Kähler metrics in conformal geometry

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

- Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]
Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

- Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abcd} = 0\) (Riemann curvature).
Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

- Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abc}^d = 0\) (Riemann curvature).

- Find a local coordinate system \((t, x, y, z)\) and a non–zero function \(\Omega = \Omega(t, x, y, z)\) such that

\[
g = \Omega^2(dt^2 - dx^2 - dy^2 - dz^2)
\]

Answer: Need \(C_{abcd} = 0\) (Weyl curvature).
Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

- Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abc}^d = 0\) (Riemann curvature).

- Find a local coordinate system \((t, x, y, z)\) and a non–zero function \(\Omega = \Omega(t, x, y, z)\) such that

\[
g = \Omega^2(dt^2 - dx^2 - dy^2 - dz^2)
\]

Answer: Need \(C_{abc}^d = 0\) (Weyl curvature).
Three ‘can you find’ questions

Let \((M, g = g_{ab}(x)dx^a dx^b) \) be a Lorentzian four-manifold. Can you

1. Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abcd} = 0 \) (Riemann curvature).

2. Find a local coordinate system \((t, x, y, z)\) and a non–zero function \(\Omega = \Omega(t, x, y, z)\) such that

\[
g = \Omega^2(dt^2 - dx^2 - dy^2 - dz^2)
\]

Answer: Need \(C_{abcd} = 0 \) (Weyl curvature).
Curvature decomposition: \textbf{Riemann=Weyl+Ricci+scalar}.
Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

1. Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abc}^d = 0\) (Riemann curvature).

2. Find a local coordinate system \((t, x, y, z)\) and a non–zero function \(\Omega = \Omega(t, x, y, z)\) such that

\[
g = \Omega^2(dt^2 - dx^2 - dy^2 - dz^2)
\]

Answer: Need \(C_{abc}^d = 0\) (Weyl curvature).

Curvature decomposition: \(\text{Riemann} = \text{Weyl} + \text{Ricci} + \text{scalar}\).

3. Find a non–zero function \(\Omega : M \to \mathbb{R}\) such that \(\Omega^2 g\) satisfies the Einstein equations \(G_{ab} = 0\)?

\[\text{but lots of necessary conditions are known: e.g vanishing of the Bach tensor}\]
Let \((M, g = g_{ab}(x)dx^a dx^b)\) be a Lorentzian four-manifold. Can you

- Find a local coordinate system \((t, x, y, z)\) such that

\[
g = dt^2 - dx^2 - dy^2 - dz^2
\]

Answer: Need \(R_{abc}^d = 0\) (Riemann curvature).

- Find a local coordinate system \((t, x, y, z)\) and a non–zero function \(\Omega = \Omega(t, x, y, z)\) such that

\[
g = \Omega^2(dt^2 - dx^2 - dy^2 - dz^2)
\]

Answer: Need \(C_{abc}^d = 0\) (Weyl curvature).

Curvature decomposition: Riemann=Weyl+Ricci+scalar.

- Find a non–zero function \(\Omega : M \rightarrow \mathbb{R}\) such that \(\Omega^2 g\) satisfies the Einstein equations \(G_{ab} = 0\)? Answer: ??? (but lots of neccessary conditions are known: e.g vanishing of the Bach tensor).
2n–dimensional Riemannian manifold (M, g).

- $J : TM \to TM$ is a complex structure: $J^2 = -\text{Id}$ and

$$[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)},$$

where $T^{(1,0)} = \{ X \in TM \otimes \mathbb{C}, J(X) = iX \}$.

Fundamental two–form $\Sigma(X,Y) = g(X,JY)$ is closed.

Alternative characterisation: Holonomy group of g is $U(n)$.

Important structure: a bridge between Riemannian and symplectic geometry (pure mathematics), necessary for existence of supersymmetries (physics).
2n–dimensional Riemannian manifold \((M, g)\).

