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Introduction:

Three dimensional gravity offers an interesting arena to
investigate quantization of gravitational theories.

However Einstein gravity in three dimensions has no
propagating degrees of freedom
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Topologically massive gravity [Deser , Jackiw, Templeton]

Topologically massive gravity is obtained by adding to the
Einstein gravity the gravitational CS term,
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where [ is the 1-form Christoffel symbol. parity is not preserved
This theory admits asymptotically AdS solutions, for example the BTZ black
hole, and has perturbative massive modes.
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Were Cﬂ is the Cotton tensor
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Holography renormalization of TMG :[K.Skenderis, M.Taylor and B. C.
van Rees(2009)]
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New massive gravity Bergshoeff, Hohm , Townsend

In this massive gravity, higher derivative terms are added to the Einstein
Hilbert action and unlike in topological massive gravity, parity is
preserved in this new massive gravity.
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It was also shown that NMG model on an asymptotically AdS3 geometry may
have a dual CFT whose central charges are given by
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Good variational principle for NMG

Variation of a gravitational action with respect to the metric schematically
IS
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As usual setting the first term (the volume term) to zero one finds the
equations of motion while the boundary terms must be set to zero by a
proper boundary condition. Indeed the second term is set to zero due to
the fact that at the boundary we impose Dirichlet boundary condition.
On the other hand to have a well-posed variational principle one has to
add a boundary term to the action to remove the last term. Boundary

term, known as the Gibbons-Hawking term.

NMG, at a special coupling don’t need to Gibbons-Hawking term and
has a good variational principle for AIAdS spacetimes.

4 NMG




Asymptotically locally AdS spacetimes

An AlIAdS spacetime admits the following metric in a finite
neighborhood of the conformal boundary, located at p =0 :
[Fefferman-Graham (1985)]

ds? = jﬁ T /1) g; (X, p)dxidx’

For the Asymptotically locally AdS3 solution

0 = Yoy + (B2 109(0) + 9o ) o+

J(2)ij is only partially determined by asymptotics. This coefficient is
related via AdS/CFT to the 1-point function of Ti and thus to bulk
conserved charges.

b(2)ij is related to the Weyl anomaly of the boundary theory, [Henningson
Skenderis(1998)]
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Asymptotically locally AdS spacetimes

The precise form of the expansion §;; (X, ,0) is determined
by solving the bulk field equations asymptotically.

At the special value of m’ == the model admits a vacuum
solution which is not asymptotically locally AdS3

Ui = b(O)ij log(p0) + Jioyij + (b(2)ij log(p) + g(2)ij)p T

1-Brown-Henneaux boundary condition is by, =b,: =0, g, = J;

2-Modified boundary conditions are determined with the solutions of
equation of motion not with the traditional way.

@ Traditional way: Change the boundary condition by hand up to the
level that the value of charge will not be zero.

6 NMG




Holographic charges

In the AdS/CFT correspondence the on-shell action treat as the
generating function of CFT:
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In general the on-shell action is divergent and one needs to regularized
it by adding a proper counterterms [Henningson,Skenderis (1998)].

One then obtains a finite 1-point function for Ti' for general

AlAdS spacetimes [de Haro, Solodukhin, Skenderljs (2000)]

Using Wald’s covariant phase space method proved that the
holographic charges are the correct gravitational conserved charges
[Papadimitriou, Skenderis (2005)].




Holographic methodology

The holographic methodology is:

1- Derive the most general linearized solution of the bulk equations with
general Dirichlet boundary conditions for all fields.
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2-Evaluate the on-shell action up to quadratic terms. We note,however,
that in general the on-shell action is divergent and one needs to
regularized it by adding a proper local boundary covariant counterterms.

3-One-point functions and Two-point functions will be evaluated from
Finite Onshell action.




Results: 1-point functions

One vary the action with respect to the sources to find the on-shell
one point function
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and are expressed in terms of coefficients in the asymptotic
expansions.




Two-point functions

From the general solution of the linearized equations of motion
we extract the following 2-point functions:

<T.T.. >=0 <T.t. >=0 <t t >=0

7 " 71 7 77 7 777

Consider the most general OPE's of a LCFT[(V. Gurarie and A. W. W.
Ludwig(1999)),(S. Moghimi-Araghi, S. Rouhani and M. Saadat(2000))]
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LCFT

<l,>=1 and <1, >=0
(0) 1) Daniel Grumiller, Olaf Hohm

C hep-th :0911.4274
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LCFT:gravity side.....Proposal
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Under subgroup of bulk diffeomorphisms which preserve Fefferman-Graham
form of metric and which on the boundary reduce to a Weyl transformation
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Thank you
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