the 3-cycle spanned by (x5, ψ, φ).

P : represent RR fluxes through the cycles of

K3 times the 3-cycle spanned by (x4, ψ, φ).
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The classical contribution to dhor(Q,P ) from
this saddle point is exponential of the Wald
entropy:

exp
[
2π
√
Q2P2 − (Q · P )2

]
IIB coupling constant at the horizon ∼ charge−2

Quantum corrections computed via path inte-
gral over AdS2

→ a multiplicative factor containing a series
expansion in inverse powers of charges

This has the structure of asymptotic expansion
of f(Q2, P2, (Q · P )2).
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In principle one should be able to calculate the

subleading corrections systematically by evalu-

ating the path integral around the saddle point

This can then be compared with the micro-

scopic result for f(Q2, P2, Q · P ).

Part of the corrections to f has been under-

stood as coming from some specific quatum

corrections to the path integral, but a com-

pletely systematic analysis has not yet been

done.

Work in progress.
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Can we understand the origin of the f(Q2/s2, P2, Q·
P/s) term for s > 1 in the macroscopic for-
mula?

We shall now argue that these arise from new
saddle points obtained by taking freely acting
ZZs orbifold of the original saddle point.

Consistency checks:

1. Classical contribution from this saddle point
must go as

exp
[
2π
√
Q2P2 − (Q · P )2/s

]

2. This saddle point should exist iff `/s ∈ ZZ
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Consider an orbifold of the leading saddle point
by the transformation

θ → θ+2π/s, φ→ φ+2π/s, x5 → x5+2π/s

At r = 1 (η = 0) the shift in θ is irrelevant.

→ the identification is (φ, x5) ≡ (φ+2π/s, x5+2π/s).

Thus the RR flux Q through the cycle at r = 1,
spanned by (x5, ψ, φ) times a cycle of K3 gets
divided by s.

Flux quantization → the orbifold is well defined
only if Q is divisible by s, ı.e. if

l/s ∈ ZZ
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Denoting the (r, θ, φ, x5) coordinates of the orb-

ifold by (r̃, θ̃, φ̃, x̃5) we get the new metric

ds2 = v

(
dr̃2

r̃2 − 1
+ (r̃2 − 1) dθ̃2

)

+
R2

τ2

∣∣∣dx4 + τdx̃5
∣∣∣2

+w(dψ2 + sin2ψdφ̃2) + ĝmn(~u)du
mdun

(θ̃+ 2π/s, φ̃+ 2π/s, x̃5 + 2π/s) ≡ (θ̃, φ̃, x̃5)
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Define

θ = sθ̃, r = r̃/s, φ = φ̃− θ̃, x5 = x̃5 − θ̃

Then

ds2 = v

(
dr2

r2 − s−2
+ (r2 − s−2) dθ2

)
+
R2

τ2

∣∣dx4 + τ(dx5 + s−1dθ)
∣∣2

+w(dψ2 + sin2ψ(dφ+ s−1dθ)2)
+ĝmn(~u)du

mdun

(θ+ 2π, φ, x5) ≡ (θ, φ, x5)

This has the same asymptotic behaviour as the

original saddle point and hence is an admissible

saddle point.
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Its contribution to dhor(Q,P ) in the classical

limit is given by

exp[Swald/s] = exp
[
2π
√
Q2P2 − (Q · P )2/s

]
This is the same behaviour as of f(Q2/s2, P2, Q·
P/s).

Thus this saddle point is the ideal candidate

for the contribution f(Q2/s2, P2, Q ·P/s) in the

microscopic formula.

Furthermore it exists iff s|`, as the case for the

term f(Q2/s2, P2, Q · P/s) in the microscopic

formula.
54



Black hole hair removal:

– a consistency check for the formula

B2n;macro(Q) =
∑
n

∑
{ ~Qi}, ~Qhair∑n

i=1
~Qi+

~Qhair=
~Q

{
n∏
i=1

dhor( ~Qi)

}
B2n;hair( ~Qhair; { ~Qi})
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Suppose two black holes have identical near

horizon geometry but different asymptotic ge-

ometries.

Suppose further that we know the appropri-

ate index for both these black holes from mi-

croscopic analysis, and can compute the hair

contribution for both the black holes.

Then by stripping off the hair contribution we

can get the ‘microscopic result’ for dhor( ~Q) for

both the black holes.

They must agree.
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An example: Banerjee, Mandal. A.S.

System 1: BMPV black hole

– A five dimensional rotating black hole in type
IIB on K3× S1.

System 2: A four dimensional black hole in
type IIB on K3 × T2 obtained by placing the
BMPV black hole in Taub-NUT

They have identical near horizon geometries
but different index and different B2n;hair

But dhor computed by stripping off B2n;hair
from the index gives the same result for both.
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