- \(J : TM \rightarrow TM\) is a complex structure: \(J^2 = -\text{Id}\) and

\[
[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{X \in TM \otimes \mathbb{C}, J(X) = iX\}.
\]

- \(g(X, Y) = g(JX, JY)\) for any vector fields \(X, Y\).
2n–dimensional Riemannian manifold \((M, g)\).

- \(J : TM \to TM\) is a complex structure: \(J^2 = -\text{Id}\) and

\[[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{ X \in TM \otimes \mathbb{C}, J(X) = iX \}. \]

- \(g(X, Y) = g(JX, JY)\) for any vector fields \(X, Y\).

- Fundamental two–form \(\Sigma(X, Y) = g(X, JY)\) is closed.
Kähler structure

2n–dimensional Riemannian manifold (M, g).

- $J : TM \rightarrow TM$ is a complex structure: $J^2 = -\text{Id}$ and

 \[[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{ X \in TM \otimes \mathbb{C}, J(X) = iX \}. \]

- $g(X, Y) = g(JX, JY)$ for any vector fields X, Y.

- Fundamental two–form $\Sigma(X, Y) = g(X, JY)$ is closed.

- Alternative characterisation: Holonomy group of g is $U(n)$.

Dunajski (DAMTP, Cambridge)
Conformal to Kähler
14 April 2010
3 / 13
2n–dimensional Riemannian manifold \((M, g)\).

- \(J : TM \to TM\) is a complex structure: \(J^2 = -\text{Id}\) and
 \[[T^{(1,0)}, T^{(1,0)}] \subset T^{(1,0)}, \text{ where } T^{(1,0)} = \{ X \in TM \otimes \mathbb{C}, J(X) = iX \}. \]

- \(g(X, Y) = g(JX, JY)\) for any vector fields \(X, Y\).

- Fundamental two–form \(\Sigma(X, Y) = g(X, JY)\) is closed.

- Alternative characterisation: Holonomy group of \(g\) is \(U(n)\).

- Important structure: a bridge between Riemannian and symplectic geometry (pure mathematics), necessary for existence of supersymmetries (physics).
Given a Riemannian metric g, is there a Kähler metric in the conformal class $[g] = \{cg | c : M \rightarrow \mathbb{R}^+\}$? Always? No - let's count:
Given a Riemannian metric \(g \), is there a Kähler metric in the conformal class \([g] = \{ cg | c : M \to \mathbb{R}^+ \} \)? Always? No - lets count:

- A metric in \(2n \) dimensions: \(n(2n + 1) \) arbitrary functions of \(2n \) variables. Diffeormorphisms + conf. rescaling: \(2n^2 - n - 1 \).
Given a Riemannian metric g, is there a Kähler metric in the conformal class $[g] = \{cg|c : M \rightarrow \mathbb{R}^+\}$? Always? No - lets count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeormorphisms + conf. rescalling: $2n^2 - n - 1$.
- The general Kähler metric can be locally described by the Kähler potential: there exists a function $\mathcal{K} : M \rightarrow \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that

$$g = \frac{\partial^2 \mathcal{K}}{\partial z^j \partial \bar{z}^k} dz^j d\bar{z}^k.$$
Given a Riemannian metric g, is there a Kähler metric in the conformal class $[g] = \{cg|c : M \to \mathbb{R}^+\}$? Always? No - lets count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeormorphisms + conf. rescalling: $2n^2 - n - 1$.
- The general Kähler metric can be locally described by the Kähler potential: there exists a function $\mathcal{K} : M \to \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that

$$g = \frac{\partial^2 \mathcal{K}}{\partial z^j \partial \overline{z}^k} dz^j d\overline{z}^k.$$

- The difference between the number of arbitrary functions is $2n^2 - n - 2$, which is positive if $n > 1$ (every metric in 2D is Kähler).
Conformal to Kähler problem

Given a Riemannian metric \(g \), is there a Kähler metric in the conformal class \([g] = \{cg|c : M \to \mathbb{R}^+\}\)? Always? No - lets count:

- A metric in \(2n\) dimensions: \(n(2n + 1)\) arbitrary functions of \(2n\) variables. Diffeormorphisms + conf. rescalling: \(2n^2 - n - 1\).
- The general Kähler metric can be locally described by the Kähler potential: there exists a function \(K : M \to \mathbb{R}\) and a holomorphic coordinate system \((z^1, \ldots, z^n)\) such that
 \[
 g = \frac{\partial^2 K}{\partial z^i \partial \bar{z}^k} dz^i d\bar{z}^k.
 \]

The difference between the number of arbitrary functions is \(2n^2 - n - 2\), which is positive if \(n > 1\) (every metric in 2D is Kähler).

Clearly a ‘can you find’–type problem. Obstructions should be given by conformally invariant tensors.
Conformal to Kähler problem

Given a Riemannian metric g, is there a Kähler metric in the conformal class $[g] = \{ cg | c : M \to \mathbb{R}^+ \}$? Always? No - let's count:

- A metric in $2n$ dimensions: $n(2n + 1)$ arbitrary functions of $2n$ variables. Diffeomorphisms + conf. rescaling: $2n^2 - n - 1$.

- The general Kähler metric can be locally described by the Kähler potential: there exists a function $\mathcal{K} : M \to \mathbb{R}$ and a holomorphic coordinate system (z^1, \ldots, z^n) such that
 \[g = \frac{\partial^2 \mathcal{K}}{\partial z^i \partial \bar{z}^k} dz^i d\bar{z}^k. \]

- The difference between the number of arbitrary functions is $2n^2 - n - 2$, which is positive if $n > 1$ (every metric in 2D is Kähler).

- Clearly a ‘can you find’–type problem. Obstructions should be given by conformally invariant tensors.

- Important in geometry (Donaldson’s uniformisation programme). Spin–off in General Relativity: When does a Lorentzian metric admit a conformal Killing–Yano form?
One–to–one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1(M) \oplus \Lambda^2_-(M)$. If the self–dual (SD) Weyl tensor \mathcal{C} of g is non–zero we find the necessary and sufficient conditions: The SD Weyl spinor must be of algebraic type D and a tensor obstruction of order 4 in g must vanish. If $\mathcal{C} = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $\mathcal{C} = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry. The obstructions are only local. A Kähler metric may not exist globally on a compact manifold M even in a conformally flat case.
Summary of results in four dimensions

- One-to-one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1(M) \oplus \Lambda^2_-(M)$.

- If the self-dual (SD) Weyl tensor C_+ of g is non-zero we find the necessary and sufficient conditions: The SD Weyl spinor must be of algebraic type D and a tensor obstruction of order 4 in g must vanish.

- If $C_+ = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $C_+ = 0$ is conformal to Kähler if and only if it admits an isometry. The obstructions are only local. A Kähler metric may not exist globally on a compact manifold M even in a conformally flat case.
One–to–one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1(M) \oplus \Lambda^2_-(M)$.

If the self–dual (SD) Weyl tensor C_+ of g is non–zero we find the necessary and sufficient conditions: The SD Weyl spinor must be of algebraic type \mathcal{D} and a tensor obstruction of order 4 in g must vanish.

If $C_+ = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $C_+ = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.
Summary of results in four dimensions

- One-to-one correspondence between Kähler metrics in the conformal class of g and parallel sections of a certain (canonical) connection \mathcal{D} on a rank ten vector bundle $E = \Lambda^2_+ (M) \oplus \Lambda^1_1 (M) \oplus \Lambda^2_- (M)$.

- If the self-dual (SD) Weyl tensor C_+ of g is non-zero we find the necessary and sufficient conditions: The SD Weyl spinor must be of algebraic type D and a tensor obstruction of order 4 in g must vanish.

- If $C_+ = 0$ we get some necessary conditions from the holonomy of the curvature of \mathcal{D}. E.g. A metric with $C_+ = 0$ is conformal to Einstein AND conformal to Kähler if and only if it admits an isometry.

