On New Massive Gravity and Holography Renormalization

Mohsen.Alishahiha

A.Naseh

In honor of Prof.Ardalan

IPM School of Physics, Tehran
April 2010

Introduction:

Three dimensional gravity offers an interesting arena to investigate quantization of gravitational theories.

However Einstein gravity in three dimensions has no propagating degrees of freedom

$$g_{\mu\nu} \to \frac{D(D+1)}{2} - D(e.o.m) - D(diff) = 0 \qquad trivial$$

$$I = \frac{1}{16\pi G} \int d^3x \sqrt{-g} \ (R-2\Lambda)$$

$$ds^2 = (M - \frac{r^2}{l^2})dt^2 + \frac{1}{(M + \frac{r^2}{l^2} + \frac{J^2}{4r^2})} dr^2 - Jdt \, d\varphi + r^2 d\varphi^2$$

BTZ black hole!!

$$r_{\pm} = \frac{Ml^2}{2} \{1 \pm [1 - (\frac{J}{Ml})^2]^{\frac{1}{2}} \}$$

Topologically massive gravity is obtained by adding to the Einstein gravity the gravitational CS term,

$$S = \int d^3x \left(\sqrt{-g} \left(R - 2\Lambda \right) + \frac{1}{2\mu} \varepsilon^{\lambda\mu\nu} \Gamma^{\rho}_{\sigma\lambda} (\partial_{\mu} \Gamma^{\sigma}_{\rho\nu} + \frac{2}{3} \Gamma^{\sigma}_{\kappa\mu} \Gamma^{\kappa}_{\sigma\nu}) \right)$$

where Γ is the 1-form Christoffel symbol. parity is not preserved This theory admits asymptotically AdS solutions, for example the BTZ black hole, and has perturbative massive modes.

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R - \frac{1}{l^2} g_{\mu\nu} + \frac{1}{\mu} C_{\mu\nu} = 0$$

Were $C_{\mu\nu}$ is the Cotton tensor

$$C_{\mu\nu} = \varepsilon_{\mu}^{\kappa\sigma} \nabla_{\kappa} (R_{\sigma\nu} - \frac{1}{4} g_{\sigma\nu} R)$$

Holography renormalization of TMG: [K.Skenderis, M.Taylor and B. C. van Rees (2009)]

In this massive gravity, higher derivative terms are added to the Einstein Hilbert action and unlike in topological massive gravity, parity is preserved in this new massive gravity.

$$S = \int d^3x \sqrt{-g} \left(R - 2\Lambda - \frac{1}{2m^2} K \right) \qquad K = R^{\mu\nu} R_{\mu\nu} - \frac{3}{8} R^2$$

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} - \frac{1}{2m^2} K_{\mu\nu} = 0$$

$$K_{\mu\nu} = -\frac{1}{2} \nabla^2 R g_{\mu\nu} - \frac{1}{2} \nabla_{\mu} \nabla_{\nu} R + 2 \nabla^2 R_{\mu\nu} + 4 R_{\mu\alpha\nu\beta} R^{\alpha\beta} - \frac{3}{2} R R_{\mu\nu} - R_{\alpha\beta} R^{\alpha\beta} g_{\mu\nu} + \frac{3}{8} R^2 g_{\mu\nu}$$

It was also shown that NMG model on an asymptotically AdS3 geometry may have a dual CFT whose central charges are given by

$$c_L = c_R = \frac{3l}{2G}(1 - \frac{1}{2m^2l^2})$$

Good variational principle for NMG

Variation of a gravitational action with respect to the metric schematically is

$$\delta S = \frac{1}{16\pi G} \int_{M} d^{d+1}x \sqrt{-G} \left[(...) \delta G_{\mu\nu} \right] + \frac{1}{16\pi G} \int_{\partial M} d^{d}x \sqrt{-\gamma} \left[(...) \delta G_{\mu\nu} + (...) \delta G_{\mu\nu,\sigma} \right]$$

As usual setting the first term (the volume term) to zero one finds the equations of motion while the boundary terms must be set to zero by a proper boundary condition. Indeed the second term is set to zero due to the fact that at the boundary we impose Dirichlet boundary condition. On the other hand to have a well-posed variational principle one has to add a boundary term to the action to remove the last term. Boundary term, known as the Gibbons-Hawking term.

NMG, at a special coupling don't need to Gibbons-Hawking term and has a good variational principle for AlAdS spacetimes.

Asymptotically locally AdS spacetimes

An AlAdS spacetime admits the following metric in a finite neighborhood of the conformal boundary, located at $\rho=0$: [Fefferman-Graham (1985)]

$$ds^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho} g_{ij}(x, \rho) dx^{i} dx^{j}$$

For the Asymptotically locally AdS3 solution

$$g_{ij} = g_{(0)ij} + (b_{(2)ij} \log(\rho) + g_{(2)ij})\rho + \dots$$

 $g_{(2)ij}$ is only partially determined by asymptotics. This coefficient is related via AdS/CFT to the 1-point function of T_{ij} and thus to bulk conserved charges.

 $b_{(2)ij}$ is related to the Weyl anomaly of the boundary theory, [Henningson, Skenderis(1998)]

Asymptotically locally AdS spacetimes

The precise form of the expansion $g_{ij}(x, \rho)$ is determined by solving the bulk field equations asymptotically.

