
# Quantum Black Holes:

What have we learned? Open problems.

> Erik Verlinde University of Amsterdam

# Information paradox: Hawkings argument



# Information paradox.

 Proposed "solutions": information loss
remnants
information comes out: stored in correlations (\*)

(\*) now believed by most people.

# **Unitary Evolution**

Holds for every theory with a microscopic dual description (AdS/CFT)

Can one prove unitarity in flat space? Directly, or do we need a dual theory.

# What is wrong with Hawkings argument?

Large red shifts near horizon?

Quantum gravity effects at singularity?

Are locality or causality violated?

# What is wrong with Hawkings argument?

The argument is based on QFT in curved space and uses the notion that a quantum state lives on a Cauchy slice and satisfies local factorization rules.

This is just plain wrong for a situation that involves infinite red of bleu shifts in combination with gravity.

# Does the singularity play a role?

Conveyer belt: acausal information flow.

Special final state: "bleeching".

Or does everything happen at the horizon? (\*)

# Black Hole Complementarity

Region behind the horizon does not exist for the outside observer.

RULE: there are no "Meta-observers" ('t Hooft).

A meta-observer is someone who has information about causally disconnected regions.

# Black Hole Complementarity

Horizon = "hot membrane" for outside observer.

Horizon = normal space time for infalling observer.

# **Observer Complementarity**

### RULES:

Always state questions from the point of view of one particular observer.

Never ask questions that involve two causally disconnected observers.

CLAIM: All information paradoxes are solved.

# **Observer Complementarity**

- Every observer needs to describe physics only inside his own causal patch.
- Applies to black holes, cosmology, or flat space.
- Causally disconnected regions do not exist from the point of view of the observer.
- Horizons are described by "hot membranes".

# How does information come out?

- Information gets stored on "hot membrane" near the horizon.
- As the black hole evaporates its gets emitted true unitary evolution.
- The membrane and the "thermal" radiation remain in a pure state.

"LIKE A BURNING PIECE OF COAL"

# Infalling observers.

- How to describe them? Is there a dual formulation too?
- How does it relate to the one for the asymptotic observer?
- What happens at the singularity?

# Infalling observers.

Expectation: Infalling observers can only be described as a non-isolated quantum system in terms of mixed states.

The space time picture is approximate and breaks down at the singularity.

# Infalling observers.

There is no description of infalling observers in term of pure quantum states.

# Bekenstein-Hawking formula

Reproduced microscopically for extremal case.

Can one reproduce it for generic black hole?

Is there an explanation why S = A/4G?

## The BH entropy formula

It is a generic result (like thermo and hydrodynamics)

It holds for every sensible microscopic theory with the right properties to contain gravity.

## The BH entropy formula

Newton's constant is not a true fundamental constant of nature, but an effective "phenomenological" parameter characterizing the number of fundamental d.o.f. (like the central charge for a CFT).

# The BH entropy formula

Eventually will be derived by showing that entropy behaves like an area in an emergent space-time.

- D-branes: states in "dual" weak coupling non-BH phase => strong coupling BH states.
- Unclear "where states live". Counting confirms BH-entropy but does not explain or derive it.

No other checks (loop QG, pure gravity, ...)

Black hole entropy can not be explained from a purely (super-)gravitational theory

# Does "Quantum Gravity" exist?

Is there a fundamental complete unitary theory that uses (dynamical) space time in its fundamental formulation?

Closed string theory or LQG?

There does not exist a complete microscopic theory that is formulated in terms of a dynamical space-time.

"quantum gravity"

# Fuzzball program

- Do quantum states correspond to classical geometries?
- Can pure states correspond to black holes, or is a black hole always a mixed state (thermal)?
- Is there a version of the "fuzzball" program that could be right?

# HOLOGRAPHY

- States can be represented in terms of d.o.f. on the horizon.
- Should that be a local FT?
- Non-local map from boundary to bulk?
- Extra coordinate "emerges", like scale in AdS/CFT. Is there a flat space analogue?

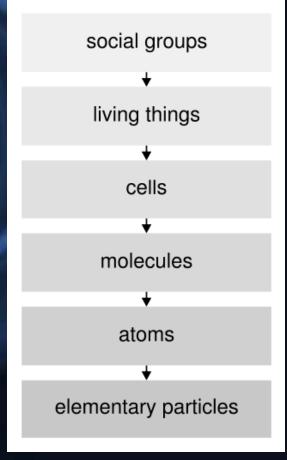
# A unique microscopic theory?

A theory of "quantum gravity", should contain d.o.f. to account for BH entropy.

Counting of states for extremal black holes (with susy) in terms of D-brane d.o.f.

Are the microscopic d.o.f. unique?

In or other other microscopic theories for which the BH formula holds? Black hole thermo- and hydrodynamics indicate that space time and gravity are emergent!


# Strong Emergence

new properties arise in a system that can not be directly derived from its components.

"The whole is greater than the sum of its parts."

"The system supervenes its components"

#### Levels of existence



## Weak Emergence

- Inew properties arise as a result of interactions at an elemental level.
- macroscopic system has an effective "mean field" description derived from a more "fundamental" microscopic theory.
- Examples: thermodynamics, hydrodynamics

# Is Gravity Emergent?

It is universal, independent of details!

### But then:

- Even geometry is a derived concept.
- Its underlying microscopics is not derivable through "quantization" or "discretization"
- Such approaches are at best effective descriptions.

# **Derived concepts**

- macroscopic, no "fundamental" meaning
- effective description of microscopics
- universal, independent of details
- underlying microscopics is not derivable through "quantization" or "discretization" of macroscopics

# String Theory

#### most string theorist believe:

- It is the complete and final fundamental theory
- geometry is an important ingredient
- strings (or D-branes) represent the true microscopic degrees of freedom
- many vacua: compactifications that generically break supersymmetry (landscape)
- It leads to "holographic" dualities, like AdS-CFT

# String Theory

Few (but some) string theorist believe:

- complete theory, but not the final one.
- space time geometry is a derived concept.
- gravity is emergent, possibly in the weak sense.
- strings are emergent, probably in the strong sense.
- the many vacua parametrize the universality classes =>landscape
- In holography (AdS-CFT) is THE paradigm to understand the emergence of strings and gravity.



Todays "fundamental" theories are tomorrows "effective" ones.

It is "Turtles"

all the way down

# THE END