- The obstructions are only local. A Kähler metric may not exist globally on a compact manifold M even in a conformally flat case.
Oriented Riemannian four-manifold (M, g)

$\ast: \Lambda^2 \rightarrow \Lambda^2, \quad (\ast f)_{ab} = \frac{1}{2} \varepsilon_{ab}^{\quad cd} f_{cd}$.

$R_{abcd} = R[ab]^{\quad cd}$ gives rise to $R: \Lambda^2 \rightarrow \Lambda^2$.

$C_{\pm} =$ SD/ASD Weyl tensors, $\phi =$ trace-free Ricci curvature, $R =$ scalar curvature.
Oriented Riemannian four-manifold \((M, g)\)

- \(* : \Lambda^2 \to \Lambda^2\), \((*f)_{ab} = \frac{1}{2} \epsilon_{ab}^{\ cd} f_{cd}\).
- \(*^2 = \text{Id}\), \(\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-\).
Oriented Riemannian four-manifold \((M, g)\)

- \(\ast : \Lambda^2 \rightarrow \Lambda^2\), \((\ast f)_{ab} = \frac{1}{2} \varepsilon_{ab}^{cd} f_{cd}\).
- \(\ast^2 = \text{Id},\) \(\Lambda^2 = \Lambda^2_+ \oplus \Lambda^2_-\).
- Riemann tensor \(R_{abcd} = R_{[ab][cd]}\) gives rise to \(\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2\).

\[
\mathcal{R} = \begin{pmatrix}
C_+ + \frac{R}{12} & \phi \\
\phi & C_- + \frac{R}{12}
\end{pmatrix}.
\]

\(C_\pm = \text{SD/ASD Weyl tensors},\) \(\phi = \text{trace-free Ricci curvature},\)
\(R = \text{scalar curvature}.\)
Spinors in four dimensions

\(C \otimes TM \cong S \otimes S' \), where \((S, \varepsilon), (S', \varepsilon')\) are rank–two complex symplectic vector bundles (spin bundles) over \(M \).
\[C \otimes TM \cong S \otimes S', \text{ where } (S, \varepsilon), (S', \varepsilon') \text{ are rank–two complex symplectic vector bundles (spin bundles) over } M. \]

\[g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2), \text{ where } v_1, v_2 \in \Gamma(S), \]
\[w_1, w_2 \in \Gamma(S'). \]
\(C \otimes TM \cong S \otimes S', \) where \((S, \varepsilon), (S', \varepsilon')\) are rank–two complex symplectic vector bundles (spin bundles) over \(M \).

\[g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2), \] where \(v_1, v_2 \in \Gamma(S), \) \(w_1, w_2 \in \Gamma(S'). \)

Two component spinor notation (love it or hate it):
\[\mu \in \Gamma(S), \mu = \mu_A. \] Spinor indices \(A, B, C, \cdots = 0, 1. \)
\[\mu^A = \varepsilon^{AB} \mu_B, \mu_A = \mu^B \varepsilon_{BA}. \] Metric \(g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'}. \)
Spinors in Four Dimensions

- $\mathbb{C} \otimes TM \cong S \otimes S'$, where $(S, \varepsilon), (S', \varepsilon')$ are rank–two complex symplectic vector bundles (spin bundles) over M.
- $g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2)$, where $v_1, v_2 \in \Gamma(S)$, $w_1, w_2 \in \Gamma(S')$.
- Two component spinor notation (love it or hate it):
 - $\mu \in \Gamma(S), \mu = \mu_A$. Spinor indices $A, B, C, \cdots = 0, 1$.
 - $\mu^A = \varepsilon^{AB} \mu_B, \mu_A = \mu^B \varepsilon_{BA}$. Metric $g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'}$.
- Spinors and self–duality. $\Sigma \in \Lambda^2(M), \Sigma_{ab} = \Sigma_{[ab]}$.
 \[
 \Sigma_{AA'BB'} = \omega_{AB} \varepsilon_{A'B'} + \omega_{A'B'} \varepsilon_{AB},
 \]
 where $\omega_{AB} = \omega_{(AB)}$ and $\omega_{A'B'} = \omega_{(A'B')}$.
Spinors in Four Dimensions

- $\mathbb{C} \otimes TM \cong S \otimes S'$, where $(S, \varepsilon), (S', \varepsilon')$ are rank–two complex symplectic vector bundles (spin bundles) over M.