At the special value of $m^2 = \frac{1}{2}$ the model admits a vacuum solution which is not asymptotically locally AdS3

$$g_{ij} = b_{(0)ij} \log(\rho) + g_{(0)ij} + (b_{(2)ij} \log(\rho) + g_{(2)ij})\rho + \dots$$

- 1-Brown-Henneaux boundary condition is $b_{(0)ij} = b_{(2)ij} = 0$, $g_{(0)ij} = \delta_{ij}$
- 2-Modified boundary conditions are determined with the solutions of equation of motion not with the traditional way.
- Traditional way: Change the boundary condition by hand up to the level that the value of charge will not be zero.

Holographic charges

In the AdS/CFT correspondence the on-shell action treat as the generating function of CFT:

$$< T_{ij} > = \frac{\delta S_{onshell}}{\delta g_{(0)}^{ij}}$$

In general the on-shell action is divergent and one needs to regularized it by adding a proper counterterms [Henningson, Skenderis (1998)].

One then obtains a finite 1-point function for $\,T_{ij}\,$ for general AlAdS spacetimes [de Haro, Solodukhin, Skenderis (2000)]

Using Wald's covariant phase space method proved that the holographic charges are the correct gravitational conserved charges [Papadimitriou, Skenderis (2005)].

7

Holographic methodology

The holographic methodology is:

1- Derive the most general linearized solution of the bulk equations with general Dirichlet boundary conditions for all fields.

$$d^{2}s = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho}(\eta_{ij} + h_{ij})dx^{i}dx^{j}$$

- 2-Evaluate the on-shell action up to quadratic terms. We note, however, that in general the on-shell action is divergent and one needs to regularized it by adding a proper local boundary covariant counterterms.
- 3-One-point functions and Two-point functions will be evaluated from Finite Onshell action.

Results: 1-point functions

One vary the action with respect to the sources to find the on-shell one point function

$$\begin{split} &< T_{ij}> = \frac{1}{4G} [-8b_{(2)ij} + 4\eta_{im} (\partial_j \partial_n b_{(0)}^{mn}) + 2\eta^{nl} \eta_{ij} (\partial_n \partial^m b_{(0)ml})], \\ &< t_{ij}> = \frac{1}{4G} [-8g_{(2)ij} - 4\eta_{im} (\partial_j \partial_n g_{(0)}^{mn})]. \end{split}$$

and are expressed in terms of coefficients in the asymptotic expansions.

Two-point functions

From the general solution of the linearized equations of motion we extract the following 2-point functions:

$$< T_{zz} T_{zz} > = 0$$
 $< T_{zz} t_{zz} > = 0$ $< t_{zz} t_{zz} > = 0$

Consider the most general OPE's of a LCFT[(V. Gurarie and A. W. W. Ludwig(1999)),(S. Moghimi-Araghi, S. Rouhani and M. Saadat(2000))]

$$T(z)T(0) = \frac{cI_{(0)}}{2z^4} + \dots,$$

$$T(z)t(0) = \frac{cI_{(1)} + bI_{(0)}}{2z^4} + \dots,$$

$$t(z)t(0) = -\frac{\log(z)[(c\log(z) + 2b)I_{(0)} + 2cI_{(1)}]}{2z^4} + \dots$$

$$< I_{(0)} >= 1 \quad and \quad < I_{(1)} >= 0$$

$$\langle T(z)T(0) \rangle = \frac{c}{2z^4} + ...,$$

 $\langle T(z)t(0) \rangle = \frac{b}{2z^4} + ...,$

$$b = \frac{12l}{G}$$

$$< t(z)t(0) > = -\frac{\log(z)[c\log(z) + 2b]}{2z^4} + \dots$$

$$< I_{(0)} >= 0 \quad and \quad < I_{(1)} >= 1$$

$$\langle T(z)T(0)\rangle = 0,$$

$$< T(z)t(0) > = \frac{c}{2z^4} + ...,$$

$$< t(z)t(0) > = -\frac{2c\log(z)}{2z^4} + \dots$$

$$b \neq 0$$

Three point functions

LCFT:gravity side.....Proposal

$$\delta S = \frac{1}{16\pi G} \int_{M} d^{d+1}x \sqrt{-G} \left[(...) \delta G_{\mu\nu} \right] + \frac{1}{16\pi G} \int_{\partial M} d^{d}x \sqrt{-\gamma} \left[(...) \delta G_{\mu\nu} + (...) \delta G_{\mu\nu,\sigma} \right]$$

$$\left[\alpha \frac{1}{\rho} g^{ij} + ... \right] \delta g_{ij}$$

Make divegencies
$$\longrightarrow$$
 Add counterterm $I_{ct} = \frac{1}{8\pi G} \int d^2x \sqrt{-\gamma} [-1 + \frac{1}{4}R[\gamma]\log(\rho_{(0)})]$

Under subgroup of bulk diffeomorphisms which preserve Fefferman-Graham form of metric and which on the boundary reduce to a Weyl transformation

$$\delta I \neq 0 \qquad \frac{\delta I}{\delta \alpha(x)} = A = Weyl \ anomaly = \frac{c}{12} R = \langle T_i^i \rangle$$

$$b \quad \underline{??} \quad \langle t_i^i \rangle$$

12

Thank you