- $g(v_1 \otimes w_1, v_2 \otimes w_2) = \varepsilon(v_1, v_2)\varepsilon'(w_1, w_2)$, where $v_1, v_2 \in \Gamma(S)$, $w_1, w_2 \in \Gamma(S')$.

- Two component spinor notation (love it or hate it):
 - $\mu \in \Gamma(S)$, $\mu = \mu_A$. Spinor indices $A, B, C, \ldots = 0, 1$.
 - $\mu^A = \varepsilon^{AB} \mu_B, \mu_A = \mu^B \varepsilon_{BA}$. Metric $g_{ab} = \varepsilon_{AB} \varepsilon_{A'B'}$.

- Spinors and self–duality. $\Sigma \in \Lambda^2(M), \Sigma_{ab} = \Sigma[ab]$.
 \[
 \Sigma_{AA'B'B'} = \omega_{AB} \varepsilon_{A'B'} + \omega_{A'B'} \varepsilon_{AB},
 \]
 where $\omega_{AB} = \omega_{(AB)}$ and $\omega_{A'B'} = \omega_{(A'B')}$.

- Spinor curvature decomposition
 \[
 R_{abcd} = \psi_{ABCD} \varepsilon_{A'B'} \varepsilon_{C'D'} + \psi_{A'B'C'D'} \varepsilon_{AB} \varepsilon_{CD}
 \]
 \[
 + \phi_{ABCD} \varepsilon_{A'B'} \varepsilon_{CD} + \phi_{A'B'C'D} \varepsilon_{AB} \varepsilon_{C'D'}
 \]
 \[
 + \frac{R}{12} \left(\varepsilon_{AC} \varepsilon_{BD} \varepsilon_{A'C'} \varepsilon_{B'D'} - \varepsilon_{AD} \varepsilon_{BC} \varepsilon_{A'D'} \varepsilon_{B'C'} \right).
 \]
Twistor equation

- $J^2 = -Id^2 \rightarrow \Sigma$ is SD or ASD. Make a choice:

$$\Sigma_{ab} = \omega_{A'B'}\varepsilon_{AB}, \quad \text{(self–dual)}.$$
Twistor equation

- $J^2 = -\text{Id}^2 \rightarrow \Sigma$ is SD or ASD. Make a choice:

$$\Sigma_{ab} = \omega_{A'B'}\varepsilon_{AB}, \quad \text{(self–dual)}.$$

- Conformal rescalling

$$g_{ab} \rightarrow \Omega^2 g_{ab}, \quad \Sigma_{ab} \rightarrow \Omega^3 \Sigma_{ab}, \quad \text{so} \quad \omega_{A'B'} \rightarrow \Omega^2 \omega_{A'B'}.$$
Twistor equation

- \(J^2 = -\text{Id}^2 \rightarrow \Sigma \) is SD or ASD. Make a choice:

\[
\Sigma_{ab} = \omega_{A'B'}\epsilon_{AB}, \quad \text{(self–dual)}.
\]

- Conformal rescalling

\[
g_{ab} \rightarrow \Omega^2 g_{ab}, \quad \Sigma_{ab} \rightarrow \Omega^3 \Sigma_{ab}, \quad \text{so} \quad \omega_{A'B'} \rightarrow \Omega^2 \omega_{A'B'}.
\]

- Lemma. The metric \(g_{ab} \) is conformal to a Kähler metric if and only if there exists a real, symmetric spinor field \(\omega_{A'B'} \) satisfying

\[
\nabla_A(A'\omega_{B'C'}) = 0, \quad \text{(*)}
\]

and such that \(\omega_{A'B'}\omega^{A'B'} \neq 0 \).
Twistor equation

- $J^2 = -\text{Id}^2 \rightarrow \Sigma$ is SD or ASD. Make a choice:

 $$\Sigma_{ab} = \omega_{A'B'} \varepsilon_{AB}, \quad \text{(self–dual)}.$$

- Conformal rescalings

 $$g_{ab} \rightarrow \Omega^2 g_{ab}, \quad \Sigma_{ab} \rightarrow \Omega^3 \Sigma_{ab}, \quad \text{so} \quad \omega_{A'B'} \rightarrow \Omega^2 \omega_{A'B'}.$$

- Lemma. The metric g_{ab} is conformal to a Kähler metric if and only if there exists a real, symmetric spinor field $\omega_{A'B'}$ satisfying

 $$\nabla_A (A' \omega_{B'C'}) = 0, \quad (*)$$

 and such that $\omega_{A'B'} \omega^{A'B'} \neq 0$.

- $(*)$ is the (conformally invariant) twistor equation. Idea: prolong it, look for integrability conditions.
Drop symmetrisation: \[\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0 \] for some \(K \in \Lambda^1(M) \).
Prolongation of $\nabla_A (A' \omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.
- Differentiate and commute derivatives: $\psi^{E'_E} (A'B'C' \omega_{D'}) = 0$ and

\[
\nabla_{AA'} K_{BB'} + P_{ABA'C'} \omega_{B'}^C' - \varepsilon_{A'B'} \rho_{AB} = 0
\]

(where $P_{ab} = (1/2) R_{ab} - (1/12) R g_{ab}$) for some $\rho \in \Lambda^2_-(M)$.

Dunajski (DAMTP, Cambridge)
Prolongation of $\nabla_A (A'\omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'}\omega_{B'C'} - \varepsilon_{A'B'}K_{C'A} - \varepsilon_{A'C'}K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.

- Differentiate and commute derivatives: $\psi^E_{(A'B'C'\omega_D')E'} = 0$ and

$$\nabla_{AA'}K_{BB'} + P_{ABA'C'}\omega_{B'C'} - \varepsilon_{A'B'}\rho_{AB} = 0$$

(where $P_{ab} = (1/2)R_{ab} - (1/12)Rg_{ab}$) for some $\rho \in \Lambda^2_-(M)$.

- Differentiate and commute derivatives:

$$\nabla_{AA'}\rho_{BC} - \omega_{A'E'}\nabla_{E'}D\psi_{ABCD} + K_{A'D}\psi_{ABCD} - 2P_{A'E'}A(BK_C)^{E'} = 0.$$
Prolongation of $\nabla_A (A' \omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'} \omega_{B'C'} - \varepsilon_{A'B'} K_{C'A} - \varepsilon_{A'C'} K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.

- Differentiate and commute derivatives: $\psi^{E'}_{(A'B'C'\omega_{D'})E'} = 0$ and

\[\nabla_{AA'} K_{BB'} + P_{ABA'C'} \omega_{B'C''} - \varepsilon_{A'B'} \rho_{AB} = 0 \]

(where $P_{ab} = (1/2) R_{ab} - (1/12) R_{g_{ab}}$) for some $\rho \in \Lambda^2(M)$.

- Differentiate and commute derivatives:

\[\nabla_{AA'} \rho_{BC} - \omega_{A'E'} \nabla^{D'}_{E'} \psi_{ABCD} + K_{A'}^D \psi_{ABCD} - 2P_{A'E'A(BK_C)^E'} = 0. \]

- Now the system is closed: All derivatives of ‘unknowns’ have been determined.
Prolongation of $\nabla_A(A'\omega_{B'C'}) = 0$

- Drop symmetrisation: $\nabla_{AA'}\omega_{B'C'} - \varepsilon_{A'B'}K_{C'A} - \varepsilon_{A'C'}K_{B'A} = 0$ for some $K \in \Lambda^1(M)$.

- Differentiate and commute derivatives: $\psi_{(A'B'C'\omega_{D'E'})E'} = 0$ and

$$\nabla_{AA'}K_{BB'} + P_{ABA'C'}\omega_{B'C''} - \varepsilon_{A'B'}\rho_{AB} = 0$$

(where $P_{ab} = (1/2)R_{ab} - (1/12)R_g_{ab}$) for some $\rho \in \Lambda^2_-(M)$.

- Differentiate and commute derivatives:

$$\nabla_{AA'}\rho_{BC} - \omega_{A'E'}E' D \psi_{ABCD} + K_A D \psi_{ABCD} - 2P_A E' A (B K_C)^{E'} = 0.$$

- Now the system is closed: All derivatives of ‘unknowns’ have been determined.

- Geometric interpretation $\Psi = (\omega, K, \rho)$ is a section of a rank–10 vector bundle $E = \Lambda^2_+(M) \oplus \Lambda^1(M) \oplus \Lambda^2_-(M)$ which is parallel with respect to a connection \mathcal{D} determined by the blue equations.
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq.
Compact hyperbolic four manifold \((M, g)\). Weyl\(= 0\), \(R = -1\). All local obstructions vanish.

Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq.

\(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq.
- \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
- Killing identity \(\Box K_a + R_{ab}K^b = 0\), where \(R_{ab} = -g_{ab}/4\).
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl= 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq. \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
- Killing identity \(\Box K_a + R_{ab} K^b = 0\), where \(R_{ab} = -g_{ab}/4\).
- Contract with \(K^a\), integrate by parts

\[
\int_M |\nabla K|^2 \sqrt{g} d^4x = -\frac{1}{4} \int_M |K|^2 \sqrt{g} d^4x.
\]
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.
- Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq.
- \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).
- Killing identity \(\Box K_a + R_{ab} K^b = 0\), where \(R_{ab} = -g_{ab}/4\).
- Contract with \(K^a\), integrate by parts

\[
\int_M |\nabla K|^2 \sqrt{g} d^4x = -\frac{1}{4} \int_M |K|^2 \sqrt{g} d^4x.
\]

- Therefore \(K^a = 0\) and our assumption was wrong.
Example: Local vs. Global obstructions

- Compact hyperbolic four manifold \((M, g)\). Weyl = 0, \(R = -1\). All local obstructions vanish.

- Assume globally defined non-degenerate \(\omega_{A'B'}\) satisfies the twistor eq.

- \(\nabla \omega \neq 0\) so \(\omega\) defines a Killing vector \(K_a\).

- Killing identity \(\Box K_a + R_{ab}K^b = 0\), where \(R_{ab} = -g_{ab}/4\).

- Contract with \(K^a\), integrate by parts

\[
\int_M |\nabla K|^2 \sqrt{g} d^4 x = -\frac{1}{4} \int_M |K|^2 \sqrt{g} d^4 x.
\]

- Therefore \(K_a = 0\) and our assumption was wrong.

- More global obstructions in the ASD case (LeBrun). The only simply connected four–manifolds \(M\) that are allowed are \(K3\) and \(\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, \ k \geq 10\).
Generic case \(C_+ \neq 0 \)

- Recall \(\psi^{E'}_{(A'B'C'\omega D')}E' = 0 \) (**).
Generic case $C_+ \neq 0$

- Recall $\psi_{(A'B'C'D')}^{E'} E' = 0 \ (*)$.
- Find that C_+ is of type D i.e. $\psi_{A'B'C'D'} = \pm \omega_{(A'B'\omega C'D')}$.
Generic case $C_+ \neq 0$

- Recall $\psi^{E'}_{(A'B'C'\omega D')}E' = 0 (*)$.
- Find that C_+ is of type D i.e. $\psi_{A'B'C'D'} = \pm \omega(A'B'\omega C'D')$.
- Differentiate $(*)$, impose the twistor equation.
GENERIC CASE $C_+ \neq 0$

- Recall $\psi^{E'}_{(A'B'C'\omega D')}E' = 0 \, (*)$.
- Find that C_+ is of type D i.e. $\psi_{A'B'C'D'} = \pm \omega_{(A'B'\omega C'D')}$.
- Differentiate $(*)$, impose the twistor equation.

Theorem. Let (M, g) be a 4–manifold such that the self–dual part of the conformal curvature is non–zero. Then there exists a Kähler metric in $[g]$ if and only if C_+ is of type D and

$$\nabla_A (A' \psi_{B'C'D'E'}) - V_A (A' \psi_{B'C'D'E'}) = 0, \quad \nabla_{[a} V_{b]} = 0,$$

where $V_{AA'} = \frac{1}{|\psi|^2} \left(\frac{1}{6} \nabla_{AA'} |\psi|^2 + \frac{4}{3} \psi^{B'C'D'E'} \nabla_{AB'} \psi_{C'D'E'A'} \right)$.

Dunajski (DAMTP, Cambridge)
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions:

$F \Psi = 0$

where

$F = [D, D]$

(there are some indices, but let’s not write them down).

If $F = 0$ then g is conformally flat. Otherwise differentiate:

$(DF) \Psi = 0$, $(DDF) \Psi = 0$, ...

After K steps $F^K \Psi = 0$, where F^K is a matrix of linear blue eqn.

Stop when rank $(F^K) = \text{rank} (F^{K+1})$.

The space of parallel sections has dimension $(10 - \text{rank} (F^K))$.

Theorem. An anti-self-dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conf. classes with more than one Kähler metrics: Fubini-Study metric on $\mathbb{C}P^2$ with reversed orientation.

Dunajski (DAMTP, Cambridge)
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \rightarrow M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:

$$(\mathcal{D}\mathcal{F})\Psi = 0, \quad (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$$

After K steps $\mathcal{F}^K\Psi = 0$, where \mathcal{F}^K is a matrix of linear equations. Stop when rank $(\mathcal{F}^K) = \text{rank} (\mathcal{F}^{K+1})$.

The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}^K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conformal classes with more than one Kähler metrics: Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate: $(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:

$(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$

After K steps $\mathcal{F}_K \Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate: $(\mathcal{D}\mathcal{F})\Psi = 0$, $(\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0$, ...

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}_K))$.
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let’s not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate:
$$(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{D}\mathcal{D}\mathcal{F})\Psi = 0, \ldots$$

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank} (\mathcal{F}_K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.
Theorem. Parallel sections Ψ of \mathcal{D} on a rank 10 vector bundle $E \to M$ correspond to Kähler metrics in a conformal class.

Integrability conditions: $\mathcal{F}\Psi = 0$ where $\mathcal{F} = [\mathcal{D}, \mathcal{D}]$ (there are some indices, but let's not write them down).

If $\mathcal{F} = 0$ then g is conformally flat. Otherwise differentiate: $(\mathcal{D}\mathcal{F})\Psi = 0, (\mathcal{DD}\mathcal{F})\Psi = 0, \ldots$

After K steps $\mathcal{F}_K\Psi = 0$, where \mathcal{F}_K is a matrix of linear blue eqn.

Stop when rank $(\mathcal{F}_K) = \text{rank} (\mathcal{F}_{K+1})$. The space of parallel sections has dimension $(10 - \text{rank}(\mathcal{F}_K))$.

Theorem. An anti-self–dual Einstein metric g with $\Lambda \neq 0$ is conformal to a Kähler metric iff g admits a Killing vector.

Examples of conf. classes with more than one Kähler metrics: Fubini-Study metric on \mathbb{CP}^2 with reversed orientation.

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Should be applicable to other 'can you find' type problems.
Summary and Outlook

Dunajski (DAMTP, Cambridge)

General approach to overdetermined systems: prolong, construct connection on the prolongation vector bundle, restrict its holonomy. Should be applicable to other ‘can you find’ type problems.